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SOME NEW INCOMPLETENESS THEOREMS AND THEIR IMPORT
TO THE FOUNDATIONS OF MATHEMATICS!

Francisco Antonio DORIAZ2

Abstract

We summarize our recent results on the incompleteness of classical
first-order axiomatic theories and discuss their import to the founda-
tions of mathematics.

1. Motivation

Current common wisdom on the foundations of mathematics can be sum-
marized as follows:

Axiomatic set theory, that is, Zermelo-Fraenkel set theory (ZF) with
portions of the Axiom of Choice is enough for essentially all of classi-
cal analysis; if we conveniently extend that theory we can include all of
our everyday mathematical fare together with some borderline results.
That means: we can reproduce all standard mathematical results within
axiomatic set theory; moreover, with the help of Bourbaki structures
and Suppes predicates we can axiomatize large portions of physics and
of the mathematically-based empirical sciences.

Zermelo-Fraenkel theory is also intuitively sound. Its axioms more or
less mirror our intuitions about sets in the “real world,” that is, in our
ordinary, everyday experience. We may argue that there are difficulties
with axioms that generate large sets of mostly “undetermined” ele-
ments, such as the Power Set Axiom or strong forms of the Axiom of
Infinity. But philosophical discussions can take care of those difficul-
ties; on the practical side we can say that those “difficult” axioms are

also intuitively valid, as reasonable extensions of our everyday experi-
ence.
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However axiomatic set theory is marred by the incompleteness (or Godel)
phenomenon, as any first-order theory that includes formal arithmetic.
Incompleteness means that there are pairs of sentences &, and the negation
of &, in one such theory T which turn out to be unprovable (granted that T
be consistent), thatis, T+ £and T¥ —E. Does that matter? According to
several authors, that phenomenon is irrelevant: René Thom believes that
those undecidable sentences are just “warning posts” which tell us that one
shouldn’t go further in directions that —as he asserts— do not matter for
mathematics. Anyway, Thom believes, Godel sentences lie far away from
the actual heart of mathematical activity, which (again according to Thom’s
statement of faith) is perfectly decidable [44]. More recently, John Casti
has also suggested that the Godel incompleteness phenomenon is a “red
herring,” and that it has no import to mathematical practice [5, 6], if we
take for granted the physicist’s view that the universe is both finite and
composed of discrete particles.

The point is: the Godel phenomenon will matter for mathematics if there
are simple, easily understandable questions which arise in our everyday
experience and which (in a reasonable formalization) can be shown to give
rise to an undecidable sentence in set theory. If not, the Gédel phenomenon
is in fact irrelevant.

We are going to consider here two possibilities that may perhaps give rise
to those simple, easily understandable questions related to Godel-undecid-
able sentences in set theory. Recall that 7, the main axiomatic theory we
consider in this paper, includes (in a proper or improper way) Zermelo-
Fraenkel theory with the full Axiom of Choice. Those possibilities are
sketched below, together with a previous example dealt with by the author
elsewhere [20].

The first example: Mrs. H.’s problem
Our prime candidate for one of those questions arises out of the following
story:

Mrs. H. is a gentle and able lady who has long been the secretary of a
large university department. Every semester Mrs. H. is confronted with
the following problem: there are courses to be taught, professors to be
distributed among different classes of students, large and small classes,
and a shortage of classrooms of varying sizes. She fixes a minimum
acceptable level of overlap among classes and students and sets down
(in a tentative way) to get the best possible schedule, given that mini-
mum desired overlap. It’s a tiresome task, and in most cases (when
there are many new professors, or when the dean changes the class-
room allocation system) Mrs. H. feels that she has to check every
conceivable scheduling before she is able to reach a conclusion. In
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despair she asks a professor whom she knows has a degree in math:
“tell me, can’t you find in your math an easy way of scheduling our
classes with a minimum level of overlap among them?”

Mrs. H.’s question is our best candidate for a simple, intuitive, everyday
question that gives rise to a set-theoretic undecidable sentence. We believe
that if mathematics (seen as axiomatic set theory) cannot answer a simple,
everyday query like that, it is definitely at fault, and one must rethink the
whole foundational question.

For a more complete (and technical) discussion of Mrs. H.’s question see
below Section 3.

The second example: a version of Rice's Theorem in analysis

Mrs. H.’s question is for sure our best bet in that direction, but there are
other possibilities to be considered here that may also illuminate the rele-
vance of Godel’s phenomenon. Rice’s Theorem is a devastating result in
theoretical computer science. It can be reasonably paraphased in an intu-
itive vein: there is no general decision procedure to test for properties of the
output of arbitrary classes of programs.

Let’s be a bit more technical. Notation, conceptual starting-points and
proofs can be found in [19, 36, 38]. (But we’ll try to make things as intu-
itive and self-contained as possible.) We say that @ is an index set of algo-
rithms (of programs, that is, partial recursive functions) if, given an algo-
rithm ¢ € € and if, given another algorithm , for all positive integers n in
both domains, ¢ (n) = & (n), then ¢ € 6. An index set € is trivial if either
€ = (J or € equals the set of all programs. Then:

Proposition 1.1 (Rice’s Theorem.)
1. @ is recursive if and only if it is trivial.
2. 6 is nonrecursive if and only if it is nontrivial. []

The practical consequence is: we are given a program and we wish it to
have a specific behavior (say, to be fast and to give a desired output).
Rice’s Theorem asserts that there is no general recipe to test for the pro-
gram’s behavior. So, debugging of programs will always be a tentative,
empirical procedure. No general procedure is available here.

Now suppose the following: let P(x) be any set-theoretic predicate. Let a
be a set. Given those general conditions, under which circumstances can we
check whether T+ P(a) or T+ —P(a)? The not so surprising answer to that
question is given below in Section 2. It is due to da Costa and Doria, and
assuredly shows that against Thom’s hopeful thinking, the Gédel phe-
nomenon lies at the very heart of everyday mathematics.
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The third example: where does randomness come from?

One third example (not discussed in this paper) has to do with a much-de-
bated philosophical question, the concept of randomness. Where does ran-
domness stem from? Take a Bernouilli shift, the set of all (infinite) possible
outcomes in a game of heads and tails. That set is isomorphic to the set of
all two-sided infinite binary sequences over the alphabet {0,1}. Now elimi-
nate from those sequences the ones with a prescribed (recursive) generating
rule. We are left with the set of truly random sequences in our Bernouilli
shift. Properties such as the shift’s positive entropy and the like seem arise
out of those irregular, nonrecursive sequences.

Now the trick. Formalize everything within Zermelo-Fraenkel set theory.
Choose a particular model for our formal contruction. For example, a
model which satisfies V = L, Godel’s Axiom of Constructibility. Random
sequences in the shift within that model will be constructive in Godel’s
sense. Expand the constructive model to a forcing extension that obeys (in
an adequate way) Martin’s Axiom. There will be a whole plethora of “new”
random sequences in the expanded model, and the constructive set of se-
quences will have zero measure in the new model. So, properties that char-
acterize randomness in the shift in the extended model, such as its entropy
will solely depend on the newly added sequences! Where does randomness
come from? Certainly not from a particular set of trajectories for the shift,
as shown by the example. We can easily concoct here a set-theoretic for-
mally undecidable sentence which relates to that situation [20].

There are simple noncomputable expressions for functions within math-
ematics; those expressions creep up even within languages close to arith-
metic, and again lead to very simple questions such as, “does the integer-
valued function 6 (n) equal 0 or 1?” which turn out to be undecidable in the
general case. Analogous naive-looking but intractable expressions for
functions can also be found within more elaborate languages, as classical
elementary analysis. With their help we can generate infinitely many un-
decidable sentences with a trivial appearance from arithmetic on and all the
way up to the whole of mathematics. Some of those intractable expressions
represent the halting function 6 (m, n), that tells us whether the Turing ma-
chine M, (n) stops over its input n. Once we have an expression for the
halting function, we can obtain explicit expressions for all complete arith-
metic degrees and even beyond. We can also concoct associated undecid-
able predicates which represent problems in all the corresponding degrees
of unsolvability, both inside and outside the arithmetic hierarchy.

Previous work and an acknowledgment

Several of the results that are presented here are to be found in the papers
[8,9,10, 11, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26]; other references are
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(3, 31, 39, 40, 41]. More critical discussions and appraisals of some of
those results are found in [29, 30, 34]. The author wishes to point out that
the work discussed here arises out of a joint program carried out with N. C.
A. da Costa since the late 80’s; in particular, the results in Section 2 were
first discussed in a joint informal seminar in December 1996 and appear
here for the first time.

2. Rice’s Theorem in Classical Analysis

We suppose that our discussion takes place within an axiomatic framework
flexible enough to include arithmetic and elementary calculus; such is our
T. For all practical purposes we deal here with a first-order classical ax-
iomatic theory T which includes ZFC (or at least some portion of the
Axiom of Choice). The language L, of T can be extended with the use of
descriptions; that use will be admitted throughout this paper. New symbols
are introduced by contextual definition. A model M will be called standard
if its arithmetic segment is standard; if not, the model is nonstandard.

The halting function

We can find some very simple expressions for the halting function in theo-
retical computer science within theories close to elementary arithmetic.
Two of them are given here:

Lemma 2.1 The Turing machine M ,, (n) of index m halts over n if and only
if8 (m, n)=1; M, (n)doesn’t halt over n if and only if® (m, n) = 0, where
0 is given by:

K(m,n)= '[FL c{m,n,x,, ...,xq)exp [—((,xc,)2 + ...+(xq)2)] ds,
0 (mn)y=cK(mn).

0 is the halting function of computer science [33, 36]. This Lemma shows
that an expression for it exists within classical analysis. For the proof see
[8]. c is obtained out of Richardson’s transforms (see the reference); o is
the sign function: o (*Ixl) = =1, x # 0, and o (0) = 0.

Remark 2.2 A still nicer expression for the halting function is available
within simple extensions of arithmetic [19]; one only has to be able to
make infinite sums in order to obtain it. Let p (n, x) be a 1 -parameter uni-
versal polynomial X abbrevnatcs Ky eory X Then either p (n,x) =1, for
all X € w?, or there are x in ®” such that p (n, x) = 0 sometimes. As o (x)
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when restnctcd to w is primitive recursive, we may define a function s (n,
X)=1-0op (n x) such that:

e Either forallx € w?, ¢ (n, x) =0;
* Or there are X € w” so that { (n, X) = 1 sometimes.

Thus the halting function can be represented as:

sw=o[ Y LY,

f"](x] q( )‘

where 77 (x) denotes the positive integer given out of x by the pairing
function 7: if 77 maps g-tuples of positive integers onto single positive in-
tegers, 77 =1 (x, 77 (X)).

Moreover, given any family of Diophantine equations p (n, X) =
parametrized by n € w, we can obtain a halting-like function 6, (n) such
that it equals 1 whenever p (#n, ...) = 0 has integer roots, and equals O if it
has no such roots. The procedure for the construction of 8 , goes as in the
construction of the halting function 6 (m, n). (J

The halting function leads to a general undecidability and incompleteness
theorem

In 1990 (published 1991), da Costa and Doria proved a theorem with a
formulation similar to Rice’s Theorem within the language of classical
analysis ([8], Prop. 3.28; [19]). Given a formal version of the language of
beginning advanced calculus, where we only handle elementary functions
and calculus operations (that is, polynomials, sines and cosines, exponen-
tials, special constants such as 7 and e, the absolute value function IxI,
derivatives and integrations over simple domains in R") we obtain a result
that immediately leads to a surprisingly user-friendly technique to prove
undecidability and incompleteness theorems in the formal counterpart of
classical mathematics.
We need a few definitions:

Definition 2.3

1. Nontrivial P. P is nontrivial if and only if there is a closed term t such
that P (t) is a theorem of T, and there is a closed t' such that —P (t') is
a theorem of T.

2. Trivial P. P is trivial if and only if for every t P (t) isn’t a theorem of T,
or for everyt, =P (t) isn't a theorem of T.

3. Incomplete P. P is incomplete if and only if there is a t such that: P (1)
isn’t a theorem of T and —P (¢) isn’t a theorem of T.
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4. Complete P. P is complete if and only if: for every t either P (1) is a
theorem of T, or —P (1) is a theorem of T.

5. Decidable P. P is decidable if and only if: either the set x , of all
closed terms t such that P (t) is provable, is a recursive set; or the set
X _p of all t such that —P (t) is provable, is recursive.

6. Undecidable P. Both x , and x_, aren’t recursive. []

Remark 2.4 Notice that if P is trivial, one may have to consider the possi-
bility that it is also incomplete. [

In order to proceed we need a lemma which depends on the assumption that
T be arithmetically consistent, that is, that one of its models has a standard
arithmetic portion [8]:

Lemma 2.5 There is an explicit expression for a function B such that T+
=0or B =1, while neither TFB=0norTF B =1.

Proof: Follows from the fact that the 6 function has a recursively enu-
merable set of nonzero values, with a nonrecursive complement, and from
the existence of a Diophantine equation which has no roots in the standard
model for arithmetic, while that fact can neither be proved nor disproved in
.0

Then:

Proposition 2.6 If P is nontrivial, then it is incomplete.
Proof: From Lemma 2.5, we form the term v {(x = I, AB=Dvix=t,
NB=0)}, where TF P(ty)and T+ —P (¢,). Clearly

Tk P {(x=ty AB=1)y (x=t, AB=0)}),
and

Tr =P {x=t, AB=Dvx=,AB=0}.0O
Then comes our version of Rice’s Theorem:

Proposition 2.7 P is nontrivial if and only if P is undecidable.
Proof: Use theterm v, {(x =t, AO (n) =0) v (x = 1, A0 (n)=1}.
Then:
* Nontrivial = Undecidable. Immediate.
* Undecidable = Nontrivial. Take the negation, trivial = decidable,
and the result follows from Definition 2.3. []
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Proposition 2.8 If for every t, P (t) is provable, or if for every t, —P (1) is
provable, then P is trivial. (]

So, there are no decision procedures for nontrivial predicates. The limita-
tion is a drastic one: we can’t even decide whether an arbitrary expression
in the language of analysis equals 0. Another example: if n is any integer,
put n + r0 (g), where r is an irrational and 6 (g) is the halting function; then
we cannot in general decide whether an arbitrary member of that family of
expressions is an integer or an irrational number.

More incompleteness results

We quote here a general undecidability and incompleteness result that
originates in our ideas:

Proposition 2.9

1. Given any nontrivial predicate P in T, there is an infinite denumerable
Jamily of expressions € ,, such that for those m with T+ P (§ ), for an
arbitrary total recursive function g : w — w, there is an infinite num-
ber of values for m such that the shortest length C ;. (P§ ) of a proof of
Pt in T satisfies C; (PE,) > g (||PE,|D. (||...|| denotes the length of
the expression. ).

2. Given any nontrivial predicate P in T, there is one of those expressions
& such that T+ P (§) if and only if T + Fermat's Conjecture.

3. There is an expression § such that for a nontrivial P, P (§) is T-arith-
metically expressible as a Il |, problem, but not as any ., problem, k
=m.

4. There is an expression £ so that P (§) isn’t arithmetically expressible

(191.0
Consequences

For a review of the main consequences of the preceding results see [10, 19,
39, 40, 41]. We would like to quote here just two of them:

* Is there a decision procedure for chaos? Chaos theory has been a
fast-growing research area since the early 70’s, a decade after the
discovery of an apparently chaotic behavior in a deterministic non-
linear dynamical system by E. Lorenz (for references see [8, 41]).
Chaos scientists usually proceed in one of two ways: whenever they
wish to know if a given physical process is chaotic the usual starting
point is to write down the equations that describe the process and out
of them to check whether the process satisfies some of the estab-
lished mathematical criteria for chaos and randomness.
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However those equations are in most cases intractable nonlinear
differential equations as they cannot in general be given explicit ana-
lytical solutions. Therefore, chaos theorists turn to computer simula-
tions and for most nonlinear systems one sees a confusing, tangled
pattern of trajectories on the screen. The system looks random, and
there are statistical tests such as the Grassberger-Proccacia criterion
that guarantee the existence of randomness in computer-simulated
systems, modulo some error. Yet statistical tests furnish no mathe-
matical proof of the existence of chaos in a dynamical system. There
is always the chance that the system is undergoing a very long and
complicated transient state, before it settles down to a nice and regu-
lar behavior. Therefore how can we prove that a dynamical system
that looks chaotic 1s, in fact, chaotic?

This problem had been around since the discovery and early explo-
ration of what is now called “deterministic chaos.” In a 1983 confer-
ence (published in 1985) Morris Hirsch stated that time was ripe for
a marriage between the “experimental” and “theoretical” sides of
chaos research and posed the decision problem for chaotic systems
[28].

da Costa and Doria showed [8] that no such a decision method ex-
ists. Moreover, for any nontrivial characterization of chaos in a dy-
namical system there will always be systems where proving the exis-
tence of chaos is unattainable within standard axiomatizations. Chaos
theory and dynamical systems theory are both undecidable —there is
no general algorithm to test for chaos in an arbitrary dynamical sys-
tem— and incomplete —there are infinitely many dynamical systems
that will look chaotic on a computer screen, for they are chaotic in an
adequate class of standard models for axiomatized mathematics, but
such that no proof of that fact will be found within the usual formal-
izations of dynamical systems theory.

So, Hirsch’s query on the existence of an algorithmic criterion for
chaos in dynamical systems has a negative answer.

The integrability problem in classical mechanics. That’s a question
that goes back to the early age of classical mechanics. We quote a re-
cent reference on it [32]:

Are there any general methods to test for the integrability of a
given Hamiltonian? The answer, for the moment, is no. We can
turn the question around, however, and ask if methods can be
found to construct potentials that give rise to integrable
Hamiltonians. The answer here is that a method exists, at least
for a restricted class of problems...
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We can divide the integrability question into three problems:

— Given any Hamiltonian A, is there an algorithm to decide
whether the associated flow X, can be integrated by quadra-
tures?

— Given an arbitrary Hamiltonian / such that X, can be inte-
grated by quadratures, can we algorithmically find a canoni-
cal transformation that will do the trick?

— Can we algorithmically check whether an arbitrary set of
functions is a set of first integrals for a Hamiltonian system?

No, in all three cases. There is no general algorithm to decide, for a
given Hamiltonian, whether or not it is integrable. Also, for instance,
there will be sentences such as £&= “h is integrable by quadratures,”
where however T¥ £and TF —& [8].

Mrs. H.’s Toils and Troubles

Mrs. H.s’s problem is a scheduling problem, which is known to be poly-
nomially equivalent to the satisfiability question [33]. The satisfiability
question can be informally stated as follows:

Is there a polynomial Turing machine P that accepts every Boolean
expression x in conjunctive normal form in time polynomial in the
length Ixl ?

That is, the machine P should input a n-variable expression x, poly-
nomially process it and output a binary line of length n which codes a
satisfying line in x's truth-table.

Consider the following facts about Boolean expressions in conjunctive
normal form (cnf) and polynomial machines:

1.

There is a representation for polynomial machines which codes every
polynomial machine with the help of two integers { m, n ). Such a rep-
resentation is given by the pair P i) = (M, (x),Id" ) [2], where m is
the Turing machine’s Gédel number and n is the exponent of a poly-
nomial clock that terminates any computation of M, whenever it has
operated for IxI" machine cycles.

Given an enumeration of the pairs { m, n } we can enumerate the
set of all polynomial Turing machines in the above representation.
Note that set .

Finite sets of Boolean expressions in cnf and polynomial machines.
Another fact we will require goes as follows: if Sat is the set of all
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Boolean expressions in cnf coded over a binary alphabet, let B C Sat
be finite. Then there is a polynomial machine P, such that it accepts
every expression in 3 and moreover accepts infinitely many expres-
sions from Sat. There is an effective procedure for the construction of
P

3. Machines that accept infinitely many instances of Sat. Moreover, if P,
accepts infinitely many instances from Sat, and if B C Sat is finite,
then there is a machine P, which accepts everything that P, accepts
together with the whole of B.

Again there is an effective procedure to obtain P, from P .

Let us now be given the following predicate:

Pk s,x) P, ()=sAV(sx)=1.
(V (s, x) is the “verifying machine” that inputs the binary line s and checks
whether it satisfies x or not —if it does, it prints 1; if not, 0; it is a time-
polynomial machine.) Clearly P (k, s, x) means, “the polynomial machine
of index k inputs x, outputs s and the verifying machine checks that s satis-
fies x.” Similarly,

A(k,x) € s P (k, 5, x)
can be given the intuitive translation” P, accepts x.” The polynomial hy-

pothesis for the satisfiability question can therefore be given the following
reasonable formalization:

3k € w,Vx € Sat A (k, x).

We call that the Weak Polynomial Hypothesis (WPH) for the satisfiability

question. Granted (2) in the enumeration above, WPH is formally equiva-

lent to:

Definition 3.1 Weak polynomial hypothesis in set theory (WPH).
n€wdk, EaVx, ESat(k>k, > A(n,x,)).0

Definition 3.2 Negation of the weak polynomial hypothesis in set theory
({—=WPH).

VnEwVk, Ewdx, ESat(k>ky N =4 (n,x,)). 0
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Two conjectured consistency results
We conjecture:

Conjecture 3.3 Consis (ZFC) <> Consis (ZFC + WPH).
We need:

Axiom System 3.4 Extend ZFC as follows:
1. Add a new constant term v to the language of the theory.
2. Impose that P, be a polynomial machine.
3. Forx,; € Sat, impose:
(@) A(w,x,).
(b) A (v, x)).
(c) A(v,x,).
(d) A (v, x,).
(e) ... O

Call the extended theory ZFC ™" and recall that @ is the set of all polyno-
mial Turing machines, as characterized above. Then:

Proposition 3.5 ZFC is consistent if and only if ZFC ™" is consistent.
Proof: For any finite conjunction /\ A, x)AP  €P, wecanfind a
model for ZFC , since there will always be a polynomlal machine P that

accepts the fmlte set {... x; ...}. Consistency follows from compac1ty
Converse is immediate. (]

Conjecture 3.6 ZFC"" proves the Weak Polynomial Hypothesis.

“Proof”: Define a, = {x € Sat : A (v, x)}.We need that a, = Sat. So,
P, € & accepts the whole of Sat. (J

Now

Conjecture 3.7 Consis (ZFC) <> Consis (ZFC + —WPH).
Again:

Axiom System 3.8 We will now extend ZFC as follows:

1. Add denumerably many new constant terms Lo
guage of the theory

2. Recall that it is a theorem of our axiomatic theories that Sat is linearly

ordered by <, with the order type of w and some extra conditions.

Write the predicate P (k, s, x).

Impose that the {; ; € Sat.

Impose moreover on the L, ; the following denumerably infinite set of
axioms:

i, ] € w, to the lan-

YR W
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(@) =P (k0,L;), =P (k 1, Ei-e)s — P (K2, ) -
: foreachj, k € w.
(b) K (L;;)) # K ;) 0# 0, j #j or both. Here K is the
Kolmogorov-Chaitin complexity.
(c) Forevery L, ; thereare k, s, x such that

(L <xg) NP(ky, 54, Xg).
(That is, every {; ; Is somewhere “in the middle of” Sat.) (]

Condition (5b) means that the {’s cannot be recursively generated out of a
finite set of expressions in cnf. So, we here deal with truly infinite set,
modulo recursive operations. Call that extended theory ZFC *. Then:

Proposition 3.9 ZFC is consistent if and only if ZEC " is consistent.

Proof: The proposition follows from the compactness theorem and from
the preceding results. If p C w, ..., are finite subsets, and { ... ) denotes the
usual recursive 1-1 pairing function, form the conjunctions:

A =P (k, s, g DAL =P (kY s, oo o)
(k,S) ep, ...,(k”,S”> € p” k. j e k', j

Given that conjunction above, we can always simultaneously choose a fi-
nite set of Boolean expressions in cnf {{ k> -1 80 that:

* Let{=max {lsl, Is1, Is"], ...}.

* We can choose z, ; such that their satisfying lines ¢, ", ... obey I < I1l
<ltl<...

Therefore the z , ; satisfy the conjunction above.

* Their corresponding Kolmogorov-Chaitin complexities are larger
than the largest complexity of the satisfiability lines in the conjunc-
tion, which are given by the codings s, 5", ....

* For axiom (5c), take the truth-table generating machine T and form
the polynomial machine P, = (T, 1..1"" ), n; > 2. Then that ma-
chine will accept most expressions in Sat [16], and we will easily
find one x, accepted by P, with the desired properties, that is, 7 <
2y % wi® Zp € Xy InThe ordoering induced on Sat. Out of that fact we
can easily obtain another machine P, which accepts all those ele-
ments accepted by P, plus the z,, ..., z,. Since that is a general
construction, by compactness we have our result. []
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Remark 3.10
* We just ask of the excepuonal language for P, Cr ;1> allj, that

it be rejected by that algorithm P . Finite subsets of them will neces-
sarily be accepted by different algonthms since that’s a theorem of
ZFC. (See ahove.)

* Now write { = { {;}. We can state it more precisely: every {, ; will
be accepted by some P ., that is, there are infigitely many nonempty
o . (the language accepted by P ) suchthat { N o, # ), and that
intersection is at least finite. Yet every polynomial machine P,
admits a P, -exceptional language which is rejected by it, and that
language is an infinite subset { C ¢ .

* Moreover, due to its unbounded KC-complexity, such a sequence
cannot be recursively generated out of any finite string.

* Also the choice of the {, ; determines those {; ; which cannot be ac-
cepted by the algorithm g‘:’ where g is a recursive permutauon

* Finally notice that no exceptlona] language {; ;} C Sat, j € w, can
be accepted in rorum by some polynomial algorlthm P .. For if it
were so0, due to the completeness of the set of polynomlal languages
that language would be polynomial [33]. (J

Conjecture 3.11 ZFC " disproves the Weak Polynomial hypothesis, that is:

ZFC '+ — (3n€ w Ik, € 0 Vx,
€ Sat(k>k, — s (P (n, 5, x,))).

“Proof”: Suppose that ZEC ™~ proves WPH. Then there is an n, such that,
for every x € Sat, there will be an s such that P (n, s, x). However, given
one such algorithm P the axioms of ZFC " should allow us to find an ex-
ceptional language for 1t namely the set of constants {{, .} C Sat, forall j
€ . This would contradict our hypothesis, and our result would follow by
modus tollendo tollens. ]

So, it would turn out that WPG is independent of the axioms of ZFC,
supposed consistent.

4, Comments

Back to the question we asked at the beginning of this paper: is set theory
enough for mathematics? We pointed out [20] that there are problems with
important concepts such as randomness when they are framed within ax-
iomatic set theory. Well, but here the trouble may perhaps arise out of an
inadequate construction of the concept of randomness. Let us elaborate a
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bit on this point: we can show that satisfiability problems of maximum
Kolmogorov-Chaitin complexity have low computational complexity.
(They are actually are low-degree polynomial problems.) So the two formal
concepts, computational complexity and Kolmogorov-Chaitin complexity,
do not match [24], even if their intuitive starting points are similar.

Our results as presented in Section 2 seem to tip a bit more the scales
against axiomatic set theory, as they show that Gédel incompleteness af-
fects every interesting predicate we can think about. Think for instance that
given a complicated expression which represents a real number, there is no
algorithm to check whether it is algebraic or transcendental, and that there
will be some expressions (in ZFC) for real numbers whose transcendental-
ity is formally undecidable!

Mrs. H.’s problem perhaps tells us the source of those troubles.3 Given
the much required caveat, that the WPH adequately translates Mrs. H.’s
question, then we will have here an example of a very simple, easily under-
stood mathematical question which cannot be decided by mathematical
tools as found in axiomatic set theory. The point is: while the satisfiability
question is more easily framed within arithmetic, the independence result
we presented shows that it gains nothing from the (supposedly stronger)
set-theoretic axioms.

We cautiously suggest that this might indicate an essential cleavage be-
tween set theory and arithmetic; as if they belonged to different conceptual
domains, with however a few points of intersection. Set theory was born
within classical analysis, and that is the area where we can best formalize
ordinary intuitive mathematics with set-theoretic concepts. Perhaps our
troubles with large cardinals and the like arise from the fact that classical
analysis has very little or nothing in fact to (intuitively) say about them.
And, also, set theory has very little to tell us about arithmetic, which is sort
of clumsily integrated into the set-theoretical universe.

Whereas Mrs. H.’s troubles.
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