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GENTZEN’S SECOND CONSISTENCY PROOF
AND STRONG CUT-ELIMINATION

Edward Hermann HAUESLER and Luiz Carlos PEREIRA

1. Introduction

It has been observed that an important difference between Natural Deduc-
tion and Sequent Calculus is that while in Natural Deduction we have a
natural concept of local reduction, in Sequent Calculus one can only talk
about a “cut-elimination procedure”. The fact that one can define reduction
steps for Natural Deduction Systems has made it natural to think of differ-
ent orders for the application of reduction steps, thus setting up the stage
for strong normalizability. By contrast, the traditional cut-elimination pro-
cedure has not been thought of as a set of independent reduction steps,
which could be applied in a certain order, but rather as a global method for
bringing a given sequent calculus proof into its cut free form. This in turn
has made it conceptually difficult (not to say impossible!) to think of a
strong cut-elimination result. A partial solution to this problem was given
in 1974 by Zucker, who showed how to analyse Gentzen’s cut-elimination
procedure into atomic steps that could be used in the definition of indepen-
dent reductions steps (see [Zucker74]. Zucker proved strong cut-elimina-
tion for a fragment of LJ using strong normalizability for the corresponding
fragment in NJ and a translation between the systems (for a similar result
cf. also [Pottinger77]). A proof of strong cut-elimination built up directly
for Sequent Calculus (i.e., without the use of strong normalizability for a
correspondent Natural Deduction system) was obtained by Dragalin, who
again used a set of reductions that resulted from a decomposition of
Gentzen’s Hauptsatz into atomic independent reduction steps (see [Draga-
1in88]). An immediate consequence of an analysis of Gentzen’s cut-elimi-
nation procedure into atomic steps! is that among reductions resulting from
this analysis we find permutative reductions corresponding to procedures
used in order to attain a decrease in the rank of a given proof. It is trivial to
generate infinite reduction sequences from applications of permutative
reductions. In order to avoid these infinite reduction sequences, Dragalin

I For a recent and detailed account of strong cut-elimination techniques see [Bittar96].
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imposed a restriction on the definition of reduction steps of this kind. This
restriction corresponds to the introduction of an order in the application of
local permutative reductions (a similar problem concerning permutative
reductions occurs in Zucker’s proof).

The aim of the present paper? is to provide a new proof, directly for
sequent calculus, of strong cut-elimination for classical and intuitionistic
propositional logic. This result differs from those mentioned above in the
following points:

1. Instead of using a set of reductions that resulted from Gentzen’s
Hauptsatz, we shall work with reductions defined by Gentzen in his
second published consistency proof. Gentzen’s reductions were
designed to be applied to a certain part (the so-called end-part) of any
derivation of the empty sequent (in a sequent calculus for first order
arithmetic). Furthermore, any application of what Gentzen called an
operational reduction was shown to entail a decrease in the ordinal
associated with a given derivation of the empty sequent. The consis-
tency proof was then completed with the proof of the accessibility of
ordinals in the & -fragment In this paper we shall show that, in the
case of classical and intuitionistic propositional logic, these reductions
do not depend either on the form of the end-sequent of derivations or
on where they should be applied.

2. We don’t have any kind of permutative reduction in this new set of
reductions. This fact allows us to avoid difficulties that proofs based on
Gentzen’s Hauptsatz have to face.

3. The proof of strong cut-elimination uses induction over a natural num-
ber assignment extracted from Gentzen’s original ordinal assignment.
We show that if (1) mr is a derivation in classical or intuitionistic propo-
sitional logic, (2) n is assigned to  and (3)  reduces to 7', then the
natural number n' associated with «' is such that n' < n. This natural
number assignment provides a natural global measure which is shown
to decrease through applications of reductions steps.

4. We shall be working with a modified concept of cut-free form. A deri-
vation is said to be in cut-free form if all its cuts are atomic (for a simi-
lar concept of normal form see [Schwichtemberg77]).

5. In contrast with the proofs mentioned above, our proof works with the
cut-rule instead of the mix-rule.

2A preliminary version of some of the results proved in this paper appeared in
[Pereira83].
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The paper is organized in the following way: in section 2 we introduce
some basic definitions; in section 3 we define an assignment of natural
numbers to derivations in the propositional fragment LKP of LK; in sec-
tion 4 we define the reductions; in section 5 we prove strong cut-elimina-
tion for LKP; in section 6 we show how this result can be extended to
intuitionistic propositional logic; and finally, in the concluding section 7,
we make some brief comments on the possibility of extending these results
to the first order case.

2. Basic Definitions

The system LKP (see Figure 1) is the propositional fragment of Gentzen’s
sequent calculus LK ([Gentzen35]). The notions of upper (lower) sequent,
premiss, main formula, side formula, operational and structural inference
are the usual ones. A proof IT in LKP is a formula tree that satisfies the fol-
lowing conditions:

* (i)  The top nodes of II are initial sequents.

* (i)  Every other node m, except the last one, is the upper sequent of
an application of an inference rule, whose lower sequent occurs
immediately below m in I1.

* (iii)) The upper sequent(s) of an application of an inference « in I1
is (are) separated from the lower sequent by means of an horizontal
line called line of inference.

In any application of an inference rule, the side formulas occur both in the
upper sequent and in the lower sequent. We say that these occurrences are
connected. We shall also say that the premises of an application of contrac-
tion are connected with the main formula, and that the premiss A (B) in an
application of permutation is connected with the main formula A (B). A
connected sequence for a formula occurrence A in a proof I1is a sequence
of formula occurrences B,,...,B, in II such that:

() A=B,;

* (i) Each B, occurs immediately above and is connected with
B, (1 =i<n);and

* (i) B, occurs either in an initial sequent, or as the main formula of
an operational inference, or as the main formula of an application of
thinning.

The connection associated with a formula occurrence A in a proof I1 is the
set of all connected sequences for A in I1.
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An essential cut is a cut that satisfies one of the following conditions:

* (1) There is at least one connected sequence both in the connection
associated with the right cut formula and in the connection associ-
ated with the left cut formula whose first element is the main formula
of an operational inference.

* (2) Either every connected sequence associated with the right cut
formula A begins with the main formula of an application of thin-
ning, or every connected sequence associated with the left cut formu-
la A begins with the main formula of an application of thinning.

Let d (A) denote the degree of a formula A. The degree of a proof I1, is de-
fined as:

d (IT) = max { d (A): A is a cut formula in IT }.

The degree of an aplication of the cut rule is equal to the degree of its cut
formula. A proof Il is called normal, if d (II) = 0.

The level of a sequent S occurring in a proof II is defined to be the great-
est degree of an application of the cut rule whose lower sequent occurs
below S. A line of inference in a proof Il is called a level line iff the level
of the upper sequents is greater than the level of the lower sequent.

3. The mapping G from LKP derivations into the natural numbers

The aim of this section is to define a mapping G , from derivations in LKP
into natural numbers in such a way that we associate to each sequent and
line of inference occurring in a derivation Il a certain natural number. The
number G, (II) associated with II is the number associated with the last
sequent of II. From now on, the notation “3 , (n)” will be used to denote k-
times iterated exponentiation with base 3, which can be defined as follows:

*(@a 3,n)=n
% (b) 32+] (n)=33*(")

The correlation G , is defined as follows:

(1) G, (' = Ay=1if (I' = A) is an initial sequent.

(2) Letn (n,, n,) be the number(s) associated with the upper sequent(s) of
an application a of an inference rule. The number G, (/) associated with
the line / of the inference « is defined as:
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* (a) G5 ()=n,ifais a structural rule different from the cut rule.

* (b) G, ()=n+1,if o is an operational rule with one upper sequent.

*(¢) G;(H)=n,+n, +1,if a is an operational rule with two upper
sequents.

* (d) G;()=n,+n,,if ais an application of the cut rule.

(3) Let n be the number associated with the line / of an application a of an
inference rule in a derivation II. The number associated with the lower
sequent of / is defined as:

* (a) n,if/isnot alevel line.
* (b) 3, (n),if lis alevel line and the difference between the level of
the upper sequents and the level of the lower sequent is equal to m.

4. Reductions for LKP

In this section, we introduce certain operations in order to transform a given
derivation II into a cut-free derivation IT' of the same end sequent. These
operations are called reductions and are of two types: structural reductions
and operational reductions. The reductions I shall be using here are the
same as those used by Gentzen in the second published proof of the
consistency of elementary arithmetic ([Gentzen38]).

4.1.  Structural Reductions
Let I1 be the following derivation:

II, I,
I =AA O=A
IL0"=AA
I3

where all connected sequences for the left cut-formula of II have the form
described in the definition of an essential cut of type (2).

We then say that IT reduces to IT' that assumes the following form:
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I
I'=A

I,0"=AA

where:

(1) IT' is obtained from IT through the elimination of the applications of
thinning that introduce formulas in the connection associated with the left
cut formula;

(2) © and A are introduced by applications of thinning.

The case where the right cut-formula fulfils the same condition is treated in
a similar way.

4.2. Operational Reductions

The aim of these reductions is to eliminate essential cuts of type (1). There
are several cases to be examined depending on the operational rule we use.
I shall below consider just a representative case, the other cases being treat-
ed in a similar way.

(a) The cut-formula is (A A B) and IT has the following form:

IT) I Z
F1=>A1,A l"1=>A],B A,@lﬁq‘ll
F]ﬁAl,A/\B AAB,®1:>\P1
I3 Z,
T'=AAAB AAnBO=Y
=AY
Z3
F3 =>G}3
Z4

Where:

(1) the uppermost left (right) occurrence of (A A B) is the first term of a
connected sequence associated with the left (right) cut-formula of the indi-
cated cut;

(2) the level of the indicated cut is p;

(3) the line immediately above I'; = O, is a level line;
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(4) the level 7 of the sequents that stand above this line is such that d (A)
<T=p; :
(5) thelevelof I'; = O, is 0 =d (A).

IT reduces to IT' that assumes the following form:

II I1 Z

1 2
I=>A,A T,=A,B 4,0 = ¥,
I'=A,AAB AAB,AQO =Y
I, DX
I'=AAAB AABAO=Y
INALO=AY¥Y
z;
A, =8,
l—Il Zl
I''=A,A A0 =Y,
= A AAAB AABO =Y,
1T, z,
I'=AAAAB AABO=Y
IO=AAY
34
=04

r,r,=0,06,

T,=0,

z,

5. Strong Cut-Elimination theorem

A reduction sequence for a derivation II is a sequence of proofs II
IT,,I1,,,, .. such that:

13 ==s
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(1) II,isII;
(ii) II, reducestoIl ;.

A derivation II satisfies strong cut-elimination iff it satisfies the following
conditions:
(1) (Finitess) There is no infinite reduction sequence beginning with IT.
(1) (Uniqueness) Every derivation IT has a unique cut-free form.

We shall prove in what follows the “Finitess” part of the Strong Cut-Elimi-
nation Theorem.

5.1 Strong Cut-Elimination

Theorem 5.1 (Strong Cut-Elimination - Finitess): Every reduction sequence
for a derivation 11 in LKP is finite.

Proof: induction over the value G, (2) associated with a proof IT. We
shall show that if I1 reduces to IT' then, G, (II) < G, (IT).

(a) II reduces to II' by means of an operational reduction. We shall only
examine the case of conjunction presented above, the other cases being
treated in a similar way. We can easily see that the numbers n, and n,
associated with the lines of inference immediately above I'; — O ,, A and
A,T'; = O, in IT are smaller than the number n 5 associated with the line
of inference immediately above I'; — © , in IL The level x of the upper
sequents of the new cut is such that

o=x<T

1. If o =x and 7 - x = k then, the number 3, (n 1) + 3, (n,) associated
with I'; — ©, in IT" is smaller than the number 3, (n,) associated with
I'; — ©; inII This difference is preserved through IT till its end sequent
and hence,

G, ()< G, (II).

2. If x> o,thenx =0 +k, for some k, = 1. We also have that T = x + ks
for some k, = 1. The numbers associated with the upper sequents of the
new cut are 3 k, (n,) and 3 k, (n,). The number associated with the lower
sequent is thus, 3 k, 3 k. (n)+3 L (n,)). But this number is smaller than
the number 3 ko, (n 5) associated with the sequent I'; — O, in IL This
difference is preserved throughout IT' and hence, G, IIN< G, D).
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(b) II reduces to IT' by means of a structural reduction. Let LI be,

I I,
I'=AA B=A
Ie"=AA
I3

and let IT' be

1Ty
I'=>A

r,e*=AA

In order to show that G, (IT') < G, (II), we shall prove the general state-
ment that if S is the sequent in IT' corresponding to the sequent § in II, and
if the level of S" in IT' is lower than the level of Sin II by m, then G (S) =
3, (G5 (8)). Letl, ..., [ be the level lines occurring in II, such that be-
tween each [/, andI' = ﬁ A there is no other level line (1 =i = j). Letm
be the change of level determined by /,, and let G, ({,) =n,.

Our general statement is obviously true for the sequents occurring above
 N— i in IT',, because we just have to remember that there is no change
in the assignment for these sequents.

For the sequent S'; occurring immediately below [, we have that:

G3 (Sri)= 3m+mf- (ni) = 3m (3’"J (ni))= 3»: (G3 (Sr))

If we now pass from §', or 8|, §', to §’ without any change of level, then
G,(SV=G,;S')+1orG,(8)=G; (8" )+G;(S",))+1orG;(S) =
G, (S")+G,(S'y).

By the induction hypothesis, we know that G, (S';,) = 3, (G, (§,)) (fori
= 1, 2). The result then follows directly from arithmetical properties of
iterated exponentiation with base 3.

Now, it remains the case where we have a change of level when passing
from S’ |, §’, to S". This is the case of a cut,

S5 S
S’
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where the level of §'is lower than the level of the corresponding S in IT' by
m'. Noticing that the difference of level determined by this cut is equal to
m’ - m, we verify that:

G,(8)=3,., (G, (8 )+G,(S,) =

n'—m

B, Gy EN+3,(G5(S,)) =

m ‘—m

=3 (G, ($)+G, (S, =

=3, (G;S)D+G,(S5,)=3,. (G, ().

This completes the proof of our general result.

Applying this result to our sequent I' => A in IT', we check that G, (I’
= A) =3, (G, (I' = A, A)), where m is the change of level determmed
by the cut we had chosen. Obviously, G, (I' = A)=G, (T, 0" =A",A)
<3,(G;T'=>A,4)+G, (4, 6:>A))

6. Strong Cut Elimination for the System FIL

We can immediately see that this strong cut-elimination result cannot be
extended to the propositional fragment LJP (see Figure 2) of the intuitio-
nistic system LJ. The strong restriction imposed on the size of the conse-
quents of LJ-sequents and the use of thmmng in the definition of the opera-
tional reductions make it the case that LJP is not closed under reductions,
i.e., the reduction IT' of a derivation IT in LJP may not be a derivation in
LJP. This cardinality restriction can be liberalized in more than one way.
In this section we shall show that our strong cut-elimination result can be
extended to the intuitionistic propositional system FIL (Full Intuitionistic
Loglc) where cardinality restrictions are replaced by explicit dependency
restrictions.

The system FIL is a multiple consequent intuitionistic system3, where an
indexing device allows us to keep track of dependency relations between
formulas. The point here is that these dependency relations determine the
restriction on the formulation of the rule for introduction of implication on

the right, which guarantees that only intuitionistic valid formulae are deriv-
able.

3Fora comprehensive account of FIL see [dePaivaPer96).
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Let us first introduce some conventions and terminology we shall be using
throughout this section. .
A sequent in FIL is an expression of the form

A(n),..A, (n,)=>BJS,, .., B,/S,
where

*A,for(l1=i=k)and B j for (1 =j = m) are propositional formu-
las;

* n, for (1 =i = k) are natural numbers;

* §, for (1 =j = m) are finite sets of natural numbers.

The main intuition behind the indexing device is that a succedent formula
B/S depends on antecedent formulas with indexes in S. Capital Greek letters
like I', A, ¥, O, denote now sequences of indexed formulas. In order to
describe the inference rules of FIL we need some notational conventions.
Assume A=B|/S,,..,B IS,

* If § is any set of natural numbers, A (k|S) denotes the result of
replacing each §; in A such thatk € S ; by (S;-{khus;

* A- {n} is the result of replacing each S . in A such that n € § jbyS;
- {n};

* A (k < S) denotes the result of replacing each S j in A such that k is
inS;byS; us.

J

The system FIL is given by the axioms and rules of inference shown in
Figure 3. We assume that in the case of the rules for conjunction on the
right, disjunction on the left, implication on the left and Cut, the derivations
of the upper sequents have no index in common. This is in fact no strong
restriction since we can always rename the indexes.

Now, we can clearly see that the problem we faced with respect to LJP
does not occur in the case of FIL. The fact that the occurrences of A A B
introduced by thinning are associated with the empty set (&) and with a
new index n’ respectively, warrants the closure of FIL under reductions.
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IT, I1, %
I'=A,A/8 T'y=4,,B/S; A(n), 0 =Y,
.1, =AL,A,,AAB/S{US;  AAB(n'),A(n),0) =¥
I 5
I'=AAAB/S AAB(n*),An),® =Y
T,A(n),® = A, ¥ (n*|S)
Z3
AT3 =0,
IT, Z
I =AL,A/S A(n),0; =Y,
I =A,A/S,ArBID  AAB(n),0, =Y
I35 2

I=AAISUS),ANBID AABK),L,O=Y
F,@:>A,‘P,A/S] USQ

D%
T;=0;,A/S50US,

r,[,= 0,0,

T,=0,
z,

where,

1 ‘P =¥ (ne {n h.

2, ‘P =¥ (n<{n')).

3. %, isexactly like £, except for containing an extra occurence of A in
the antecedent of some of its sequents. A similar remark holds for 2q

4. H3 is exactly like IT3 except for containing an extra occurence of A in
the antecedent of some of its sequents. A similar remark holds for 23

5. In order to simplify the notation we used the same indexes in the
derivations of the upper sequents of the last cut. This is clearly no es-
sential restriction, since the indexes could be easily renamed.
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1. Concluding Remarks

Again, we can easily see that, for reasons similar to those mentioned above
in the intuitionistic case, this strong cut-elimination result cannot be
extended to the first-order case. The use of thinning that replaces the opera-
tional rule in the right-hand side of the original derivation violates the clos-
ure of the system under reductions. In order to circumvent this difficulty, it
seems to be possible to use, in addition to the dependency indexes, book-
keeping devices that would indicate quantificational levels in the same
spirit of indexes used in modal logic in order to indicate modal levels (see,
for example, [Massini92], [Simpson93]). In a certain sense, the main idea is
to explore the fact that sequent-calculus derivations are disguised natural
deduction derivations, and that the cut-rule could produce good natural
deduction derivations out of “bad” sequent calculus derivations.

THE SYSTEM LKP
Axiom
AFA
M'B’F—,M(Exchangeg) M(Exchange )
IB,AT'FA I'tA,B,A A
Aljll'— :-AA (Weakening,,) Fl;—; . (Weakening,, )
AATEA
———(Contraction,,) M—(Contractionm )
ATHA * I'AA
'tAA ATFA
Cut
LT/FAA!
A, FI—A( ) FFAA( )
TFA—A %' —ATFA *
ATFA B,FI—A(V) I'-AA ) T'HA,B o
(AVvB),TFA % TrAAvB " TrAAvVB %
ATEFA (A) B.T'FA (A) I'FAA FFA,B(A )
AABTHFA Y AABTFA *® I'FA,AAB 8
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I'FAA B,I"FA’ ATHAB
r (=) (=)
A— BT I"FAA _ I'FA,A— B
Figure 1: Sequent Calculus LKP

THE SYSTEM LIJP
Axiom
LA BT'FA
m (Exchangeﬂ )
rlt A(Weakeningu)
F
TrA ——— (Weakening,, )
ﬂF—A(Ccmrractioarft,k, )
ATFA
TFA  ATFA
Cut
I TFA
AFI—( ) nA( )
TF—A ® _ATF
ATFA B,FI—A(V) CFA _Tra B e
(AvB),[FA ¢ TrAvB % Travp ®
ATFA (A) BTFA (A) TFA FI—B(A)
AABTHFA Y AABTEA * FAAB *
THA B,F’I—A’(_)) ATFB (o)
A BT,T'FA & F TFA—» B

Figure 2: Sequent Calculus LJP
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THE SYSTEM FIL

— Axiom
A(n)k A{n}
'HA/S,A A(n),I"FA’

- Cut*1
LT'RAA

L(n)FA /{n},..., A, /{n} (Le)

I,A(n), B(m),I""FA
I',B(m),A(n),I"’FA

THA/S,B/S’, A
T+B/S',A/S,A

(Exchange,) (Exchange,,)

I'FA I'FA

m‘ * 2(Weakening,_l ) m(Weakeningm )

LA, A Coitadtion;) THA/S,A/S" A
T, A(k)FA THA/SUS',A

(Contraction,, )

[LAm)FA T, B(m)FA’
TA,(Av BYKFA', A"

*4(vy)

T'HA/S,A T'HB/S,A

TFAVB/S,A" " TFAvB/S, A( %)

F,A(n),B(m)i-A*,l(A ) I'FA/S,A V8BS A
T,AABK)FA . I,T'FAAB/SUS AN

THA/S,A I"’,B(n)F-A’*S(_)) I, A(n)F B/S,A
I,T",A— B(n)FA,A" * TFA— B/S—-{n},A

(Ag)

*6(—y,)

(*1): A" = A' (n]9).
(*2) : nisnew and A" is obtained from A through the introduction of n in
some S in_ A.
(*3): k= mmm;mmMA = A (max (n, m)|k).
(*4) : kisnew, A" = A (nlk)yand A'" = A" (m|k).
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(*35): A" =A(n < S).
(*6):nESandnES'j;foreacth e A
(*7) :k=min (n,m) and A" = A (max (n, m)|k).

Figure 3: Sequent Calculus formulation of FIL

Hauesler: Computer Science Department, PUC-Rio
Pereira: Department of Philosophy, PUC-Rio/UFRJ
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