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EQUALITY IN LINEAR LOGIC
Marcelo E. CONIGLIO and Francisco MIRAGLIA
1. Quantales

In this section we introduce the basic definitions and results of the theory of
quantales (a good reference is [Ros]). Quantales were introduced by
Mulvey ([Mul]) as an algebraic tool for studying representations of non-
commutative C*-algebras. Informally, a quantale is a complete lattice Q
equipped with a product distributive over arbitrary sup’s. The importance
of quantales for Linear Logic is revealed in Yetter’s work ([Yet]), who
proved that semantics of classical linear logic is given by a class of
quantales, named Girard quantales, which coincides with Girard’s phase
semantics. An analogous result is obtained for a sort of non-commutative
linear logic, as well as intuitionistic linear logic without negation, which
suggest that the utilisation of the theory of quantales (or even weaker
structures, such that *-autonomous posets) might be fruitful in studying the
semantic of several variants of linear logic.

As usual, we denote the order in a lattice by =, while \/ and /\ denote
the operations of sup and inf, respectively. We write T for the largest ele-
ment in a lattice and 0 for its smallest element.

Definition 1.1 A quantale is a complete lattice Q with an associative binary
operation &: Q@ X Q —— Q, which distributes on the right and on the
left of arbitrary sup’s, i.e.:

(1] a®(b®c)=(a® b)c, for every a,b,c € Q
(2] a®(V qa;) =V la ®a)(Vga)®a= Vie(a,®a)

A quantale Q is unital if it has an element 1 € Q suchthata ®1=1Q a =
a, for every a € Q. A quantale Q is commutative if a ® b = b ® a, for
everya, b € Q.

A morphism of quantales is an operator between quantales which pre-
serves @ and arbitrary sup's.

It’s easily seen that the above axioms imply that ® is increasing in both
coordinates, that is



114 MARCELQ E. CONIGLIO AND FRANCISCO MIRAGLIA

Ifa=bthen,Ve€EQ, a®c=b&c¢ and c®a=c®b

We register a classic result:

Proposition 1.2 The endomorfisms a® - , - @ a : Q ——> Q have right
adjoints, denoted bya — _ - and a — | -, respectively. Thus,

a®c=biffcsa— b cQa=biffc=a—>,b
and consequently

a—=, b=\/{cEQ:a@c=1b}
a—,b=\/{cEQ:c®a=b}.

Definition 1.3 Let O be a quantale. Amap j: Q ——> Q is said to be a
a) quantic nucleus if it satisfies:

[NO1] a = b implies j(a) = j(b) [NQ2] a =j(a)
[NQ3] j(j(a)) = j(a) [NQ4] j(a) ® j(b) = j(a® b)

b) quantic conucleus if it satisfies:

[CNQ1] a <b implies g(a) <g(b) [CNQ2] gla)<a
[CNQ3] g(g(a)) = gla) [CNQ4] g(a) ® g(b) = gla @ b)

Quantic nuclei and conuclei are important, because they determine the
quotients and subobjects in the category of quantales.

Definition 1.4 Let Q be a quantale. A subset S C Q is a subquantale of Q if
it is closed under ® and arbitrary sup’s.

Proposition 1.5 [Ros]: (a)[f Q —L 5 Q is a quantic nucleus, then
Q,={x €0 :j(x)=x} is a quantale where the operations ®’,\/’ and
N in Q; are given by:

a® b=ja®Db) V.ef“ =JV s @) /\rela =N a;.
Moreover, the map j : Q —— Q ; given by a — j(a), is a surjective mor-

phism of quantales. Further, every sur;ecnve morphism of quantales can be
represented in this form.
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(b) If Q —£— Q is a quantic conucleus, then Q , = {x € Q:g(x)=x}
is a subquantale where, with notation as in (a), /‘?\?‘E ;a; =g\ el @)
Moreover, every subquantale is of this form, i.e.,

if S C Q is a subquantale, then there exists a quantic conucleus g in Q

suchthatS=Q .
Definition 1.6 An element L € Q is dualizing if:
(@=,1)—>,l=a=@—=,L)—>, L, foreverya € Q.
An element s € Q is cyclic if:
a—_ s=a—, s foreverya € Q.

Proposition 1.7 [Yet]: Let Q be a quantale and s, 1 be elements of Q.
a) s € Qiscycliciffforalla, .. a, inQ,

a, @ -®a, <simplies a,, @a,, ® - Qa

=s
) 1]
for all cyclic permutations © of {1, ..., n}.

n(n

b) If L € Qis dualizing, then Q is unital and we have:
1=1—>,1=1>,1.

Definition 1.8 A Girard quantale is a quantale which has a cyclic dualizing
element L. The operator - —, L =+ — | =4 ° > L is called linear
nfiﬁation, and we writea™ =aq — 1 {note that 1 = L l, 1 =1 L, and a =
a ).

Next proposition is of frequent use when computing in a Girard quantale.

Proposition 1.9 [Ros): Let Q be a Girard quantale with a cyclic dualizing
element 1 and let a,b € Q. Then:

() a—>,b=@®b")* 2 a—>, b=kb"®a)*t
(B) a®b=(@a—, b")* @) b®a=(@—, bh)*
(5 a—)rbzbl—hal (6) a—),b:bl ——)ral

Proposition 1.10 [Yet]: Let Q be an unital quantale and s € Q cyclic. Then,
J:Q—— Q givenbyjla)=(a = s) = sisa quantic nucleus, and Qj =
{a €Q:j@)=a}isaGirard quantale, where | = s € Q;.
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Example 1.11: The Phase Quantales (Girard)

Let (M, -, 1) be a monoid. We define A-B={ab:acA,bEB}
YABCM. Let | CMbesuchthata b€ 1 impliesb-a € 1 (for exam-
ple, L can be a semiprime ideal or the complement of a prime ideal of M).

Thus, §2(M) is a quantale with the product defined above, and with sup’s
e inf's calculated as unions (U) and intersections (N). In fact, it's an unital
quantale, where 1 = { 1 } and L is cyclic. Then, by proposition 1.10,

§(M); is a Girard’s quantale containing L. Their elements are called
facts, and we have:

ARB=(A B
VA, =(U A ) in particular, AV B=(AUB) ™ =, ADB,
N A =N._ A inparticular, ANB=ANB= . A&B.

el i iel" i def

The next result tells us that every Girard quantale is of this form.

Proposition 1.12 [Ros): If Q is a Girard’s quantale, then Q is isomorphic to
a phase quantale.

We are now going to relate the exponentials treated by Yetter ([Yet]) and
Avron ([Avr]) with certain concepts in the theory of quantales.

Definition 1.13 [Yet]: An open modality in a quantale Q is a map
KL Q —— QO satisfying:

M1] pia)=a [M2] a = b implies p (a) = . (b)
(M3] p(p(@)=p(a@  [MA] p(pn(a@) @ ubd) =)@ u(b).

An open modality . is said to be

—central  if b @ W (a)=p(a) ® b foreveryab € Q.
—idempotent if w(a) @ p(a) = (@) for everya € Q.
— weak if Qisunital, . (1) =1, and p. (a) = 1 for everya € Q.

Let M(Q) = {p: W is an open modality in Q}, partially ordered by point-
wise order.

Proposition 1.14 [Yet]: Let Q be a quantale (resp. unital quantale). Then,
there exists a unique maximal open modality in Q central (resp. central,
idempotent and weak) denoted by c , (resp. ! ) given by:

c,(=\V{a€EQ:a<=x,a€ZQ))}
l.x=\/{a€Q:a=xN1,a=a®a,a€Z(Q)},
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where Z(Q)={a€Q:a®b=bQq, foreveryb € Q}.

Definition 1.15 [Avr]: Let Q be an unital quantale. A men B: Q —— Q is
a modal operation if it satisfies, for all x, y € Q:

[B1] B(1)=1 [B2] B(x) =x
[B3] B(B(x)) = B(x) [B4] B(x) ® B(y) = B(x /A y).

Proposition 1.16 Let Q be a quantale, and . : 0 —— Q a map.

(i) W is an open modality iff . is a quantic conucleus.

(ii) If Q is unital, then p is an open, idempotent and weak modality iff p.
is a modal operation.

Proof: (1) We must prove that [M4] is equivalent to [CNQ4]. Let . be an
open modality. Because . (a) @ w (b)) =a @ b, we get w (a) @ u (b) = n
(n(a)@ w (b)) = p(a®@b).

Conversely, if . is a quantic conucleus, then

(@)@ pb) =p(pi@)®p(pb)
=p(k@@pd)=p@ @ pb).

(i1) Assume that p is an open, weak and idempotent modality. Then, it
clearly satisfies conditions [B1],[B2],[B3]. Because w (a) < a and w(b) =
1, we get p(a) @ n (b) = a ® 1 =a. Similarly, p (@) ® p (b) = b and
therefore, w (a) @ w (b) = a A b. Thus, w (@) @ w (b) = 1 (1 (a) @ p (b))
= w(aN\b).

Now, since w is increasing and a A b =< a, b, then w. (a A b) = p (a),
w(b). Thus,

pR@Ab)=p@nb)@panb) = pnla® pb),

and so p satisfies [B4].

Conversely, if p is a modal operation, then [M1] is just [B2]; [M3] is
[B3], while [M4] is equivalent to [CNQ4], in the presence of [M1], [M2],
[M3], by item (i) above.

Condition [M2] is item (5) of Lemma 4.2 in [Avr] and . satisfies [CNQ4]
by item 8 of Lemma 4.2 in [Avr]. It follows from items 4 and 1 in that
same Lemma, that p (x) =1 for every x € Q. Thus, [B1] yields that w is
weak. [J-

Definition 1.17 A frame (or Complete Heyting algebra) is a quantale where
® = A,
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Definition 1.18 Let Q be a quantale and let T be the maximum of Q. We
say thatx € Q is ;

a) right-sided (inQ) ifx® T =x;

b) left-sided (inQ) ifTRx=ux

c) two-sided (in Q)  ifit is right and left sided in Q.
d) idempotent ifx ®x=x.

Proposition 1.19 [Ros): Let Q be a quantale, and g a quantic conucleus in
Q. Are equivalent:

(a) Qg is a frame. (b) gla) ® g(b) =gla N\ b).
(c) every x € Q , is idempotent and two-sided (in Q ).

Definition 1.20 A map g satisfying the conditions above is called a localic
conucleus and Q , is called a localic subquantale.

Since open, weak idempotent modalities are localic conuclei . such that
i (1) =1, we have

Corollary 1.21 Let Q be an unital quantale, and let . be an open, weak and
idempotent modality. Then, Q u IS a frame.

Thus, the fixed points of the interpretation of the modality ! (of course)
lie in a localic subquantale (complete Heyting algebra) of any quantale in
which linear logic is interpreted.

2. Linear Calculus with Equality

In this section we discuss the laws for a binary predicate representing
equality. The goal is to define a reflexive, symmetric and transitive predi-
cate satisfying the substitution (Leibnitz’s) rule for the class of all formulas.
We may assume, just as in Classical Logic (CL), that we have substitution
for atomic formulas. With this model in mind, we shall define a prototype
of a linear calculus with equality, called (LLE 1). Our formulation will use
sequents in Linear Logic (LL). Analogously, we will set down a calculus
with equality for the (MALL) fragment, i.e., the fragment without expo-
nentials, indicated by (LLE ). Starting from the property of substitution for
elementary formulas, we prove that (- = *) must be = 1 and idempotent in
(MALL), and open in the general case; in other words, (- = -) must be
intuitionistic.
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Definition 2.1 A first order linear language with equality L consists in a
countable set of predicate symbols 2 ={ P,:n€ w } U { =} (where "="
is binary), a countable set of variables V= { v : n € w }, together with the
symbols:

1, L T,0, WV AS&®,u ,!,2
Definition 2.2 The formulas of L, FOR(L), are defined recursively:

[F1] 1, 1, T,0 € FOR(L).
[F2] IfP €  isa predicate of arity n and XX, are variables,
then P(Xjsak, Yand P(FiseaiX ) = FOR([L)
[F3] 1fF,GEFOR(|].)thenF®G,FLI G,F&G,F& Ge
FOR(L).
[F4] if F € FOR(L), then 'F ,7F € FOR(L).
[F5] if F € FOR(L) and x € V, then /\ x.F and \/ x.F € FOR(L).

Every occurrence of a variable x in a formula F is free except in a subfor-
mula of the type /\ x.G or \/ x.G (which are bounded occurrences). We
shall write

ELF()={ P(x,,..x,): P € @ — {=},x; € V], the set of elemen-
tary formulas

and

ELF*(L)=ELF() U { (x=y): x, y € V }, the extended set of elemen-
tary formulas.

Definition 2.3 The syntactic linear negation is a map
L:FOR(L) —— FOR(L) given by the usual rules:

[NL1] L(D)=1,L1L(L)=1, i(O)—T 1(M=0

[NL2]  L(P(x),..x,)) = P(Xy00X ), L(x= Y= = »*
LEPCEy s ,x) Y= P(x)yenx, ) Lx=y")=(x= y)
(here, P(x,....x , )EELF([L))

[NL3] LF®G) = L(Hu L(G), L(Fu G)=L(F® L(G),
L(F&G) = L(FH® L(G), LFP G)= L(F) & L(G)

[NL4] L(F)=7L(F), L(?F)=L1(F)

[NL5] LAxF)=\/xL(F), L/ xF)=A\x.L(F)

We write L(F)=F"; clearly F = F - for every FE FOR(L).
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Definition 2.4 Let A a formula; we define A[y/x] to be the formula obtained
from A by replacing all bound occurrences of y by z, where z is the first
variable (in the natural order of V) not occurring in A, and then replacing
all free occurences of variable x by y.

Definition 2.5 (Girard) The calculus (LL) for first order commutative linear
logic is defined by the axioms and rules below (here, A, B denote formulas,
and I, A denote multisets of formulas):

[AX1] FA*L A [AX2] + T.T [AX3] F 1
[curn rI.A FA A
FT, A
[EXCH] If A is a permutation of T, then [N
FA
[&] EAT FBT
FA&B, T
@ 1) FAT (®2] _tBTD
FADB,T FADB,T
[L] If T is not empty, then ET
FA,T
[® AT FBA [u] _FABT
FA®B, T, A FAu B,T

[dereliction] L+AT [weakening] _+T
24, T kA, T

[contraction] A, 7A.T M FA, M
F2A, T FlA, T

[Vl EALLT [/l IfxisnotfreeinT then _+A_ T
FvxA,T FAxA,T

We can consider as defined connectives the linear implication and the lin-
ear equivalence, given by:

A—B)=,, (A'uU B)=A®B")"
(Ae—=B) =, (A— B) & (B — A).
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Definition 2.6 The linear calculus with equality (LLE ) for the (MALL)
fragment of (LL) is defined by adding the axioms below to those in the pre-
ceding definition:

[R=] :  (x = x); L SR Gt o=
[T=]:Fx=y)",0=2)",(x=2).
[SUBST): F} (x, =y,)i,...,(x =yn)l ,

Ftpek) JFO L Vi Xy & 9,
where F(x,,...x ) denotes an elementary formula with (eventually)
XypnX, free and F(x\{ y,,.. x 0 y,) is obtained from F(x,,...x,)
by replacing some occurrences of x , (which are not in the scope of a
Y i-quantifier) by y,.
=]:Fx=y)", x=) ®(x=y) [=1:Fx=y",1

Definition 2.7 The linear calculus with equality (LLE 1) for (LL) is defined
by adding, besides the axioms [R=], [S=], [T=], [SUBST] the following rule

[=]:FG=n*, x=y)

Obviously, all the rules (with exception of [R=]) could be formulated as
linear implications, for example [T=] could be stated as

Fx=y)®@@p=2)—(x=2)

We have as well that (LLE)) is equivalent to the calculus obtained from
(LLE ) by replacing [S=] and [!=] by the rule:

[S'=] F(x=y)", Wy =2x)

3. Semantics

In this section we develop interpretations for the calculi described above. It
will be necessary to extend the definitions in [Yet] so that the axioms
involving equality are verified.
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Definition 3.1 An interpretation of a language L is a triple <.V, | + | >
where :

— 8 is an algebra for the theory with constants 1, 1L, T, 0;

~ a set of unary operations { L 1,2 (the interpretation of the
modalities);

—  binary operations ®, U , &, @, and infinitary operations \/ and /\;

— YV C d, the set of valids elements; and

|+ |q: ELF* (L) — o is a map.

It is straightforward to see that there exists a (unique) extension of | - |4 to
FOR(L), also denoted by | - |4 . When there is no risk of confusion, we write

|'|f0r|'|sa-

Definition 3.2 A semantics for L is a class of interpretations. A semantics is
sound (with respect to a linear calculus P) if:

F A,,...,A, is provable in P implies|A,u ..u A,|4 €YV
for every < A, V, |+ |4 > in the semantics.

A semantics for L is complete (with respect to P) if:

|Flg €V, for every <, V, | - |4 > in the semantics,
implies \- F is provable in P.

Definition 3.3 An interpretation of quantales for L is a Girard quantale Q,
together with an assignment !— W € M(Q) and a map
| - |Q : ELF* (L) — Q,whereV'={a € Q:a =1} such that
- Va,b€Qau b=, (a" ®b)" andla=,, (n(@));
—  Weinterpret /\ x.A andf\/ xAas/\_, |Alyix] ,
and \/,y |Aly/x]| 5, respectively. -
Recall that M(Q) is the lattice of open modalities in Q (Definition 1.13).

Definition 3.4 The semantics of quantales for (commutative) Linear Logic
with equality is the class of interpretation of quantales for L such that:

[S1] Qis commutative.  [S2] w =, !is idempotent and weak.
(3] |- |g: ELF*(L) — Q satisfies:

(a) For the Calculus (LLE ,):
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[=1]: lx=x=1; [=2]: x=y|®ly=2 = |x=2;
[=3]: [k=y|=|y=2x|; :
=4]: x,=y,|® - -- ® x, =yn|®£F(xl,...,xn)£

= |F(x; { yyet, {3

{same notation as [SUBST));
[=5]: =)= x=y|®x=); [=6]:|x=y]=1

(b) For the Calculus (LLE,), conditions [=5] and [=6] are replaced by
the stronger:

[=71: e =y] = the=).

The next result shows that it is always possible to define a map | - |, satis-
fying the above conditions.

Proposition 3.5 If | - | o : ELF(L) —— Q is a map, then it can be extended
to ELF* (L) satisfying, in the (MALL) case, conditions [=1],...,[=6] and, in
the general case, conditions [=1],...,[=4],[=7].

Proof. Let’s begin by the general case, in which ! € M(Q) is idempotent
and weak.

Let| |, : ELF(L) —> Q be a map, and let xy € V, x # y. Define
A, andB_ | as:

A ., ={ F € ELF(L): neither x nor y occur in ‘F}
Bx.;, ={ F € ELF(L): x or y occur in F}
InB x,y consider the relation:

F~G iff Gisobtained from F by replacing some occurrences of
x by y and/or some occurrences of y by x

For example, P(x,z,y) ~ P(x,z,x) ~ P(y,zy) ~ P(y,z,%). Clearly, ~ is an
equivalence relation. Now define,

T,.,=N{|F|l, >|Gl,F.GEB, ,F~G}.

Fact I: If | - | satisfies [=7] and [=3], then it satisfies [=4] iff |x = b =
forx +y. )
To see this, assume that F,G € B, , F ~ G. Note that there is
H € ELF(L) such that H=F(x{ y), G=H(y{ x).
Since ! is idempotent, [=7] implies [=5] and so, by [=3],[=4] and [=5] we
have that |x = y| ® |F| = |H]; thus,
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k=)@ F ==y ®(x=y@IF) =lx=)®|H =G|

Therefore, |[x=y| = |F| = |G, proving that [x=)| = T _ .
Conversely, suppose that [x = y| = T . for x # y. Then, if
Felu:, B '

XinXi?

lx, =y, =|Fx,,..x,)| = |F(x,,...,x"_l,xn2 y.)l

and therefore, |x, =y | ® |F(x,...x,)| = |[F(x,..x,_.x, ¢ v,
Analogously,

|xn—1 =yn*!| ® (|xn =yr(L ® |F(xl""’xn)|)
= xn—l =yn-l|®|F(xl""‘xufl"xn2 y )|
= F(x!""’xn—2’xn—] yn—l’xn ynﬂ

We may proceed by induction to get:

’

b=y | ® - ®x, =y, | ®IF( x| = |F(x, ¥ 1ot 8 ¥,)

as desired.

IfFFen;, A, then, since [=7] implies [=6], we have:

Xis¥

b=y [® B, =y, |®IA=A® - ®1)®|F =|F

b

showing that[=4] is valid and proving Fact 1.
By induction, define a map | - | as follows: for x,y € V, x # y, set

X=Yy
xX=y

0 =TI,\‘;
n+l =/\z¢x,\‘ (|x=zln © |y=Z|n)

' (@ > bmeans(a = b) A (b — a));
b=yl =WA\,y x=y|,); finally, set [x=x|_ =1.

Fact 2: |- |, satisfies the properties required for the full logic.
In fact: condition [=1] is clear, while [=3] is verified because it’s true for
lx=y]|,, foralln € w.

Since |x = y|_, =!|x=y|., [=7] is satisfied (the case x = y is valid too, be-
cause !1 =1). Observe that, for every n = 0 and z # x,y:

w2 = Z|,, =ly= Z|n and therefore,
- ®=2, ==y, ®x=2, <|y=1, forevery n=0.

x=y
x=y
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Thus,
b=y ®x=2|, =,y [y=2,; now [=7] and [M4] yield [=2].

Since [x=)| ., = |x=y|, =T, ,, Fact | guarantees that | - | _ satisfies [=4].
For the (MALL) fragment, it’s enough to take ! = | (see Proposition
1.14) in the above computations. []

Discussion 3.6 Are requirements [=5],[=6] (resp. [=7]) too strong ?

The motivation for them is, starting with substitution for elementary for-
mulas, to have substitution for every formula. Obviously, they are suffi-
cient, but indeed, they are also necessary. To see this, note that, if a =
lx=y|, b=|P(x)| and ¢ = |P(x ! y)|, then we must have that 2 ® b = ¢ and
a®c=b,(ie.a =< (b < c)) must imply a ® !b = !¢ (and, of course, that
a ® !c = 1b). Since 1 is a formula, we must also havea =a ® 1 = 1. The
critical cases are ® and !|. We have

Lemma 3.7 Let Q be a Girard Quantale and let a be an element of Q such
thata < 1. (a) Are equivalent:

() Vbed€EQ a=s=0beoo),as=deoe)
implies a=(b®d) & (c®e)).
(iDa=a®a

(b) Assume that ! € M(Q) is idempotent and weak. Are equivalent:

(i) VbcEQ, a=(be>c) implies a=(b & o).
(ii) a=la

(c) Vb,cEQ a=(be>c) implies a=(t o ch).

Proof: (a) (i) = (ii):sincea <1 ,then a = (1 & a) and so g =
(1®1) & (@®a);thus,a=a (1R <=aRa.

() = @i): Ifa=(b o ¢),a= (d < ¢), then we have a ® b = ¢ and
a®d=<e, and soa®(b®d)£(a®a)®(b®d)=(a®b)®(a®d)
= c ®e. Analogously, a®@ (c®e)=bRd.

(b) (!) = (ii): sincea=1land!1=1,thena= (1 a) and therefore
a=(1¢la)thus,a=a®@®1=<lg=aq.

(i) < (if): suppose thata < (b <> c¢); thus,a ® b =< ¢ and then a ® b
=a® b=c. Thus,by [M4] ,wehave a® b =1a @ b = la®@ b)) =
!(a ® 'b) = !c. Analogously, we can prove thata ® !c < !b.

(c) Since Q is commutative, then (x — y) = (yi =~ x1), by Proposition
1.9.0
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We can now show that we have substitution for every formula:

Proposition 3.8 Let | - |: ELF(L) —— Q satisfying [=1] — [=6] ([=1] —
[=4], [=7] resp.). Then, the extension to FOR(L) verifies:

|x1 =yl| ® e ® |xn =yn| ® |¢(x]""’xn)} = |¢(x12 yl""’xnz yn)|

where ¢(x,....x, ) € FOR(L) has (eventually) free occurrences of variables
XppenX s and &(x, y,,nx,{ y,) is obtained from o I T )
replacing some occurrences of x; (not in the scope of a y ;-quantifier) by
Y-

Proof: By induction in the complexity of ¢. As a first step, we have two
cases to consider.

) &eELF*(L).
It’s true by [=2],[=3],[=4] and [=6] (or [=7] and ! weak).
i (1,1, T,0}. It's true by [=6] (or [=7] and ! weak).

To proceed with the induction, assume that substitution holds true for every

¢ with complexity < k and let ¢ be a formula with complexity k + 1. We
have the following cases:

a) d=a®B.

It's immediate from [=5] (common to both systems)

and lemma 3.7.
b) ¢=at.

Since |a*| = |a|*, the conclusion follows from Lemma 3.7.
¢) é=AAxa(x,..x,,x).Given z € V, we have:

®i k= yil @A gy lo (xppex , 1) yi]|
=®L Ix, =.V,-| ® |0f- (xp---,x,,,x)[zfx]I
= |a (xlé Viwak, 4 ¥y ,»%)[z/x], and then

L |xi=)’f|®/\yev|°‘ (X)X ) /x|
=N vla(x g ypeax, &y, 0l

d) ¢=a &B. Similar to c¢).
e) (fulllogic) = !a. It follows from [=7] and Lemma 3.7.

Since the other connectives are defined by duality, the proof is complete. []

Now, we shall extend the results in [Yet] to the calculus with equality.
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Theorem 3.9 (Soundness) The semantics of quantales for commutative Lin-
ear Logic with equality is sound with respect to the given calculus.

Proof. We prove the validity of the new axioms (for the other rules, con-
sult [Yet]). Define |F A ,,.. A, |=|A,u ---u A,| By observing that, for
everya,b€ Q,a<biffa’u b= 1 the vahdlty of each axiom is guaran-
teed by [=1]—[=6] (resp. [=1]—[=4],[=7]). O

Theorem 3.10 (Completeness) The semantic of quantales for commutative
Linear Logic with equality is complete with respect to the given calculus.

Proof. The proof is an extension of the proofs by [Yet] and [Gir]. Let M |
be the set of finite sequence of formulas in L; M, is a monoid with the op-
eration of concatenation (and identity the null sequence). Let M be the
(commutative) monoid obtained by identifying sequences which are distinct
only by a permutation of their elements. Just as in example 1.11, (M) is a
commutative quantale and we set L = { I': } I" is provable } € @ (M).

Since M is commutative, L is cyclic and so we can consider the phase
quantale Q = Q(M)f, where j : (M) —— (M) is given by j(A) =
A—L1)— 1.

Let Pr: FOR(L) —— (M) defined by:

PrA)={T:+A,T is provable }.
By theorem 3.4 in [Yet], Pr factores through Q, i.e., P{(FOR(L)) = Q.

Let|-|=Pr |Lr+ 1); clearly, the unique extension of |-| to FOR(L) is Pr,
once we have defined in Q the open, weak and idempotent modality ! as:

I(xy=\/{ Pr(!A): Pr('A) = x}
Fact:  !1=1(where, by definition,1 =/ { Pr{A): FA i 1s provable})

To see this, Let I' € PR(1); thus, F !1, T (e, F (21)* , ) is provable
and let A € FOR(L) be such that + A is provable. Then

FA 7L F@L*
FA.T
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ie, I € Pr(A), and so Pr(!11) = /\ { Pr(A) : F A is provable } = 1.

Thus, Pr(!11) =\/ { Pr(!A): Pr(!A) =1 } = '1. In fact, equality holds be-
cause F !1is provable,andso1=Pr(!1) =!1 =1,ie. 1=1.

We shall now show that |- | satisfies the required properties. Since H(x =x)
is provable, 1 = Pr((x = x)) = |x = x|. This verifies [= 1].

To prove [=2], letT" A € |x=y| |y =2|. Then we have:

Fx=y),T Fx=n*' o=2" =2
Fy=2"y(x=2),T Fy=2), A
Fx=2),ILA

ie,I' A€ |x=2| Thus, [x=y[y=2=|x=2] and so
k=) ®ly=2=(x=y| - ly=2h** = |x=4.

To prove [=3], let T' € |x =|. We have:

P"(x‘=y),l_' Fax=y)*, (y=x)
Fy=x),I

e, €|y=x| and thus [x=y| =|y =4

Properties [=4], [=5], [=6], [=7] are verified in a similar way. This shows
that we have an interpretation of quantales such that |[A| = 1 iff - A is prov-
able, completing the proof. (]

4. Generalisations of the Calculus

There are alternatives to the treatment of equality given above, using the
exponentials of Linear Logic. For example, instead of requiring (- = *) to be
open, we could establish that its characteristic properties be valid in the in-
terior of (- = ). Thus, we define the calculus (P,) by the axioms:

R Fl(x=x) IS Flx=y)— 'y =2x)
[T Flx=y)® (y=2)— l(x=2)
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For every predicate symbol P,

[SUBS!] Flx,=y)® - ®Nx,=y,)® Px,...x,)
—<>P(x]2 Yysenik, 2’] Y,)
Clearly, we have substitution for every formula, and we can say that

!(x = y) has the behaviour of a linear equality. An even weaker form of
substitution can be defined as follows:

Flix,=y)®@ - @ Ux, =y,) ® P(x,,...x,)
—O!P(xle yl,...,xnz V)

or, even

Flog=y)®: - ®lx, =y, ®P(x,,..x,)
— 7P(x, 2 Vpssnsakiy ! Y,
‘We can modify each axiom combining the modal operators in all possible
ways. It is straightforward to verify that (incorporating id, the identity oper-

ation on formulas), there are only seven modal operations obtained by suc-
cessive applications of {!, ? }, namely, the set

M= {12,719, N2,2,id )} id n

™

! fig. 1
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with its natural lattice structure (see figure 1). This is in complete analogy
with Kuratowski’s problem, in which we can prove that, given a topologi-
cal space X and A C X, there are only 14 distinct sets that can be obtained
from A by combinations of taking complements and closure (in our case,
we do not consider modalities of the form m'(x) = m(x) with m € M).
Starting with this, we can define a general scheme to create a linear calcu-
lus with equality.

Definition 4.1 Let (m; )1 be a sequence in M. A linear calculus with
equality P((m,)) is deﬁned by the following axioms:

[R] Fmix=x [S] Fm,(x=y) —om;(y=1x)
[T] Fmym(x=y)@my(y=2)—=myz(x=2)

For each predicate symbol P, the axiom

[SUBS] Fm,((®r, me(x; =y,) @my(P(x,,...x,)))
_°m10(P(-" VX y l Y

Remarks 4.2 (a) If m, = m,, then [S] implies that, form, = r;s =m,,
rix=y), s(x=y), r(y = x) and s(y = x) are all equivalent.

(b) Ifm, =id orm, =, then } m(x = x) is provable for every m € M.

(c) Ifm,=id, mg € { 1,2, !N} and my = m,,, then substitution holds
for every formula & built up from formulas of the form m 4(P), where P €
ELF(L).

(d) For each m; € {!, 17, 171 }, we have m(®, m(A)) =
mi (@], m(A)).

Examples 4.3 (a) The system (LLE|) of section 2 is obtained by the
assignment

m, =!and m=id, for every i # 3.
(b) If we set
m=m,=m;=ms=mg=mg=land m,=m,=my=m, =id,

we get the system (P,), in which "equality” is the interior of (- = *). This
system satisfies substitution for every formula.
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{c) If we set

m =m,=ms=m, =m3¥?, my=m,=my=m,,=id,
and

my =17
then we have a system in which "equality"” corresponds to the closure of
(- = +); from [S] will follow that that % = -) is "clopen”. This system
satisfies the substitution rule for every formula.
(d) By considering

my=my=mg=my=N m,=mg=my=m, =17
and

m,=m,="17o0r 1

we get a system containing a translation of the classical theory of equality
inside (LL), to be studied in next section.

(e) Another translation of classical equality in (LL) can be obtained by
considering the assignment

my=idm,=m,=ms=m,=mg=mgy =7
and

my=me¢=m,=".
Now, we would like to identify the classes of equivalent calculi. Instead of
doing a complete classification of the possible calculi, we present quantale
theoretic techniques that are useful in deciding this problem. We start with
reflexivity ([R]):
Proposition 4.4 Let Q be a Girard's quantale,and let x € Q. Then:

(a) Are equivalent:

(D x=1 (i) "x=1 (iii)) MMx=1



132 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

(b) Are equivalent:

(i) x=1 (inpx=1
(¢) Are equivalent:

(N MNx=1 (@H1Mx=1

Proof. (a): If7x=1,then !7Zx=!'1=11If !7Zx=1,then N"x =71 =
1. Finally, ?!?7x = 1 implies ?x = 1, because ? = 2!7.
(b) comes directly from !1 = 1, while (c) is consequence of (b). ]

Thus, introducing the notation r = s to denote that calculi obtained with
m, =rand m, = s are equivalent, we have:

(@?=127=M B id=! (c)N=17N

and so there are only three non equivalent possibilities for [R].

With respect to axiom [S], consider M, = {2, 7, 1? } = {?7m:m € M },
together with M, = {1, 12, 1?1 } = {!m:m € M }. Write (r,s) = (r's") to
denote that calculi obtained withm, =r, m;=sandm, =r',m, = 5" are
equivalent. Then we have:

Proposition4.5 (a) Ifm, € M, then:

(0 (my)=MNmy)=(2m,) (i) (1?7my) = (MN2hm,)
(i) (idym ) = (2m)

(b) If m, € M,, then:

() (my,) = (my 1) =my, M) (i) (my,7) = (m,,17)

(i) (my,id) = (m,,!)
Therefore, there are only 26 non equivalent cases for [S]:

(): (f,I‘P) =N = (1,’)) =(INN) = (MN,M"7

fiegeer ) =ALL PR

=) =N =22

2): (2= =017="20"27 = (MN2,7

3y M=INm=0LM=0,12=02,17

@: wdnH=02" G): Mrm=Mmm =217

6): @M=" @ @!MH=0nD @B): (Lid=(.)
9): (2 =%d) (10): (1?7 =(2id) (11): (id,id)

(12): (id,!) (13): 4! (14): id,7) (15): (%id)
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(16): (2,1 (A7 (17 A8y (1) (19): (Mid)
(20): (N212) (21): (MR (22): (M) (23): (2Lid)
24): (1) (25): (1) (26): (L)

For transitivity ([T]), we shall write (r,s,f) = (r',s',t") when calculi obtained
withm, =r,m¢=s,m,=tandm, =r',my=5',m, =t are equivalent.
Then we have:

Proposition 4.6 If m ; € M,,, then:

(0 Ifmg € M,, then (rmgm) = (sjmg.m) for every r,s € M

(i) (rnmg?) = (s;mg,?) = (ddmg,'?) = (ILmg,!7) = (17mg,!17) =
(IMNmg,!7) = (tm 5, N7 = (u,my,N?) for every rstu € M.

(i) (rmg,?) = (s,mg, M) = (idm 1) = (Lm g !17) = (17m 1?7 =
(1Mm ,!'M) for every r,s € M.

The results above imply that, for m ; € M , fixed, we have only 8 possibil-
ities for pairs (m ,,m ¢ ) (in contrast with 26 possibles ones), where the num-
bers refer to the pairs described above.

[: =2)=@4)=0)=013) [2: BG)=0>)=(6)=(14)
[31: (&) =(11)=(12) [4]: (9) = (10)

[5):  (15) =(19) = (23) [6]: (16) = (20) = (24)
(71: (A7) =(@21) =(25) [8]: (18)=(22) = (26)

With respect to substitution, if we fix mg, my € AM,, then there are again,
for pairs (m,,m ), only the 8 cases above. Thus, these are the non equiv-
alent calculi that can be constructed with the exponentials, satisfying the
usual rules of equality. We register that this corresponds to only 8% of the
original universe of possible calculi.

5. Interpreting Classical Equality in Linear Logic with Equality

It is well know that the exponentials of linear logic (LL) are important in
interpreting intuitionistic logic (fL) and classical logic (CL) inside LL. For
each of these logics, we have two translations, one of them based in the fact
that every (commutative) Girard’s quantale contains a frame (complete
Heyting algebra) (corollary 1.21) and a complete Boolean algebra:

H={'xxxEQ} and B={?"xxEQ},

respectively. Operations and constants in each of these algebras are given
by:
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(H). For the frame :

0x=0,Tx=1, (AeN=G®N=!xAY), (xvey)=EV);
E=2y=1x->y), —x=@x=20)=!(x->0),
NeS=INS, \gS=VS.

(B). For the complete Boolean algebra R:

Op=L,Tga="1, (x/\%y)—'?('x@)‘y)—'?'(x/\y)
(xvay)=Gu =" Q@yhH* .
x=2y=("Ix>y,—x= (x=>093)=(!x—>J_)= )
Ng S=MN\S, \gS=N{lxxES).

Thus, we can interpret A € FOR(IL) as A' € FOR(L) by the rules:

A'= !A if A is atomic; proceed by induction on complexity using the
operations in (H) to define A" for all intuitionistic formulas (here, FOR(IL)
denote the set of intuitionistic formulas).

For classical logic, we have our first translation:

*) A =7Aif A is atomic; then proceed by induction on complex-
ity, using the rules in (B).

Thus, if we assume two-hand sequents for (LL), we have ([Gir]):

A|,...,A, b, Aisprovable in intuitionistic logic
iff (A)",...,(A,)" FA' is provable in LL,

and

(1" T): A,..A, F o A is provable in classical logic iff
"MAD..,1(A ) FAC is provable in LL.

Another interpretation for classical logic is constructed from polarities for
formulas. Thus, given a sequent for classical logic I' -, A, we’ll say that
occurrences of formulas A € T’ are positive (denoted by pA) and occur-
rences of formulas B € A are negative (denoted by nA). We have the fol-
lowing rules of a second translation (**):

PA =A =nA if A is atomic.

p(— A) = (nA)*, n(— A) = (pA)*,

p(AvB)=pA) D pB),n(A\B)=n(A)u !n(B),
P(A/\B) =p(A) ® Ip(B), n(A A\ B) = n(A) & n(B),

p(A = B)=n(A)" @ p(B), n(A = B) = p(A) —o 'n(B),
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p((V x)A) = A\ x.2p(A), n((V¥ x)A) = /\ xn(A),
p((A0A) = \/ xp(A), n((A x)A) =\/ x.!n(A).

With this definition, we have ([Gir]):

(*H) A,...A, F o Ais provable in (CL) iff 'n(A)),....,!n(A ) F ?p(A)
is provable in (LL).

We now turn to the question of determining a linear theory of equality such
that, given a classical theory of, its translation into linear logic is defines a
linear theory contained in the original linear theory of equality.

For this, we need to relate the deduction of a sequent in (LL) from a set of
sequent-axioms and the deduction of a formula from a multiset of hy-
pothesis (in the left-hand side of the sequent), called external and internal
relations of consequence (respectively) by [Avr].

Definition 5.1 Let A € FOR(L) with exactly x,....x , as free variables. The

universal closure of A, denoted by /\ A is the formula obtained from A by

quantifying universally all the free variables of A,i.e.,/\ A =

Ax. +++Nx,.A Analogously, we define \/ A, the existential closure of A.
It is straightforward to prove next result:

Proposition 5.2 Let A ,...,A, be formulas, B='\A & -+ & INA,, and
A a multiset of formulas. Are equivalent:
(D) F A is provable from the sequent-axiomst A,,...,;F A ;
(ii)  there exists k = 0 such that B, ..., B v A is provable;
\.ﬂ_l

k times

(ii)) 'NA,,..VNA, FAisprovable.

Now, assume that & is the set of axioms (without free variables) of a theory
of (CL) in a language without functional symbols. It follows from Prop-
osition 5.2 that if A|,...,A, € & and A is a formula, then the following are
equivalent, for the first translation (*) of CL into LL:

B AgaA g A

)  WA)"....NA,)F A is provable in (LL);

(iii) There is a proof of F A from the axioms F (A ) “,...,.F (A ) (recall
that the A ; ‘s have no free variables).

Thus, to each axiom A € & of a classical theory, corresponds a sequent-
axiom F A in (LL). Similarly, for the second translation (**), it can be seen
that to each axiom A € , there corresponds a sequent-axiom + n(A).

Now assume that &« defines the classical theory of equality. Thus, & con-
sists in the following axioms:
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Now assume that s defines the classical theory of equality. Thus, 54 con-
sists in the following axioms:

(V x)(x = x);

V)V y)(x=y) = (y=x);

VIOVNV ) x=y) AN(y=2) = (x=2));

V)V y)(Vx )V y Nx, =y )A - Ax, =y,) A Px,,x,)
= Pty { Yoty 4 ,)

(where P varies over every predicate symbol of arity n of the lan-

guage).

For the first translation (*), we get a calculus (E ) with the following axi-
oms:

[R1] F2AXxNMx=x) [SI] F2AxNAy (1N(x=y)— N(y=1x))
[T1] FNAx '”/\y Mz (11 N(x=y) @ 1N(y=2)) — N(x=2))
[SUBST1] If P is a n-ary predicate symbol of the language
FUAx My, - MAx, PNy, (121 N(x,=y) @+ ®
12005, 2 ,) © PUPGx ik, )t PG, 'y, 0 Y.

For the second translation (**), we get a calculus (E,) with the following
axioms:

[R2] FAx(x=x) [S2] FAxAyAx=y)— l(y=1x))

[72] FAx Ay Az(AAx=y) @Ay =2))— l(x=12))

[SUBST2] If Pis a n-ary predlcate symbol in the language
FAX, Ay o Ax, Ny, (A, =y)Q -+ @
Ax, —y ) ® 2P(x,mx, ) — 1P(x, { ¥yoe WX, 0 Y )

Consider the linear theory (P ) determined by the axioms:

[LR1] +2(x=x) [LS1] FNx=y)— N(y=1x)

[LT1] F'Nx=y)®!MN(y=2)— N(x=2)

(LSUBST1] +F!N(x,=y)®@---@!MN(x, =y,)® INP(x sk )
—o NP(x, é Piususkl 2 ¥, )

Clearly, (P,) contains (E,) (because every axiom in (E,) is deducible in
(P,), using the equlvalences of last section) and we have that (P,) defines a
lmear theory of equality in the sense of section 4.

Similarly, define the theory (P, ) by the axioms:
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[LR2] F(x=x) [LS2] FAx=y)—ly=x)

[LT2] F2Nx=y)@Ny=2))—Nx=2)

[LSUBST2] F+2Ax,=y)®@ - ®Nx, =y,)® WP(x,,...x,))
— 1P(x, 5' Yok s 2 Yo

We can reformulate (P,) as:

[LR2] F(x=x) [LS2] F(x=y)—(y=x)

[LT2] F(x=y)®(y=2) —(x=2)

[LSUBST2] +A(x,=y)® @ (x, =y,)® WP(x,,...x,))
—o IP(xy { YiesX, { ¥,)

7=11 F?(x=y)— Wx=y).

It is straightforward to check that (P,) and (E,) are equivalents. In fact,
(P,) is the strongest (and therefore more restricted as far as semantics is
concerned) of the calculi already defined.

6. Equality and intuitionistic Linear Logic

In this section we shall study how to recover classical logic and intuitio-
nistic logic from a linear calculus without exponentials, as well as analyse
another extensions of the relationship between linear logic and quantales.
Our basic system is (commutative) first order intuitionistic linear logic,
from now on denoted by (LLI). The appropriate semantics will turn out to
be furnished by commutative unital quantales. Similarly, the semantics for
non-commutative first order intuitionistic linear shall be proven to be given
by unital quantales. From this, it will be seen that, adding appropiate axi-
oms, we can recover intuitionistic logic, classical logic and classical linear
logic. Thus, an intuitionistic linear theory of equality provides an intuitio-
nistic theory of equality, a classical theory of equality, and a classical linear
theory of equality, simultaneously. The most natural candidate is system
(LLE ), the simplest already defined.

We define a sequent calculus for (commutative) first-order intuitionistic
linear logic without negation, simply by extending the system in [GiLa] and
then proving soundness and completeness for this system.

Definition 6.1 The language L, for commutative first-order intuitionistic
linear logic consist of a countable set of predicate symbols, = { P SAnE
® }, a countable set of variables V= { v,: n € w }, the symbols @, — , &,
@, \/, /\ and the same rules as in Definition 2.2 for the formation of the set
of formulas FOR(L,). For A € FOR(L,) and x,y € V, Aly/x] is as in
Definition 2.4.
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Definition 6.2 The calculus (LLI) for commutative first order intuitionistic
linear logic consist in the following rules and axioms (A,B,C denote formu-
las, and T, A denote multisets of formulas):

[AX1] ALA [AX2] T+T
[AX3] F1 [AX4) T,0FA

[cuT] IL'tA AAFB [EXCHl L.,AB.AFC
I'A+B I',B,A,A+C

[1L] T+A [®Rl LCtA A+B [®L _T[ABFC

1,T+HA IAFA®B IMA®BFC
[&&R] THA T'EB [&1] r.At+c [& 2] ' BFEC
F'tA&B INA&BFC INA&BFC
[BL T.AFC T.BHC [B1] 'rA [ 2] I'tB
I' A®BF+C I'A©B 'rA@&B
[—R] ' AtB [—L] LA ABFHC
I'tA— B ' AA— B} C
VRl CrAx VL _LC.AFB
'kyxA I' \VxAF B if xnotoccurs freeinI", B
[ANL) L. AlX]+B [/\R] I'rA
' ANxA+B I' F /A x.A if x not occurs free in T’

Definition 6.3 An interpretatlon of quantales for (LLI) is a commutative uni-
tal quantale (Q ,\/ , *, 1) and a map |- IQ FOR(L,) — Q satisfying:

1. |0|]=0,[1]=1, |T1 T.

2. |A®B|=|A|*|B|, |4 — B =|A| - [Bl.

3. A&B] |A| N |B|, |A © B| = |A| v/ |B.

4. |A\xA| =/\yeVAR(L)) |Aly/x]|,

\/ x.Al=\/y € VAR(L,) |ALy/x]].
We say that A € FOR(L,) is valid in Q 1f|A|
A sequent T' +Ais valid in Q if [T, <A, where

o~ 1. U =i
€= leulal, #r=4...4,

Before stating and proving soundness we establish the following simple
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Lemma 6.4 Let Q be a quantale. Then,a ®0 =0 ® a =0 for every a € Q.
Proof-0=a —  0impliesa ®0=0;0=<a —, 0 implies 0 ® a = 0.

Theorem 6.5 (Soundness) If I' b A is provable in (LLI), then it is valid in

every interpretation of quantales, i.e., [Tl , = |A|, for every unital quan-
tale Q.

Proof. By induction on least lenght n of a proof of I" I A.

Let O be a quantale. If n = 1, [AX1],[AX2] and [AX3] are immediate,
while [AX4] is a consequence of Lemma 6.4,

Assume the thesis holds for all sequents with a proof of length = n (n =
1 fixed) and let A + D be a sequent admitting a proof of minimum length
n + 1. We discuss the last rule applied in the proof of A F D:

[CUT]: We have |I'| = |A| and |A| * |A| = |B| by the induction hypoth-
esis; thus, || * |A| = |A| * |A] = |B|.

The passage through the rules [EXCH] and [1L] follow from the fact that
Q is commutative and that 1 is the unit of Q.

[® R]: |T| = |A|and |A| = |B| (induction hypothesis) yield, then |[| * |A|
= |A| * |B|.

[® L]: This works by definition of interpretation.

[& R]: By induction, |I'| = |A| and |[] <|B|, and so || < |A| A |B|.

[& 1] and [& 2]: We have |I'| * |A| = |C| ( induction hypothesis); thus

[T * (Al A |B) = [T * |A] = |C].

The other rule is similar.
(@ L],[® 1],[D 2]: Same argument as in &, using \/ in place of A.
[— R]: Induction yields |I'| * |A| < |B|; thus, by adjointness |I'| <
lA| — |B].

[ L]: The induction hypothesis yields || = |A| and |A| * |B| = |C|.
Thus,

(Al —[B) * |T| * [A] = (JA| > |B]) * |A] * |A] < |B] * |A] =< |C].
[\/ R]: By induction, there is a variable y such that |[] = |A[y/x]|; but then
I = |Ay/x]| = v/, |ALy/x]].

We now state a Fact whose proof is routine:
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Fact: If I' , A+ B is provable in n steps and x is not free in either I" or B,
then I' , A[y/x] F B is provable in n steps for every y € V.

[\/ L]: Suppose that last rule applied was [\/ L]. Since x is not free in I,
B, by induction and the Fact above, we may assume that |['| * |A[y/x]| < |B|,
foreveryy € V.

Thus, |A[y/x]| = |T'| — |B| forevery y € Vand so |\/ x A| = \/, |A[v/x]|
=l — |B|,ie. [T|* |\ xAl =|B| '

[/NL): This is treated just as [\/ R], above.

[/AR]: Suppose that last rule applied was [/\ R]. Since x is not free in I,
induction and the Fact above allow us to assume that || = |A[y/x]|, for
every y € V. It is then clear that || = /\  |A[y/x]|, ending the proof. (]

Before we prove completeness, we need a general result about quantales
(generalizing an analogous result about Heyting algebras in [Mir]).

Definition 6.6 An autonomous poset is a partially ordered set P with a bi-
nary associative operation @ such that the endomorfisms a ® - and - ® a
have right adjoints, denoted by a — _- and a — , -, respectively.

A [® , \/]-autonomous lattice L is an autonomous poset where L is a lat-
tice and such that & is distributive for all \/’s which exists in L, i.e., if S C
L such that exists \/ S in L, then, for every a € L,\/s€ S(a ®s) and
\VSES (s® a)exists in L, and we have that \/s€ S(a® 5) =a ® (\/ ),
VSES s Ra)=(\/ 9 Ra.

If S, T are subsets of L, define

S T={a®b:acSandb €T).
Definition 6.7 Let L be a lattice and I C L an ideal (i.e.,if x €E I and y < x
theny € I, if x,y € I then x\/ y € I). We say that I is complete if it satis-
fies:
if § C I such that\/ S exists, then \/, S € I.
Since an arbitrary meet of complete ideals is again a complete ideal,
CI(L)y = {1 C L :1is a complete ideal in L}, is a complete lattice
ordered by inclusion, and containing, for eacha € L,
a“={xE€L:x=a).

Ifa € Land S C L is a subset of L, define

a—, §=,U. a> 0" ad a—>S=,U a—00".
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Lemma 6.8 Let L be a [® , \/]-autonomous lattice. Then
(a) Ifa€ Landl € CI(L), thena — , landa — | I are in CI(L).
(b) Forevery S,T C L and K € CI(L), we have

S TCKIffSCN,qz(@a—, KifTCN, @—, K.

Proof. (a) If x € a — , I, then there is ¢ € I such that x = a — | c; thus,
ify=xtheny=a —  candthereforey€Ea —, I.

If x,y €a —, I, then there are c,d € Isuchthatx =a =, c,andy =
a — , d; therefore

xvys(@—,o0v@—=,d=a-, (cvad,

yieldsx\vy €a —, I, because c\/ d € I.
Let S C a —, I'be such that c =\/, § exists. For every s € S there is ¢ ;

Elsuchthats=a — ¢, ie,a®s=c_ Sincelisanideal,a®s € I,
for all s € S. Then,

a®c=a®\/,s5=V,sa®sEI

because [ is complete. But this means that c € a — | I. A similar computa-
tion will prove thata — , I € CI(L).

(b) LetxE Sanda € Tand assume that S T C K sincex®a=c € K,
thenx=a — ,candthusxEa — K, foreverya € T.

Now, suppose that S C N ,_; (@ =, K),x € Sanda € T; since x €
a —, K, thereisc € Ksuchthatx =a —, ¢, i.e. x® a = c. Since K is an
ideal, we get x ® a € K. The other equivalence can be handled similarly. (]

Theorem 6.9 (The completion of a [Q , \/]-autonomous lattice)
Let L be a [® , \/]-autonomous lattice with 0, T. Then, there exists a
quantale Q and an injective map ¢ : L ——> Q such that

1. $(0) =0, &(T) = T. Moreover, b preserves all\/'s and /\'s existing
inL ie,if\/,;; a;and/\;_; b existsin L, then

Jjel
d)(\/,'e[ aj)=\/je] ¢’(a;)and ‘:b(/\jej b_f)z/\jej ¢(bj)'
2. Foralla belL,

(i) dla@b)=d(a) ® h(b)
(i) dla =, b) =d(a) =, $(b) and dla = b) = dla) =, d(b).

3. Ifa®@b=b® aforeveryab € L, then Q is commutative.
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4. IfLisunital, ie., thereis1 € Lsuchthata®1=a=1®a,VaE L,
then Q is unital and $(1) = 1 gy ¢

3. If in addition, L has a cyclic dualizing element 1, then Q is a Girard
quantale and &( L) = 1.

Proof: Set Q = CI(L) and define in Q the operation

M I*J=,, N{KEQ:KDIJ},
where I-J={a®b:a€l,bEJ}.

Clearly * is increasing in both variables. By Lemma 6.8, - * I and I * -have
right adjoints / — _ Jand I —, J, given by

Ngey (@ =, HNand N, (@ =, D,
respectively. Thus, V I,J € Q,
) I*JCKiffICJ >, KiffJCI—, K.

Formulas (I) and (II) will be of constant use. To show that * is associative,
we need

Fact1: Letl,J,K € Q. Then
&fl:{HEQ:H;J_(I*J)-K}:{HEQ:HQI-(J*K)}=@3.

Proof of Fact 1: We have, using Lemma 6.8, the following sequence of
implications

HDU*N-K=>H2( ) K=1-(J K
=J-KCI— H=J*KCI— H.

The last term implies H D I - (J * K) and &¢ C . Similar reasoning yields
BC A

It follows directly from the Fact that * is associative. We now must show
that * distributes over suprema.

Let/€ Qand {/, },., C Q; we shall provethat I *\/ I, =\/ (I *1I ).
Observe that\/ I, =N{HEQ:HD U, T, ), aswellasthat\/ (I *1)
C I*\/1, is always true. Now, we have the following sequence of impli-
cations
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KQUU*I,)=>K2I*I, ,Yo€EA=I, CI—> KVYaEA
=Ul,Cl—,K 2VvI,CIl>, K=1*\I,CK,

andso I *\/ 1, C\/ (I *1,). Right distributivity is similar and so Q is in-
deed a quantale.
Before defining the map ¢, we state

Fact2: Fora,beQ
(i) a“ =5 ,b"=(@a—>,b) " anda” - ,b" =(a >, b".
(i)) If S C Lis such that a =\/ S exists in L, then\/ s =a".
(i) If S CLsuchthata =/\Sexistsin L, thena“=/\ s =N 5.
i) a“ *b " =(a®b)".

Proof of Fact2: (i) Let K€ Qbesuchthata™ * KCh*“; forx € K,
we have a ® x = b and so, x =a — _ b. Thus, K C (a —, b)“, proving
thata — , b C(a —,b)".

For the reverse inclusion, consider x = agandy =a — , b;thenx ® y =
a®@—,b)=bandsoa” -(@a—>,b)" Cb",ie,a”" *(@a—>,b"
C b . This last relation implies (a =, b))~ Ca“~ —, b7, as needed.
For the operation — ,, the argument is similar.

(i) If\/S=a,thens” Ca“ forevery s €S, and so it is clear that
\/SES S<— g a(_'

IfH D U, s, since H is complete, it follows that a € H.

(ii1) Is similar to (ii).

(iv) Ifx=a,y=bthenx®y=a® bimpliecsa”™ -b~ C(a®@b)".
Thus,a“ *b " Ca@®b)“.

Now,if HDa“ - b" thena® b € Hand we get (a® b)” C H. By the
definition of * (formula (1)), this yields (a @ b)) C a“ * b, as desired.
This ends the proof of Fact 2.

We now define

b:L —> Qby dla)=a“.

Clearly ¢ is injective and, by Fact 2.(ii) and (iii), preserves all existing \/’s
and /\’s in L. Furthermore, ¢(0) = { 0 } (the smallest complete ideal in L)
and ¢(T) =L =T ,. The preservation of the other operations is guaranteed
by Fact 2.(i) and (iv). This shows that ¢ has the properties in items 1 and 2
of the statement.

It is quite clear from the definition of * (see (I), above) that Q will be
commutative if * is commutative in L. Moreover, if L is unital, straightfor-
ward computation will show that ¢(1) =1 is the unit of Q.

(d) Let L € L be a cyclic dualizing element in L. Clearly 1L < € Q is
cyclic and therefore O ; = { I € Q : j(I) =1 } is a Girard quantale, where
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j: Q0 — Q given by j() = (I > L) — L (Proposition 1.10).
Moreover,a” € Q ., o for every a € L. Thus, the mapjo ¢ : L —— Q;is
an embedding of L in a Girard quantale, with all the required properties. I:l

We can now prove

Theorem 6.10 (Completeness) If U, = |Al, for all interpretations in
quantales Q, then I + A is provable in (LLI)

Proof.  Our method will be to show that the Lindenbaum algebra L of
(LLI) can be embedded in a commutative unital quantale Q, such that |T| 0
=< |A| , iff T + A is provable.

Define in FOR(L ) the relation:

A~B iff A+ Band B | A are provable.

It is easily seen that ~ is an equivalence relation. Its equivalence classes
shall be denoted by A/..

Let L be the set of equivalence classes, i.e., L={A/.: A € FOR(L,) }.1
L, define the relation:

Al.=B/. iff A | B is provable in (LLI).

By [CUT], < is a partial order in L. Moreover, for formulas A, B in LLI, we
have

Fact 1: If A, B are formulas in (LLI), then
l. (A&B)/.=A/)N(BI) and (AD B).=(Al)\ (Bl).
2. N oy AV = (A xA)Y. and \/ _, (A[y/x]]) = (\/ x.A)..
3. 0=0/_and T =T/.. '

Proof of Fact 1: All these equalities can be read off the correspondmg
rules of the calculus. We do the first one in each of items 1. and 2. in some
detail, just naming the rules that should be used for the other cases.

1. From [AX1], [&1] and [&] we getA & B+ A, Band so (A & B).. <
A/l_, (A & B)/. = B/_. On the other hand, if C+ A and C + B, then [&R]
yields C + A & B. This means that

Cl.=Al,Cl.=Bl.= C/l.= (A &B)/_,
proving that (A & B)/_=(A/.) A (B/.)in L.

Similarly, [AX1], [® 1], [® 2] and [D L] will yield (A & B)/ =
(A/) v (Bl).
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2. By[AX1]and [\ L], (/\ x. A)/. < A[y/x)/_, forevery y € V.

If B/. = A[y/x]/_, for every y, let z be a variable not occurring in B. Then,
B/. = Alzix)/. and so [\ R] yields B/. = (/\ x A)/.. This proves that
N\ oy A1) = (N x.A)..

For the existential quantifier, the reasoning is the same, using [AX1],
[\/ R] and [\/ L].

3. This follows directly from [AX2] and [AX4], ending the proof of
Fact 1.

Define in L a binary operation * by:
(A1) * (Bl) = ,,; (A®B)/..

Clearly, * is well defined, is associative, commutative, increasing in both
variables and 1/_ is the unit. We have

Fact 2: With the operation * defined above, L is a [®, \/] autonomous lat-
tice.

Proof of Fact 2: It remains to be shown that * has right adjoints and dis-
tributes over the suprema existing in L.
If A, B, C are formulas in (LLI), then

(+) AQ®BFCisprovable iff A, Bt Cis provable
iff A+ B—o Cis provable.

To see this, note that [&@ R] yields ALFA BB
ALBFAX®B

Thus if A ® B+ Cis provable, [CUT] implies that A, B C is provable.

The converse comes directly from [&® L] as A BFC .
A@BILC

From [— R] we get AABFC .
AFB—C

To show that the last clause in (+) implies the second, first note that
B, B— C} Cis provable, because we canuse [—R]a BtB CtC.
B,B— C}FC

Thus, the provability of A+ B— C and B, B— C | C and [CUT] yield
that of A, B} C.
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It is clear from (+) that (A — -)/_ is the rigth adjoint to A/_ * » =+ * A/_in
L. .
To show that * distributes over the sup’s in L, let S C L be such that there
is A/. € L satisfying A/.=\/, S. Fix B/. € L. Since * is increasing,
(Bl)* (X/.) = (Bl.) * (Al), forevery X/_ € §.

Let F/. € L such that (B/.) * (X/.) = F/_, for every X/_. € §. By (+) we
have that, for X/. € S,

B ® X} Fis provable iff X+ (B— F)is provable,

V X/_ € §; taking sup’s, we get A - (B —o F) is provable. Thus, B& A  F
is provable, and so (B/) * (A/) = F /.. But this means that
V x/-es((BL)*(X].)) exists in L, and it’s equal to (B/) * \/ , S, ending the
proof of Fact 2.

Therefore, L is a commutative [& , \/]-autonomous lattice and by theo-
rem 6.9 it has a completion & : L —— @, where Q is an unital commuta-
tive quantale. Moreover, ¢ preserves &, —, 0, T, 1 and all existing \/’s
and /\'s in L. Consequently, if X, Y are formulas in (LLI) we have

HXL) < b(YL) iff X<V

It follows from these preservation properties that the map
'] :FOR(L;)—— Q given by |A|, = & (A/) is an interpretation of
quantales such that || = |A| iff I" F A is provable, as required to complete
the proof of the Theorem. (]

Before we give logical applications of the preceding results, we need to in-
vestigate when is it that a quantale becomes a frame. From Lemma 6.4
comes:

Corollary 6.11 Let Q be a quantale. If Q has a largest localic subquantale
L, then

L=IQ)={aE€EQ:a’=a).

Proof. We must have L C /(Q) because every x € L is idempotent (prop-
osition 1.19).

Forae I(Q),set L, ={0,a }. By Lemma 6.4, L , is closed under ®; it
is clearly closed under arbitrary \/’s, and so L, is a subquantale of Q. Since
a is idempotent, it follows that L , is localic. Thus, L, C L, i.e.,a € L, and
therefore (Q) C L. J



EQUALITY IN LINEAR LOGIC 147

The next result is a correction of Theorem 3.4.1 in [Ros], which is false as
it stands. In fact, the usual quantale of phases of Linear Logic is a counter-
example to that result.

Proposition 6.12 Let Q be a quantale. Are equivalent:
(1) Q has a largest localic subquantale.
(2) I(Q) is a localic subquantale of Q.
(3) Foralleveryab € (Q),a®@b=b&®a=a/b(NinQorinKQ)).

Proof: (1) = (2) comes from Corollary 6.11, while (2) = (3) is immedi-
ate.
(3) = (1): Because I(Q) is commutative, it is closed under &®. To show
that I(Q) is closed under sup’s, let { a; },.; C /(Q). Then:
(*) Via 4,=Viy @, ®a)=V Vijer (@; ®a i)
(\/re[ a; )®(V E]a )
(**) (Vge[ a; )®(vje! a ) V:EJ‘ (Vjel (a ®a )) - lE.f ai’

because a; ® a; = a, for every j € I. From (*) and (**) it follows that
Vie; @;1s idempotent and so /(Q) is a subquantale of Q.

To show that I(Q) is localic, observe that it follows from 3. that a @ b <
a, forevery b € I(Q). Thus, V a € I(Q),

a®\/ Q) = Vieng(@®b)=aand (\VI(Q)®a=a,

which shows that all elements of /(Q) are idempotent and two-sided in /(Q).
Now, Proposition 1.19 guarantees that /(Q) is localic. If L C Q is a localic
subquantale then every x € L is 1dempotent (Proposition 1.19) and so L C
Q.0

Thus, in a commutative Girard quantale Q, 1(Q) N 17 is the largest frame
contained in 1°. From the point of view of Logic, we have a privileged
localic subquantale that corresponds to intuitionistic Loglc However, the
situation is quite different in the non commutative case: in general, a Girard
quantale will not have a largest localic subquantale. If one considers Propo-
sition 1.14, one realizes the importance of commutativity: there is a largest
interpretation for ! in a Girard’s quantale Q, corresponding to the largest

among frames L satisfying

(1) LCZ(Q) (i) LC1 ={xEQ:x=1)

In fact, @, = I(Q) N Z(Q) N 17, where Z(Q) is the center of Q.
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The quantale theoretic setting will be helpful in finding axioms that,
when added to various systems of Linear Logic, produce classical intuitio-

nism and classical logic. We have the simple (compare with proposition
1.19),

Lemma 6.13 Let L be a complete lattice and * : L X L —— L a binary
operation on L. Are equivalent:

(i) *=A.

(ii) (a) x*x=xforeveryx € L.
(b) x* T =x,T*x=xforeveryx €L.
(c) * isincreasing in both variables.

Proof. (1) = (ii) is clear.

(1) = (1): Wehavea*b=a*T <ag;a*b=T *b=>b and there-
fore,a*b=aAb.

On the other hand, since * is increasinga ANb=(a/N\b)* (aNb) =a*b.
O

An analogous (and dual) result holds for the operation \/. From the preced-
ing results we get

Corollary 6.14 Let Q be a quantale. Are equivalent:
(i) Qisaframe, ie, @ =AN.
(ii) every x € Q is idempotent and two-sided. [

This Corollary and the completeness Theorem 6.10 yield

Proposition 6.15 (a) The system (LI) obtained from (LLI) by adding the

axioms

[ID]] FAQA—A [ID2] FA—A®A
2S] FA®T —A

determines intuitionistic logic, and therefore if we add to (LI) the axiom

we get classical logic, where 1 is equivalent to T and 1 ——o 0 is equivalent
to 0.

Thus, adding the axioms [ID1],[ID2],[2S] and [R=], [S=], [T=], [SUBST),
[= 1] (see section 2) to (LLI) we obtain a intuitionistic theory of equality,
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which becomes first order classical logic with equality upon the addition of
[—= =] ;

(b) The system (MALL1) obtained from (LLI) by adding the constant for-
mula L to the language and the axiom

[ =1(A— L)— L }FA,
is equivalent with (MALL) in the following sense:
F A is provable in (MALL) iff + A is provable in (MALL1),

where A~ and AU B are interpreted as A — L1 and
(Ao L)®(B— L)) —= L, respectively. Thus, adding 1 to the language we
have that

(LLI) + the axioms [— —'"],[R=],[S=],[T=],[SUBSTI,[I=],[= 1]
is equivalent to (LLE ),

where (LLE ) is described in Definition 2.6.
(c) Adding [ID1], [ID2] and [2S] to (MALL1) produces classical logic,
where 1is equivalent to T, and 0 is equivalent to 1. []

Remark 6.16 The possibility of obtaining (MALL) from (LLI) in part (b) ap-
pears in [Dos] proved by a different method: one interprets A— B, A & B
and NxAas(A@(B— 1)) — L, (A— L)B (B— 1)) — 1| and
(V x.(A —= 1)) — L, respectively, together with the interpretation for U
made in (b).

Since (@@ b) = c=a = (b = c)and b=1 = b, in every unital com-
mutative quantale, it can be shown that his interpretation of linear implica-
tion is equivalent to adding [— —'] to (LLI) to obtain (MALL) (translations
for & and /\ are derived and a consequence of the ones given).

As a matter of fact, we can extend this result to non-commutative intu-
itionistic linear logic, simply by observing that each rule of (LLI) deter-
mines an algebraic property of the Lindenbaum algebra of the calculus. For
a general unital quantale, we need two implications, —oj and —,, to dis-
card the exchange rule [EXCH], as well as to modify the rules in order to
describe the properties of each operation. We can define a linear calculus
which describes unital quantales, essentially the same as in [Abr].

Definition 6.17 The calculus (NCLLI) for noncommutative first-order lin-
ear intuitionistic logic consist in the following rules and axioms:
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[AX1]

[AX3]

[CUT]

[® R]

[& R]

[& L1]

[@D R1]

[, L]

[, L]

[\ R]

(Vv L]

(A L]

[AR]
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AFA [AX2] T+ T
F1 [AX4]. T,0,AFA
CHA . AAFB [1L] ' AFA
3,',A+B I',1LAFA
T'LA A-RB [® L] FABAFC
I' AFA®B INNA®@B, A+C
F'tA TF+B [ L] FLAAFC I'BAFC
I'tA&BRB I LA®B,AFC
FAAEC [& L2] I B.AFC
INA&B,A+C IA&B,AFC
_T'FA [BR2) _T+B
'-A®B '-A®B
'tA >.B.AFC [—, R] '.AFB
2A— B, T AFC I'tA— B
I'tA 3> BALC [—, R] ATEB
S,T,A— B ,AFC TFA— B
[ FA[y/x]
'kyvzxA
Ifxis not free inT', A, B then LA AEB
LvVxA AFB

L Alv/Ix].AFB
', \xA,A+B

If x is not free in I" then I'tA
F'FAxA

With the same method employed in Theorems 6.5 and 6.10, Theorem 6.9
yields that unital quantales are a complete and sound class of models for

(NCLLI):
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Theorem 6.18 (Completeness and Soundness for (NCLLI))
A sequent I' +- A is provable in [INCLLI] iff ' v A is valid in every inter-
pretation of quantales.

Instituto de Matematica e Estatistica, Universidade de Sdo Paulo
Caixa Postal 66.281 - Cep 05315-970, S.Paulo, S.P., Brasil
e-mail: M.E. Coniglio: coni@ime.usp.br

F. Miraglia: miraglia@ime.usp.br or miraglia@jussieu.logique.fr

REFERENCES

[Abr] Abrusci V.M., ‘Non-commutative Intuitionistic Linear Logic’,
Zeitschr. f. math. Logik und Grundlagen d. Math. 36 (1990), 297-
318.

[Avr] Avron A., ‘The Semantics and Proof Theory of Linear Logic’,
Theoretical Computer Science 57 (1988), 161-184.

[BrGu] Brown C. and Gurr D., ‘A Representation Theorem for Quantales’,
Journal of Pure and Applied Algebra 85 (1993), 27-42.

[Dos] Dosen K., ‘Nonmodal Classical Linear Predicate Logic is a Frag-
ment of Intuitionistic Linear Logic’, Theoretical Computer Science
102 (1992), 207-214.

[Gir] Girard 1.Y., ‘Linear Logic’, Theoretical Computer Science 50
(1987), 1-102.

[GiLa] Girard J.Y. and Lafont Y., ‘Linear Logic and Lazy Computation’,
Lectures Notes in Computer Science 250 (Springer, 1987), 52-66.

[Mir] Miraglia F., Sheaves and Logic, preprint.

[Ros] Rosenthal K., ‘Quantales and their Applications’, Pitman Research
Notes in Mathematics Series, vol. 234 (Longman, Harlow, 1990).

[Yet] Yetter D., ‘Quantales and (Noncommutative) Linear Logic’, Jour-
nal of Symbolic Logic 55 (1990), 41-64.



