Logique & Analyse 153-154 (1996), 153-164

ON RELATIONS BETWEEN WP-GRAPHS
AND DATA STRUCTURES!

M.V. KRITZ

Abstract

The mathematical objects called wp-graphs were introduced to model
biological information. They process, notwithstanding, several interest-
ing properties not directly related to its original motivation. It is here
shown that various of the most commonly used programming data
structures can be recasted as special cases of wp-graphs and, thus, that
these data-structures may be expressed in a common framework, which
partially explains why wp-graphs are showing a wide range of
potential applications. Although it is not claimed that this general form
is good to use or implementation, it does reduce some constructive
meta-concepts to the same level of the constructed data-structures, i.e.,
they are also wp-graphs.

1. Introduction

The mathematical objects called wp-graphs were introduced in [Kritz
1991], named there i-graphs, to mathematically model configurations that
convey biological information, a new concept also introduced therein.
However, a lot of other aspects and possible applications of these objects
have thereafter been discovered. One to mention: is that they happen to
generalize, in a sense to be made precise, many data-structures currently
used in programming and computer science [R. Scialom, 1990].

Roughly speaking, biological information is conveyed by any group of
parts and wholes from a universe, bearing somehow relations to one anoth-
er. These configurations —of parts, wholes and their relations— can be
mathematically modelled by wp-graphs. A wp-graph is recursively con-
structed using hypergraphs as building blocks and can be informally de-
scribed as hypergraphs, whose nodes can be either hypergraphs or sets
thereof; i.e. they can be also wp-graphs.

I'This work was presented at the 2" Gauss Symposium, 2-6 Aug. 1993, Munich,
Germany.

154 M.V. KRITZ

By sticking to plain programming data structures —that is, to structures
which definition involves neither environmental concepts nor special
(meta-)rules and endomorphisms— it is possible to show that several of
them can be recasted as wp-graphs. This is done by controlling the class of
hypergraphs allowed to intervene in the construction of a wp-graph, lead-
ing thence to sub-classes of the wp-graph space. To clarify what plain
structures are, consider stacks and queues. Elements of either class are a
(sequential) list of objects endowed with the idea of inserting and extracting
elements (parts) to and from it in a specific manner, and rules to define
these processes. These classes differ just because they have distinct inser-
tion/extraction rules. In this case, the insertion/extraction idea is the envi-
ronmental concept and the definition rules, the special rules. Here, lists are
the plain data-structures, since their definition involves just relational and
organizational aspects among their parts.

The aim of the present work is to show that several plain data structures
occurring in programming and computer science —among which one
counts: lists, s-expressions, recursive trees, graphs (and, thus, non-recursive
trees), (multi-dimensional) arrays, relations and so on— can be obtained as
particular instances of wp-graphs, and how to do it. To achieve this I infor-
mally present, in the next section, some aspects of wp-graph definition rel-
evant to the present work. In the third section, data structures are presented
and shown to be wp-graphs. The last section contains some concluding re-
marks.

2. About wp-graphs

The stropped acronym wp-graph stands for whole-part-graphs.2 They are
mathematical objects recursively defined in a constructive manner, having
hypergraphs or, more precisely, extended hypergraphs as their basic build-
ing blocks. A hypergraph is, quite simply, a family of subsets of a given set
—the set of its nodes— such that the union of all elements in the family do
cover the starting node set. Formally, a hypergraph is a pair [Berge 1970]:

h={N.ACgp N} (1)

2The initial [Kritz, 1991] acronym i-graph stands for information-graphs. However,
biological information is immaterial, being carried by whole-part configurations, the
description of whole-part arrangements being a more fundamental characteristic of these
mathematical objects.

ON RELATIONS BETWEEN WP-GRAPHS AND DATA STRUCTURES 155

where N is a non-empty finite set (of nodes), 2 (N) is the set of all its sub-
sets and the arcs a; € A, i € I, I non-empty, are such that

a # aj,(i;tj),
4 = G(Viel),)
U!El a" = N.

To construct wp-graphs, however, hypergraphs need to be extended, by
simultaneously restraining and enlarging its possible nodes. If N (h)
denotes the node set of h, an extended hypergraph is a hypergraph such that
N (h) C U@, being U the following set (of admissible nodes):

Up=UuVu {O} 3)
Above, U is an universe set of (atomic) ground objects,
V={v,v,, vy ..}

is an infinite set of (meta-)variables and © is a special atomic element, used
below to define a hierarchical assignment. Conforming to biological
motivations, U is taken to be an admissible set in the sense of [Barwise
1975] —i.e., its elements may be either simple, atomic, elements or sets. As
before, the node set satisfies N (h) # & # N (h) < « and the family
A (h) must satisfy (2), but for extended hypergraphs it is also required that
N (h) # {O©}. (Strictly speaking, N (h) ¢ U should also be required.
Nevertheless, this would only burden some proves below without changing
the results.) The class of all extended hypergraphs will be called 9. The
notation and definitions below will be useful further on:

ifOE N(), define h=h"Ah" €% AQinh°
if(veV)[vEN(N), define h=h"Ah"€# Avinh"; } @)
ifhe# ANhe ¥, define h=h"Ah"€H =% n%x".
The whole construction of wp-graphs is based on the following (binding)
operator defined for extended hypergraphs, which identifies an extended
hypergraph of type h” to a v-node in an extended hypergraph of type h* by
“assigning” ©inh° toavinh". Namely,

Jd: (h%,h") — h'=h" Jh° (5)
h* niv e ®inh’, (6)

156 M.V. KRITZ

where “=" means that the whole h” in right hand side is to be interpreted as
an atom and taken as a node of h”, “occupying the place of v’, or “fill-
ing” it. Likewise, if S is a set of h € #, the binding h'=h" . s can be
also defined by letting v “=" s, viin h”, in the usual renaming sense, since
set nodes are allowed (3). Moreover, u in h' if either uinh” oru in h° (or
(3h € s) [uin h)).

Observe that, ift h" = h™ € %" is such that N (,h") nV={v,, .., v, }
and n = m, we can extend the above binding operator J collaterally to

N7 d<hi,he s, (7)
just by requiring that
2N miv, “="Qinh’,

and, analogously, to any group of h”s and sets of hs. Thence, we can define
wp-graphs to be the members of a class wp-I" constructed in the following
way [Kritz 1991]:

Def 2.1 An object v is an wp-graph, that is, y € wp-I, if and only if
1. ve#

2. ¥Y={Y uY;} wherey, Ewp-I'V1 =i=k,

3. y= _ h" dey, s n=m,

where = reads “is obtained as”, “is identified to”, or “is of the form of”’;
. . o o
and either O in Y, or ¥, is a set like in case 2, V1 = i = n.

Note that the predicate in can be naturally extended to wp-TI’, and, if v is not
a set, it has always a recursive upmost h, that is, an “upmost whole”, which
is called its seed. It may be assumed above that © in ;, means that © is a
node of seed of vy..

3. About wp-graphs and data structures

For organizational purposes, recursive and non-recursive structures are dis-
tinguished below, being the latter analysed first. Observe that, while non-
recursive structures have the number of its parts —parametrically or explic-
itly— fixed by their definition, this is however not the case among recursi-
vely defined structures, whose number of parts is left undetermined by their
definitions. Notwithstanding, some data structures can be defined in either
way.

ON RELATIONS BETWEEN WP-GRAPHS AND DATA STRUCTURES 157

3.1. A priori bounded data structures

In this subsection, structures defined without recursive constructions are
analysed, amongst which (undirected) graphs, trees, sets, functions, arrays
and relations may be found.

To begin with, consider graphs and sets. A (directed) graph is defined in
the literature in various ways, eventually with small differences that are lat-
ter sharped out. They are often described as a pair of sets [Berge 1976,
holding their nodes and arcs, or as any subset of a cartesian product [Abe &
Papavero 1992]. An undirected graph is often said to be a graph where the
arcs’ directions are left unspecified [Berge 1976]. Graphs are here consid-
ered as:

Def 3.1 A graph g = {N,A} is a pair of sets, with A C N X N, satisfying
(¥n € N) (3n' € N) such that either (n,n) € A or (n',n) € A.

This rules out multi-edges and isolated nodes, but allows for loops.

Lemma 3.1 (Graphs)
Any graph g, as such, is a hypergraph and, so, an wp-graph.

Proof Since the direction is unspecified, perforce, for each (n ph,) E A, el
ther (n,,n,) & A or they have been made equivalent. In either case, an edge
between a pair of nodes can be described by the set {n,n,} instead.
Thereafter, A C %, (N) C 0 (N), where 2, (N) = {s C N | # (s) = 2)
and hence, as A satisfies (2), it’s clear that g belongs to % and thus to wp-T,
by definition. O

With respect to sets, it is indeed true that U, through each of its elements,
can be immersed in wp-1I.

Lemma 3.2 (Sets)

Ifu € U, it can be associated to an element of wp-1". So, any set s C U can
be associated to an wp-graph.

Proof For each u € U, consider the hypergraph u = {{u},{u}}. Since it sat-
isfies all conditions imposed on extended hypergraphs, u belongs to ¥ and,
thus, to wp-I". Moreover, if h € 9 is such that [N (h) C UA # (N (h)) =
1], then # (A (h)) = 1 and h = {{u},{u}}, for some u € U. Therefore, any
set whose elements belong to U can be turned into a set of wp-graphs as in
case 2 of definition 2.1. They are, thus, wp-graphs as well. O

158 M.V. KRITZ

All other data-structures examined in this section can, in one way or anoth-
er, be recasted as graphs and, of them, only arrays need concepts specific
to wp-graphs. The following is indeed a special type of graph.

Lemma 3.3 (Trees)
A (non-recursive) tree is an wp-graph.

Proof A tree is an acyclic connected graph [Knuth, 1973]. Then, in the
sense of Lemma 3.1, is a wp-graph.]

Amongst the most frequently used data structures are tables. However, al-
though functions are (computationally) more often associated with the pro-
cedure or algorithm concept, tables are really a roll of argument-value pairs
of functions. Here, their arguments will always lay in a domain (D) and
their values in a co-domain (cD). These sets, for the time being, are taken
as subsets of U.

Lemma 3.4 (Functions and Tables)
Let f: D —— ¢D be a function, where # (D) and # (cD) are finite. Then,
the object f can be associated with an wp-graph.

Proof Letg = {N,A}, where N=DucDand A = {{x,f(x)}, x€ D} u
(cD \f(D)). Since f is a function, A satisfies (2) and g is a hypergraph
(effectively obtained from the graph of f), hence an wp-graph.
Furthermore, if g is a hypergraph such that U D N(g)=M, UM,, A(g) C
§2 , (N (@) and the arc set satisfies

Va€A)[anM, #+D=anM, +)]
and

(VxEM)) (3a €A)x€Eaqal]

; then g represents a function such that D =M, ¢cD =M, and f (x) = y,
where [xEan M IAN[yEanM,], wheneveran M, # . O

Another important programming data structure is the fixed-size hash tables
[Aho et alli 1983]. They can be simply seen as multi-valued functions F :
Keys —— Set_of_Objects, satisfying [k # k' = F (k) n F (k') = J];
which forces its inverse to be a function, the hash function. That these ob-

Jects can be seen as wp-graphs is a trivial consequence of the above lem-
ma.

ON RELATIONS BETWEEN WP-GRAPHS AND DATA STRUCTURES 159

Lemma 3.5 (Multi-valued Functions and Hash Tables)
If F: D —— cDis a multi-valued function, that is, cD C g (B), for
some set B, it can be represented as an wp-graph.

Proof 1t is enough to observe that, in the above lemma, cD and M , may
contain sets as elements, as sets can be elements of U. [l

Arrays are essentially functions between indices and values [Tennent
1981]. How indices are defined depends on the special programming lan-
guage considered; but generally they are lattice-like structures, obtained as
cartesian products of linearly ordered sets. There is, however, a funda-
mental difference now: array values can also be references or even quite
complex structures (but, usually, not a mixture of them) and the correspon-
dence is always assumed bijective. So,

Lemma 3.6 (Arrays) _ -

Let A : D —— ¢cD, where D= l_[dp Lmlly wq bl 2L EZC
U, be an array, assuming that e:ther CD c U,cDC VorcDC wp-T.
Arrays of this sort can be associated to wp-graphs in a way similar as
above.

Proof 1f cD C U, Lemma 3.4 is the proof. If cD C V, given an array s{
consider g = {N,A}, where N=D uU {v, .., v ,Lhp=#(D),and A = ({v, v,
= d[v]}, v € D). Clearly, N(g) C U@ and ‘A (g) satisfies (2), thus g €
wp-I". Conversely, if g is a hypergraph where N(g) =/u VC U@, I =
l'[k_l J,,VCV. #(V)y=#(Dand A (Q) C o, (N(Q)), satisfying (Va €
A)lanl #NanV £], it defines an array & by letting [v] = v, for
each {v, v} € A.

If cD C wp-T;, let p be as above and V, = {v,, € V, v € D}. It is true
thatcD = {y =dd[v],vED},p=#(V,)—#(CD)andA D—V,
such that A[v] = v, is an array. Denotmg by G, the wp-graph associated
to A by the previous construction, & is then associated to G, d
<Yi» - ¥ ,> Where y, binds to v,, . O

In the last step of the proof above, ¢cD may contain any wp-graph. It’s al-
ways possible, however, to assume that ¢D is contained in a sub-class of
wp- 1, such as the ones defined in this work.

More generally than the description of functions and arrays, wp-graphs
happen to also encompass descriptions of relations among objects. A rela-
tion is here taken simply as a function R from a cartesian product to {0,1},
and the objects x;, € X, i =0, ..., n are related if, and only if, R (x|, ..., x,)

160 M.V. KRITZ

= 1. Or, equivalently, as a subset R of []_; X, the two forms being re-
latedby R = {(x,, ...x,) € [T X;|R (x}sx,)=1}.

Lemma 3.7 (Relations)
Let R C H?:] X, be a n-ary relation where X, C U, Y (1 =i = n). It can
be then associated to an wp-graph.
Proof Leth = {N,A},being N (h)= [Ji_; X, and
ANy ={a={y, ..y, } |Vl =i=n)]y, €X,]
AR e Y5) = 1) 0"

, where P, (R) is the i-th canonical projection and A° = {{x} | x €
(U (X, \P,(R)))}. So defined h € wp-T, since A (h) conforms to (2).
Now, take y € # C wp-I', with N (y) = UL, X, C U, such that, for all
a € A (vy): either

*
a=mg = Ry ek e € X,

or
a = {x}, where xe N(y)\ CJ a;f
j=1
. In this case, vy represents the relation R C I, X, where(x,,..,x,)E
R<=>(31Sjsr)[{xl,...,xn}:aj]. O

3.2. A priori unbounded data structures
Recursively defined data-structures may have any number of elements or
parts, so the analysis hereinbelow will, by means of (generally accepted)
definitions of these data-structures, recast them as wp-graphs through the
recursion scheme in definition 2.1. As definitions usually vary somehow,
the ones supporting this discussion are those contained in the directly re-
ferred material. This section has the following structure. Sub-classes of wp-
I' will be singled out by analogous definitions and then “matched” to
equivalent classes of usual data-structures, by means of the structural simi-
larity of their recursive constructions and a slight variation of the method
used in Lemma 3.2 to immerse U in wp-I". So, this proof act on definitions
syntax rather than on the analysed objects themselves.

The subsequent denotations and assumptions for intervening extended
hypergraphs will be useful. Naming by h (m) the elements of 3 for which #
(N (h)\(Vu {©®})) = m, assume that

ON RELATIONS BETWEEN WP-GRAPHS AND DATA STRUCTURES 161

h“(m) = (VI=i=m)[{O,n;} €A (M), (8)
) = (Visi=minv,}) AN M), 9)
N0 =0 vy,) EANO), (10)

in any reference to them henceforth, unless otherwise stated. Also, U shall
match the “atoms” class of any usual definition.

The simplest recursive data-structures are linear lists or sequences, the
class of which is denoted by &. In [Bauer & Wossner 1982], four definition
cases are distinguished: left and right sequences that allow or not for empty
sequences. Their classes will be here denoted by ¥, and &, or & ? and ¥ f,
respectively, but note that sequences in the latter two are sequences in the
former two, respectively, pre- or ap-pended with ¢. The sequence-like ele-
ments of wp-I" are:

Def 3.2 (Left wp-graph Sequences) An element of wp-I' is a left sequential

wp-graph, h €S, ifand only if

- h, =h(1), whereh" (1) & ", or
h,=,h"(1) ds, forsomes €S,.

s
and

Def 3.3 (Right wp-graph Sequences) An element of wp-Tis a right sequen-
tial wp-graph, h € S, ifand only if

- h,= h(l), where h(1)& %", or
- hy=s . h'(1), forsomes €S .

By adding an atom to U, say 0, representative of void, and letting h (0)
denote a h (1) type hypergraph which only element not in V U {O} is 0,
the wp-graph counterparts of 3’? and 9’2 are obtained by exchanging
h“(1) & %, by h*(0) & %", in definition 3.2, and h(l) & #°, by
h (0) & %, in definition 3.3, which is to say that these changes occur in
S, and S , respectively.

Paraphrasing [Sikl6ssy 1976], Sexes, or, more commonly s-expressions,
whose class is here denoted by Fex, are the LISP data-structures par excel-
lence. A counterpart class Sexi, of sex-wp-graphs, is defined as:

Def 3.4 (wp-graph Sexes) An wp-graph o € wp-TI belongs to Sexi only in
the following two cases:

162 M.V. KRITZ

- o=h"(he*",

- o=,h"(0) d <o, 0,> where o, and o , belong to Sexi.

Sexes are indeed quite similar to binary trees, their difference being essen-
tially that sexes have labels only on their leaves while binary trees have
them on branching points [Bauer & Wossner 1982]. The wp-graph class,
binT, analogous to binary trees is defined as follows:

Def 3.5 (wp-graph Binary Trees) A B € wp-1I" belongs to its subclass binT
only if either:

- B=,h'(D),
- B=,h"(1) d<B,, B,> where B, and B, belong to binT.

And not just binary trees counterparts are to be found in wp-I, general trees
too, the class of which is hereinbelow denoted by T.

Def 3.6 (wp-graph Trees) A B € wp-I belongs to its subclass T only if ei-
ther:

- 1= ,h"(D),
- 7=,h"(1) J<B,, .., B,> wheret,,...,7, ETandk = 2.

It is to be noted that for trees, to prevent arcs at the same level, it is required
that A (,h*(1)) = {{O,n}, {nyv,}, ..., {n,v, }}, k = 2. Also, if k do not vary
from a recursion step to another, i-e. k = k, throughout the construction,
definition 3.6 produce T, , the class of trees that have a fixed number of
sub-trees at each branching.

Proposition 3.1 (Recursive Structures)
For all above defined wp-1" sub-classes, there is a one to one correspon-
dence with the elements of the equivalent data-structure class as usually

defined.

Proof Note that, for each of definitions from 3.2 to 3.6, the defined objects
are obtained in the very same way as the corresponding definitions in
[Bauer & Wossner 1982, sect. 2.9] or [Tennent 1981, sect. 3.2]. That is, a
structure is the outcome either of a single particle from a universe or results
from the application of a constructive meta-operator to structures pertain-
ing to its class. Thus, they are all built from single particles in each class
and, as the corresponding definitions have the same rules, except for the

ON RELATIONS BETWEEN WP-GRAPHS AND DATA STRUCTURES 163

modelling usual data-structures’ meta-elements by wp-graphs of the forms
(8) thru (10). :

It is hence enough to match elements of U to these particles to obtain the
correspondence between elements of any corresponding classes. Recall that
N (h (m)) C U@ and note that for all h (m) appearing in the previous defi-
nitions m =< 1. Thus, whenever an atom appearing in a data-structure be-
longs to U, it can be taken as the unique element in h (m) N U, where h (m)
intervenes in the corresponding wp-1I"definition, by the same ‘lifting’ argu-
ment of Lemma 3.2. The result then follows from recursive induction. [

4. Conclusion

The following must be observed about wp-graphs as above described.

As defined in section 2, wp-graphs are slightly less general than in [Kritz
1991]. The distinction is, however, subtle being of no relevance to the pres-
ent work. Anyway, as here defined, they are indeed particular cases of the
original ones and the inclusions remain valid. Also, the restriction # N (h) <
o (as well as N (h) # {©}), present in that work too, is more of biological
than mathematical nature, being at ease removed. Even so, wp-I" does en-
compass programming structures, that are often considered finite due to
computability requirements. Moreover, as seen in section 3.2, wp-I" con-
tains wp-graphs with a number of parts as large as pleased and indeed infi-
nite in the limit. So, the above constrain is not that restrictive. Furthermore,
note that hypergraphs can be made directed and this property hierarchically
inherited by wp-graphs, what largely extends the data-structure classes that
may be mapped into these mathematical objects, or greatly simplify the
way of doing it. This is, however, beyond the scope of this note.

With the exception of arrays, the assertions and proves in section 3 refer
to structures over U, but a slightly more careful inspection of the wp-I"
definition shows that any appearance of U elements therein could indeed be
substituted by wp-graphs. This is a consequence of wp-I" being “closed”
under the binding operator .1, and the fact that all the class constructors in-
volved in the foregone analysis are indeed particular cases of it. Also, the
fork meta-concept of [Bauer & Waossner 1982] appearing in each non-
sequential recursive structure is realized by an element of wp-I". Therefore,
no outside concept is involved in the definition of the wp-graph-counter-
parts of data-structures, as ! is effectively the constructor of wp-I". The
proves of Lemma 3.7 and Proposition 3.1 above have been made quite
terse, since the available space prevents a throughout discussion of all pos-
sible cases. However, the proof of Proposition 3.1 has essentially a meta-
linguistic character, associating the structures’ formation rules and atoms.

164 M.V. KRITZ

Moreover, it collapses linguistic and meta-linguistic tokens in just one de-
scription level. ;

Finally, I must mention that, thanks to Bauer and Wossner, I've recently
learned about Pratt’s recursive graphs [Pratt 1969]. It is still soon to fully
grasp all implications of some key differences between the two definitions:
namely the use of hypergraphs instead of graphs and the employ of V and
© to establish a communication path between immediate recursion levels.
This will be treated in future work.

The author heartily thanks the 2"d Gauss Symposium organizers for the
warm reception and the opportunity to get in touch with so many new re-
search fields.

e-mail:kritz@Incc.br
REFERENCES

J.M. Abe & N. Papavero, Teoria Intuitiva dos Conjuntos. Makron Books,
Rio de Janeiro, 1992.

F.L. Bauer & H.Woessner, Algorithmic Language and Program Develop-
ment. Springer-Verlag, Berlin, 1982.

C. Berge, Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.
(transl. and rev. ed. from Graphes et Hypergraphes, Dunod, Paris,
1970.)

D.E. Knuth, The Art of Computer Programming, v.1: Fundamental Algo-
rithms, 2" ed.. Addison Wesley, Reading, 1973.

M.V. Kritz, On Biology and Information. P&D Report #025/91,
LNCC/CNPq, Rio de Janeiro, Dec. 1991.

T.W. Pratt, A Hierarchical Graph Model of the Semantics of Programs.
Proc. AFIPS Spring Joint Computer Conference 1969, 1969, pp. 813—
825.

R. Scialom, Personal Communication. Dec. 1990.

L. Sikléssy, Let's Talk LISP. Prentice-Hall, Englewood Cliffs, 1976.

R.D. Tennent, Principles of Programming Languages. Prentice-Hall,
Englewood Cliffs, 1981.

