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AXIOMS FOR COLLECTIONS OF INDISTINGUISHABLE OBJECTS
Décio KRAUSE

Abstract

The search for axioms like those of set theories for dealing with collec-
tions of indistinguishable elementary particles was posed by Yu. I.
Manin, in 1974, as one of the important problems of present day re-
searches on the foundations of mathematics. In this paper we presented
a quasi-set theory which stands for a mathematical framework for
dealing with collections of indistinguishable objects, whose ‘intended
interpretation’ is precisely the behaviour of elementary particles as de-
scribed by non-relativistic quantum mechanics. A sketch of the proof
that this theory and ZFC are equiconsistent is also presented and the
relationship with the case of quantum particles is mentioned through-
out the paper.

1. Introduction

Mathematical frameworks for dealing with collections of objects such as
elementary particles have two independent but related origins. In 1983, M.
L. Dalla Chiara and G. Toraldo di Francia proposed a quaset theory to pro-
vide mathematical tools for semantical analyses of the languages of micro-
physics [10]. According to this approach, standard set theories are not ade-
quate to represent microphysical phenomena, since the ontology of physics
apparently does not reduce to that of usual sets. One of the basic motiva-
tions underlying such a supposition is that collections of objects like ele-
mentary particles, do not obey the axioms of set theories like Zermelo-
Fraenkel due to the indistinguishability of their elements. In addition, they
have suggested that identity questions from quantum theories demand a
kind of intensional semantics, for which quaset theory may provide the
(meta)mathematical framework (see also [12]).

The basic idea of a quaset is that of a collection of objects which have a
well-defined cardinal, but in such a way that there is no way to tell (with
certainty) which are the elements that belong to the quaset. This is achieved
by distinguishing between the primitive predicates € and €& (which is not
the negation of the former), meaning ‘certainly belongs to’ and ‘certainly
does not belong to’ respectively. The postulates imply that z € y entails —z
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€& y, but not the converse. So, it may be the case that it is false that z cer-
tainly does not belong to y, but this does not entail that z (certainly) belongs
to y. The elements z to which it may be said that ‘it is false that they cer-
tainly do not belong to y° might act as members in potentia of y.! Since the
cardinal of the quaset is fixed, then there is a kind of ‘epistemic’ indetermi-
nacy with respect to the elements of a quaset. Convenient postulates pro-
vide the grounds for the whole theory, and a semantical analysis of micro-
physics has also been sketched.2

Starting from a distinct but related motivation, N. C. A. da Costa discuss-
ed in his book [1] the possibility of presenting logical systems in which
some form of the Principle of Identity could be violated.3 Based on Schré-
dinger’s ideas concerning the fact that the concept of identity, or sameness,
lacks sense with respect to the elementary particles [30, pp. 17-18], da
Costa defined a two-sorted first order logic in which identity statements a =
b make sense only with respect to the objects of one of the considered sort;
to the others (which should be regarded as denoting elementary particles),
the expression x = y simply is not a formula. Hence, for these last objects, it
is not possible to say either that they are identical or that they are distinct
from one another.

Da Costa realized further that a complete semantics could be found for
such ‘Schrodinger Logics’,# but he noted that such a semantics, grounded
in the standard set theories, was not adequate to express the intuitive idea of
collections of objects for which the concept of identity should lack sense.
Then he proposed that a kind of theory of quasi-sets should be developed, a
theory in which standard sets were particular cases, and then, it was sug-
gested, in such a theory a more adequate semantics for his logics could be
achieved.

In [17] (see [19]), a quasi-set theory (called S*) in this sense was pro-
posed. The main motivation was not only to obtain a mathematical frame-
work to provide semantics for Schrédinger logics, but also to pursue
Schrédinger’s intuitions and to explore the mathematical counterpart of a
theory which admits collections of objects for which identity and diversity

The authors did not use this terminology.

20ther papers of related interest are [8], [9] and [11].

3His motivations were essentially philosophical, in trying to show that the laws of classi-
cal logic are not so secure that cannot be violated [1, p. 102]. Concerning da Costa’s book,

see [5], and on some other ways to violate the Principle of Identity, see [23].

4These systems were extended to higher-order logics in [17] (see [2]) and to a higher-
order intensional system in [3].
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are meaningless concepts, but in such a way that, taking into account the
motivation provided by the quantum mechanical treatment of the elemen-
tary particles, a weaker concept of ‘indistinguishability’ could be consid-
ered. In this way, quasi-set theory might be viewed as a mathematical de-
vice for dealing with collections of indistinguishable objects [20].

The idea of S~ is to allow the presence of atoms (Urelemente) of two
sorts, and to restrict to just one of these species the applicability of the con-
cept of identity. To the others, a weaker ‘relation of indistinguishability’
(which has only the properties of an equivalence relation) is used instead of
identity. Since the identity relation (that is, the predicate of equality) cannot
be applied to this last kind of objects, there is a precise sense in saying that
they can be indistinguishable without been identical. As a consequence,
Leibniz Law, which (roughly speaking) asserts that there can be no
‘distinct’ indistinguishable entities, is violated. So, contrary to the case of
quasets, the lack of sense in applying the concept of identity produces in
quasi-set theory a kind of ‘ontic’ indeterminacy among (some of) the ele-
ments of a quasi-set.’

Subsequently, taking into account the concept of ‘non-individuals’ in H.
Post’s sense [28], it was suggested in [22] a rather distinct theory encom-
passing a weaker axiom of extensionality. 6 This new quasi-set theory,
which was called S, was developed in details in [4] and in [13]. As a con-
sequence of the 1mprovement achieved with the weak axiom of extension-
ality, in that theory we were able to derive a theorem which expresses (in a
sense) the ‘unobservability of permutations’ of certain objects, which is one
of the most basic pressupositions of quantum mechanics, expressed by the
so-called Indistinguishability Postulate. This theorem is presented below in
this paper (Theorem 2.8).

Notwithstanding the improvement achieved with the substitution of the
‘old’ extensionality axiom by the ‘new’ one, the idea of indistinguishable
quasi-sets was still restrictive, since the ‘old’ axiom allowed (intuitively
speaking) that only quasi-sets with the same quantity of elements of the
same sort could be indistinguishable.”

In this work, a new formulation of a quasi-set theory is presented. The
basic idea is to keep the axiom of extensionality still more flexible. Some
other improvements are also introduced. A sketch of the proof that £ is

5The use of quasi-set theories in the discussion on ‘vagueness’ in quantum mechanics
was presented in [14], [15].

61n S the axiom of extensionality was used as in the standard formulations of ZF (see
[33].

7See the next section, where all these points are explained in details.



72 DECIO KRAUSE

equiconsistent with ZFC is presented, and some further developments are
suggested. A kind of ‘comparison’ between quasets and quasi-sets is pro-
vided with more details in [13].

Interesting to recall that the development of the afore mentioned theories
is closely related to the problem posed to the mathematical community by
Yu. I. Manin in 1974, during the Congress on the Hilbert Problems. As he
said,

“We should consider possibilities of developing a totally new language to
speak about infinity [that is, axioms for set theory]. Classical critics of
Cantor (Brouwer et al.) argued that, say, the general choice is an illicit ex-
trapolation of the finite case.

I would like to point out that it is rather an extrapolation of common-
place physics, were we can distinguish things, count them, put them in
some order, etc.. New quantum physics has shown us models of entities
with quite different behaviour. Even sets of photons in a looking-glass box,
or of electrons in a nickel piece are much less Cantorian that the sets of
grains of sand.

The twentieth century return to Middle Age scholastics taught us a lot
about formalisms. Probably it is time to look outside again. Meaning is
what really matters. [24]”

2. The quasi-theory £

The language of £ is that of the first order predicate calculus without iden-
tity. The intuitive idea is to allow the existence of Urelemente of two kinds,
which are called m-atoms and M-atoms. The latter act as atoms of ZFU
(Zermelo-Fraenkel with Urelemente), while the former are supposed to be
objects to which the concept of identity cannot be applied in a sense to be
explained below. This intuitive motivation conforms itself with E. Schré-
dinger dictum that the concept of identity does not make sense with respect
to the elementary particles of modern physics, as we have mentioned in the
Introduction (see also [2]). Then, with regard to the m-atoms it should be
meaningless to talk about either their identity or about their diversity.

The specific symbols of £ are three unary predicates m, M and Z, two
binary predicates = and € and an unary functional symbol gc. Terms and
(well-formed) formulas are defined in the standard way, so as are the con-
cepts of free and bound variables, etc. We use x, ¥, Z, u, v, w and ¢ to denote
individual variables, which range over quasi-sets (henceforth, gsets) and
Urelemente. Intuitively, m(x) says that ‘x is a microobject’ (m-atom), M(x)
says that ‘x is a macroobject’ (M-atom) while Z(x) says that ‘x is a set’. The
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term gc(x) stands for ‘the quasi-cardinal of (the gset) x’. The sets will be
characterized as exact copies of the sets in ZFU.

The formulas V ,x (...) and 3 ,x (...) abbreviate Vx (P (x) — (...)) and Jx
(P (x) N\ (...) respectively, where P is a predicate.

Definition 2.1

1. Q(x):= = (m(x)\v M(x))(xis a quasi-set)

2. Px)=QXAVy(yEx —m(y)(xisa ‘pure’ quasi-set, that is, a
quasi-set whose elements are m-atoms only).

3. D (x):=M (x) v Z (x) (x is a classical object, or Dinge, in Zermelo’s
original sense, that is, x is a (classical) Urelement or a set).

4. E()=0@AYy(GExX— Q()

5. [Extensional Equality] For all x and y, if they are not m-atoms, then:

x=py=(@NQY)N\VzZEX O ZEY )VIMX)AM) Ax=
»)

6. [Subquasi-set] For all x and y, if they are not atoms, then:
xCy:=Vzz€Ex > zEYy)

If x # ; y, thatis, — (x = y), we say that x and y are extensionally dis-
tincts. As is usual, x C y, means x C y A x #  y. It is immediate that x C y
NyCx—>x=y.

The first four axioms of Q) are The Axioms of Indistinguishability:

Q1) Vx(x=x)

(Q2) VxVy(x=y o>y=yx

(03) VxVyVix=yNy=z—ox=2)

(Q4) VxVy (—m @A =m@) = x=y = (A @) > AKX,
with the usual syntactic restrictions.

We will prove below (Theorem 2.7) that the extensional equality has all the
properties of classical equality.

Axiom Q4 excludes m-atoms from the substitutivity law since if substitu-
tivity is postulated to include them as well, then Q1 plus Q4 turn to be ex-
actly the axioms usually used for the predicate of identity [25, pp. 74ff] and
no syntactical difference between identity and indistinguishability could be
achieved. By using Q4 as above, we preserve Leibniz Law for the
‘macroscopic’ (that it, those which are not m-atoms) indistinguishable enti-
ties (including gsets) and this procedure does not cause problems regarding
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the m-atoms, since there is a theorem (Theorem 2.8) which allows a kind of
‘substitutivity’ among them.
Other axioms of £} are the following:

{@5) No Urelemente is at the same time an m-atom and an M-atom:
Yx (= (m (x) A M (x)))

(Q6) If x has an element, then x is a gset. In other words, the atoms are
empty:8

VxVy(x €y = Q ()

(Q7) Every setisagset:
Vx(Z(x) = Q (x))

(Q8) No set contains m-atoms as elements:
Vox(3,yyEx) = =Z ()

(Q9)  Qsets whose elements are ‘classical objects’ are sets and converse-
ly:

Vox (VY (Y Ex = D) < Z(x)

(Q10) Objects which are indistinguishable from m-atoms are also m-
atoms:

Vx(imx)ANx=y 5 m(y)

Theorem 2.1 If x is an M-atom (respectively, a gset) and x = vy, then y is
also an M-atom ( respect., a gset).

Proof: If M (x) and y = x, then M (y) by Q4, for otherwise we could derive
a contradiction. In short, if M (x) and m (y), then if x = y, from Q10 we de-
rive m (x), hence =M (x) by Q5, which contradicts the hypothesis that

8This raises an interesting question: in what sense may we say that a macroscopic object
is *composed’ of microscopic elements? If the microobjects should be taken as ‘non-indivi-
duals’, as some like Post and Schrédinger have suggested [32], [28], how does a macro-

scopic object acquire its individuality? We comment in brief on this important point in the
last section.
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M (x). Then, from @4 with M (x) instead A(x,x), we obtain M (y). Similary
we prove the case concerning gsets. 4

From the above axioms, it follows that sers cannot have m-atoms as ele-
ments and, in order its elements be also‘classical’, they also cannot have m-
atoms as elements, and so on. Hence this idea pervades the ‘interior’ of the
elements of a gset, and this implies that a gset is a set iff its transitive clo-
sure (this concept can be defined in the standard way —see below) does not
contain m-atoms. In other words, sets are those gsets obtained in ‘stages’
(see [33]) in the ‘classical’ part of the theory £ (see the Section 2.2). They
turn out to be exact copies of the sets in ZFU, as we will also emphasize
below. The intuitive idea behind the ‘quasi-set universe’ is ower by the fol-
lowing picture, in which the ‘ZFC-sets’ (respect., the ‘ZFU-sets’) are those
gsets that are ‘copies’ of the sets in ZFC (respect., in ZFU).

'ZFU -sets

pure gsets

m-atoms M-atoms )

The Quasi-Set Universe

(Q11) [The empty set] There exists a gset (denoted ‘(') which is a set and
which does not have elements:

J,xVy (= (y EX))
Definition 2.2 [Similar quasi-sets] For all non empty quasi-sets x and y,

Sim (x,y) =VzVt(zExNtEYy = z=1)
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Intuitively, similar gsets have as elements objects ‘of the same sort’. The
idea of ‘objects of the same sort’ can be realized by passing the quotient by
the relation of indistinguishability (cf. Section 2.1). This procedure defines
equivalence classes of indistinguishable objects and, if they are ‘classical’,
the classes turn to be unitary sets, since the indistinguishability relation co-
incides with equality in this case (as it results from QI plus Q4 for entities
that are not m-atoms).

(Q12) Indistinguishable sets are extensionally identical:
VaxV,yx=y—>x=,y)

Q12 imposes the requirement that the usual extensional properties of the
sets of ZFU are valid for the sets of L. Further explanations regarding this
axiom are presented after the axiom Q27.9

(Q13) [‘Weak-Pair’] For all x and y, there exists a gset whose elements
are the indistinguishable objects from either x or y:

VxVy3d,zVtt€z o t=xyi=y)

The weak-pair of x and y is denoted [x, y] and in the case when x and y are
both classical objects, we may use the standard notation {x, y}, since in this
case the only things indistinguishable from x and y will be respectively x
and y themselves. If x = y, we denote the weak-pair by [x], called the weak-
singleton of x, which is the gset of that which is indistinguishable from x. It
is important to realize, as it will be clear below, that it is consistent with the
theory to admit that the weak-singleton of x may have quasi-cardinal
greater than one. In this sense, £1 allows the existence of indistinguishable
objects which cannot be said to be identical.

(Q14) [The Separation Schema) By considering the usual syntactical re-
strictions on the formula A(r), we have:

VQx HQth(t EyOteEXNA®)
This gset will be written (7 € x : A (¢)]. The separation axiom allows us to
form subquasi-sets of a quasi-set x by considering those elements of x that

satisfy a certain property expressed (in the language of £2) by a formula
A (1). This idea conforms itself with our intended interpretation of the m-

9We owe the necessity of Q12 to M. L. Dalla Chiara (private communication).



AXIOMS FOR COLLECTIONS OF INDISTINGUISHABLE OBJECTS 77

atoms as elementary particles, since in ordinary physics it is possible to
‘select’, from a certain collection of elementary particles, a certain number
of them that satisfy a particular condition.!0

(Q15) [Union] VQx (E(x) > 3,y(Vz(zE€Ey) © FH(zELNLE X))

As usual, this gset is written

Ut

rex

and we still write x U y in the same sense as in the standard set theories.
(Q16) [Power-gset]¥ ,x 3,y Vi(tEy &1 Cx)

The power quasi-set of x is denoted by %(x). Among other concepts, the
following can be introduced in £.

Definition 2.3

1. Xx=[yEx:m(y)]

2. (x,y) =[[x],[x, ¥]] (the generalized ordered pair)

3. Forevery quasi-sets xand y,x X y :=[{zu) EPP (xU y):zExA u
€yl

4. The intersection x Ny of two quasi-sets can be defined so thatt € x N
yifft € x At €y as usual. This concept can of course be generalized.

Infinity and regularity may be introduced as follows:
(Q17) [Infinity] 3 ,)x (G ExAVyYEXNQ(H) = yUly] Ex))

(Q18) [Regularity] Quasi-sets are well-founded, that is, for every gset x,
there are no infinite chains .. Ex, € x, E x:

Voax(EMAx#, D> 3,0ExAynx=; L))

We could avoid the introduction of Q78 in order to allow gsets which are
not well founded. This point will be mentioned in the last section.

10g¢e [10], where examples are given.
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2.1 Relations

The concept of relation and in particular that of equivalence relation is like
the standard one: w is a relation between two quasi-sets x and y if w satis-
fies the following predicate R:

RW=0WAVzzEW - uIvuExNvEyAz=, (u))

As in the classical case, R € PPP (x U y). Furthermore, as usual, if x =,
¥, we say that R is a relation on x. We denote by Dom (R) (the domain of R)
the quasi-set [u € x : (u,v) € R] and by Rang (R) (the range of R) the
quasi-set [v € y : (u,v) € R].

A particular interesting case of an equivalence relation on a gset x is the
indistinguishability relation, which satisfies the predicate R above and, due
to the axioms Q1-Q3, has the required properties. In this case, if x is a pure
gset, then the ‘quotient gset’ x/= stands for a collection of equivalence
classes of indistinguishable objects. This gset has similarities with H.
Weyl’s concept of aggregates of individuals [37, App. B], as was pointed
out in [18].

With respect to order relations, we can state the following result:

Theorem 2.2 No partial, total or strict order relation can be defined on a
pure gset whose elements are indistinguishable from one another.

Proof: (Sketch) Partial and total orders require antisymmetry, and this
property cannot be stated without identity. Asymmetry also cannot be sup-
posed. In fact, if x = y, then for every R such that { x, y ) € R, it follows
that (x,y )= [[x]1 = (y, x) ER. .

2.2 The ‘classical’ counterpart of O

Based on what was presented above, it is possible to define a translation
from the language of ZFU (Zermelo-Fraenkel with Urelemente) into the
language of £ as follows: firstly we admit that the language of ZFU con-
tains an unary predicate S such that S (x) says intuitively that x is a set. By
simplicity, we will admit that the primitive logical symbols of ZFU are —,
V, V and equality. So, if A is a formula of ZFU, then its translation A in
£ is defined inductively as follows:

IfAis §(x), thenA? is Z (x)

IfAisx=y, thenA? is (M () AM)VEZMAZG) Ax=y)
IfAisxEy, thenA? is(M (x) v Z(xX)ANZ(y)AxEy

IfAis —B,thenA? is —B?

IfAis B\ C,thenA? is B? s C*

If Ais Vx B, then A? is Vx (M (x) \v Z (x) = B)

aR N B B e
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It is immediate that for every formula A of ZFU, ., A iff+- 4 A?. In other
words, there is a ‘copy’ of ZFU .in £ and, in this copy, we can define the
analogues of all classical set-theoretical concepts, such as for instance those
of cardinal, finite set and natural number. The order relations < and <
among cardinals defined in such a copy are also introduced in the usual
way by using the extensional equality (hence the order symbols above
should be written —as we will do below— = ; and <, respectively). It is
also evident that these relations have the standard properties, since cardi-
nals are sets in £). We use the following additional terminology: Cd (x)
stands for ‘x is a cardinal’; card (x) denotes ‘the cardinal of x* and Fin (x)
says that ‘x is a finite quasi-set’. Furthermore, the transitive closure of the
quasi-set x is denoted by TC (x), and it is defined in the standard way. As
we mentioned above, it follows from the above axioms and definitions that
a quasi-set x is a set if and only if TC (x) does not contain m-atoms, as is
easy to show.

In particular, the above translation shows that if £ is consistent, so is
ZFU, hence so is ZFC. The converse of this result demands more detailed
considerations, which will be mentioned below.!1

2.3 Axioms for Quasi-Cardinals

Although in standard set theories the concept of cardinal can be defined in-
dependently of that of ordinal, according to Weyl “the concept of ordinal is
the primary one” [37, pp.34-35]. But quantum mechanics has presented the
grounds for questioning this idea, since apparently there are collections of
entities which have a cardinal but not an ordinal [10], [19], [15]. So, taking
into account the intended interpretation of the m-atoms, we have taken the
concept of quasi-cardinal as primitive, subjected to the following axioms:

(Q19) Every object which is not a gset (that is, every Urelement) has
quasi-cardinal zero:

Vx (= Q) = gc(x)=,0)

(Q20) Every gset has an unique quasi-cardinal which is a cardinal (as de-
fined in the ‘copy’ of ZFU) and, if the gset is in particular a set, then this
quasi-cardinal is its cardinal stricto sensu:!12

11gee also [19], [21], [4] for similar discussion on the previous versions of quasi-set
theory.

12Then, every quasi-cardinal is a cardinal and the above expression ‘there is an unique’
makes sense. Furthermore, from the fact that & is a set, it follows that its quasi-cardinal is 0.
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VQx Ay CdWMANy= gc(NZx) >y = card (x)))
(Q21) Every non-empty gset has a non null quasi-cardinal:
Vox(x# ;0 = gc(x) #;0)

The next axiom says that if the quasi-cardinal of a gset x is a, then for ev-
ery quasi-cardinal B < a, there is a a subquasi-set of x whose quasi-cardi-
nal is B.

(Q22) VQJC (gecx)=pa VBB =pa
= Ay 0 SxAge(y)=¢ B))

(Q23) The quasi-cardinal of a subquasi-set of x is not greater than the
quasi-cardinal of x:

VQ-’CVQ)’(Y Cx—gc(y) =, gc(x)
The next two axioms have obvious meaning.
(Q24) ¥V, xV,y(Fin(x) A\xCy — gc (x) <, gc ()

(Q25) VoxV,y(Vw—a(wExAwEYy)
—> gc(xU y) =p gc (x) +qc ()

In the next axiom, 2’ denotes (intuitively) the quantity of subquasi-sets
of x. Then,

(Q26) ¥ ,x(gc (P (x) =, 2%

This last axiom needs explanation, which we do by using an example. Let
us suppose that we are considering the electrons of the level 2p of a sodium
atom. Physics teaches us that there are six absolutely indiscernible electrons
in that level. Despite our incapacity of distinguish them, we still reason as
if there are six entities there. Then, we might suggest that (in set-theoretical
terms) there are six subcollections of that collection which are ‘singletons’,
15 subcollections with two elements, and so on. To assume this fact is
equivalent to claiming that the electrons might be thought as “distinct’ enti-
ties, despite being ‘non-individuals’ in some sense.!3 Then, the theory
makes sense of the idea that it is by mentioning the differences among the

1311 the sense of [32] or [28], for instance.
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(quasi)cardinals of the collections that we might think of indistinguishable
m-atoms as not being the same entity. In other words, &) allows the exis-
tence of objects that can be merely aggregated into certain quantities, but
objects that cannot be counted or ordered, as has been claimed occur with
quanta 34, p. 12]. In fact, concerning the subcollections of the above ag-
gregate of electrons, the only distinction among them is with respect to
their quasi-cardinal. 14

2.4 The notion of ‘weak’ extensionality
The next axiom is one of the most peculiar of the theory £2. The version we
use here is more general than that one presented in previous papers, as we
have indicated. As we will see below, the ‘old’ version can now be proven
as a theorem of £ (Theorem 2.3). Furthermore, the version of the axiom
we use here is more suitable for expressing indistinguishability of gsets.
We begin by recalling that the quasi-sets x and y are similar, (Sim (x,y))
(cf. Definition 2.2) if the elements are indistinguishable. Then, we define:

Definition 2.4 The quasi-sets x and y are Q-Similar (QSim (x,y)) if they are
similar and have the same quasi-cardinality.

By observing that the quotient quasi-set X/ = may be regarded as a collec-
tion of equivalence classes of indistinguishable objects, the weak axiom of
extensionality stated as:

(Q27) [Weak Extensionality)

VoxVoy(((x# 0Ny # 0 5 V2 zEX/_ > At (t Ey/_ A QSim
@O AV €yl > z(zEX_NAQSim(t2) D x=y)A(x=
¢ ox=g0)

The axiom simply says that those quasi-sets that have the ‘the same quan-
tity of elements of the same sort’ 13 are indistinguishable.

An alternative way of formulating the intuitive idea of the above axiom
should be as follows (both formulations are equivalent, as it is straightfor-
ward to prove):

14Dalla Chiara and Toraldo di Francia have called objectuation this propensity we have
to reason on “distinct’ things. According to them, it is an innate activity that precedes all dis-
cursive activities [35, p. 222], [36], [11]. Then, £ protects objectuation in a certain sense.

I51n the sense that they belong to the same equivalence classes of indistinguishable
objects.
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[Weak Extensionality — Alternative Form)]

xVoy (x# 0Ny #, ¢l/‘\(VI(IEx—)Ht'(I’Ey/\tEt')/\qc
([ﬁﬂx) —pac (N AgeW=p e ) D>x=WAG=0 & x

In a previous version of the theory (see [4], [13]), we postulated that only
similar gsets (cf. Definition 2.2) with the same quasi-cardinality were in-
distinguishable gsets (let us call that version the ‘old” version of the axiom
of extensionality) But such hypothesis is so restrictive, since it deals with
gsets that contain elements of the same sort only. Axiom Q27, instead,
permit us to consider more general gsets as indistinguishable. In certain
sense, this is more in conformity with the usual idea of supposing that, say,
two molecules of a certain material are ‘indistinguishable’ in the sense that
they encompasse ‘the same quantity of components of the same sort’
(electrons, protons, ...). Perhaps a nice intuitive example of indistinguish-
able gsets in this sense might be the polymers.
Then the ‘old’ version of the axiom is now a theorem of £

Theorem 2.3 Y ,x ¥ ,y (Sim (xy) A gc (x) =, gc (y) > x =)
Proof: Immediate consequence of Q27. 4

As a corollary, it follows that x = . y — x = y. By considering this, we can
explain with more details the axiom Q12. In fact, if both x and y are sets
and x = y, then by Q8 we conclude that x and y are either both empty or
that they are similar and have the same quasi-cardinal, but this does not en-
tail that they have ‘the same’ elements (that is, we cannot infer that x = y).
So, since it seems intuitive that x = y — x =, y if both x and y are sets,
Q12 was introduced as stating this fact. It helps us in characterizing the
concept of ‘set’ within the scope of L.

Theorem 24N ,xV ,y(Vz(zEx > zEy) D x=y)

Proof: (Sketch) If x and y have the same elements, then they have the ‘same
quantity’ of elements of the same sort and hence the hypothesis of the ax-
iom Q27 is fulfilled. So, x and y are indistinguishable. 4
Theorem 2.5 x =y N gc ([x]) = gc (Y]) < [x] = [¥]

Proof: Immediate consequence of Q27 and of the axioms of indistinguisha-
bility. 1
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2.5 Quasi-functions

With respect to the concept of function, we note that functions, as usually
conceived, cannot distinguish between its arguments and values if there
were m-atoms involved. So, we introduce the more general concept of a g-
function (quasi-function) as a relation which maps indistinguishable objects
into indistinguishable objects:

Definition 2.5 Let x and y be quasi-sets. Then we say that f is a g-function

Jrom x to y if f is such that (R is the predicate for ‘relation’ defined in the
Section 2.1):

RHOAVu@weEx—>IvveEYA U ENA
Yu Yu' YW W ((uy) EfAUY) EfAu=u - v=y)

Iffis a g-function from x to y and satisfies the additional condition:

Vu Yu' YW ((uv) EfAUY) EfAVvEY S u=u)
N gc (Dom (f)) = ; qc (Rang (f))

then f'is a g-injection, and f is a g-surjection if it is a function from x to y
such that

Wvey = Juu ExNuy) EN A gc (Dom ()2 gc (Rang (f)).

An f which is both a g-injection and a g-surjection is said to be a g-bijec-
tion. In this case, gc (Dom (f)) = qc (Rang (f)).

In the general case there is no criterion to check if two quasi-sets have the
same quasi-cardinal or not, since there is no ‘counting process’ if they have
m-atoms as elements. This means, for instance, that if (say) x has five ele-
ments (formally: its quasi-cardinal is 5), then we cannot define a bijection
from 5 = {0, 1, 2, 3, 4} to x, since we would not be able to define without
ambiguity the images of £(0) ... f (4).16

If A (x,y) is a formula in which x and y are free variables, we say that A
(x,y) defines a y-(g-functional) condition on the quasi-set ¢ if Yw (w € t —
BAWSH)IAVWYW WEITAWEL D VsVs' (Aws) NA (W's) Aw =
w' — s = 57) (this is abbreviated by ¥x 3!y A (x,y)). Then, we have:

16Recall that the natural numbers (in fact, the £_-version of them) were introduced in the
‘copy’ of ZFU defined above.
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(Q28) [Replacement]
Vx Ay A (x)) = ¥ou3 v (Y2 Ev o Iw (w € un A (w,2))

Intuitively, the replacement schema says that the images of gsets by g-
functions are also gsets. It is easy to see that if there are no m-atoms in-
volved, that is, if the gsets are sets, then the above axiom is exactly that of
ZFC (or of ZFU).

Now we turn to the axiom of choice (new formulation).!” In order to state
the axiom, we need to introduce an important concept by the following def-
inition.

Definition 2.6 A strong singleton of x is a quasi-set x' which satisfies the
following predicate St:

St(x) & x'C[x] Age(x)=, 1.

That is, x" is a subquasi-set of [x] that has just ‘one element’ which is indis-
tinguishable from x.

Theorem 2.6 For all x, there exists a strong singleton of x.

Proof: Firstly we note that [x] exists by force of the axiom of the weak-pair
Q13. Axiom Q20 says that every gset has a quasi-cardinal and, if it is not
empty, its quasi-cardinal is 1 by Q21, and this occurs with [x], since x € [x]
due to the fact that = is reflexive (Q1). Hence, gc ([x])>, 1, but then, by
Q22, there exists a subgset of [x] which has quasi-cardinal 1. By the separa-
tion axiom, we obtain x’. -

Let us comment more about this result. The above theorem has shown that
since gc ([x])2; 1, then there exists what was called the ‘strong singleton’

17The “old" version we used ([19]) was ¥, x (E () A VyVz () ExAZEx = ynz=@
ANy #) > EDuVyEVEIQw(yEx/\vEQy S ynu=wAS WAV tEWSTE
»))), where § | (w) says that w is a subquasi-set of [v] and the symbol of equality ‘=" must be
understood in the sense of our extensional equality. In words, this version takes as elements
of the choice quasi-set u all the elements indistinguishable from elements v € y € x which
belong to y. In L2, by using the concept of *strong singleton’, a more adequate formulation
can be achieved by taking just one element indistinguishable from v. From the point of view
of the development of £, the ‘old’ axiom could be maintained but, as was claimed in [26],
the ‘old’ formulation be improved. Now, by using the concept of strong singleton, Q29 takes
to be elements of u ‘just one’ element of every element y € x.
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of x, namely, the gset x" which satisfies the predicate x' C [x] N gc (x) = ¢
1. The problem is that all the strong singletons of x are indistinguishable in
the sense of axiom Q27. If x is not an m-atom, then of course x' =, [x] =,
{x} which is unique by theorem 2.4 —in this case = turns to be = ;). Since
the strong singletons x', and x', of x are not m-atoms (since a gset is not an
Urelement), then Q4 holds and x', and x', can be interchanged salva veri-
tate in any context. This is a particular case of the theorem 2.8 below. Now
we turn to the formulation of the axiom of choice.

(Q29) [The Axiom of Choice]

VX (EQAVY V(Y EXxNzEXx D yNz=, DAy # ) >
duVyVvyexnvey -
EQw(wg[v]ch(w)=E]/\wﬂyzwﬂu)))

Some other basic facts can be proven in &3 (the proofs do not use the axiom
of choice).

Theorem 2.7 The extensional equality has all the properties of the usual
equality.

Proof: In fact, if x and y are both indistinguishable M-atoms then they are
extensionally identicals by definition and in this case axioms QI and Q4
provide the basic properties of classical equality (reflexivity and substituti-
vity). If x and y are both gsets, then by the Theorem 2.3, in order for x and y
be indistinguishable, it is sufficient that they are similar and have the same
quasi-cardinality. But this occurs if they are extensionally identicals.
Hence, axiom Q4 holds again and once more the classical properties of
equality are obtained. 1

Theorem 2.8 [Unobservability of Permutations] Let x be a gset such that
x# g [z] and z an m-atom such that z € x. If w = z and w & x, then there
exists w' such that

x-Zduw' =x

The operation of difference between gsets is defined as in standard set-the-
ories. The theorem is an immediate consequence of Q27.

We recall that z' (respect. w') denotes the strong singleton of z (respect.,
of w). Furthermore, it may be the case that w & x, and this motivates the in-
terpretation according to which the theorem is saying that we have ‘ex-
changed’ an element of x by an indistinguishable one, and the resulting fact
is that ‘nothing has occurred at all’. In other words, the resulting gset is in-
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distinguishable from the original one. The theorem is the quasi-set theoreti-
cal version of the quantum mechanical fact which expresses that permuta-
tions of indistinguishable particles are not regarded as observable, as ex-
preslsged by the so called Indistinguishability Postulate in quantum mechan-
ics.

Further technical results should be mentioned, but we will do not develop
the ‘quasi-set mathematics’ here. The more important fact we would like to
mention is about the equiconsistency of this theory with ZFC, whose proof
will be sketched in the next section.

3. Quasi-set theory and ZFC are equiconsistent

The translation from the language of ZFU to the language of < has shown
that if £ is consistent, so is ZFU (and, hence, so is ZFC). In this section we
outline the converse result. We will adapt to the case under study the proof
presented in [4] for a previous version of quasi-set theory. All the mathe-
matical constructions of this section are performed in ZFC.

Definition 3.1 Let m be a non empty set and R an equivalence relation on
m. The equivalence classes of the quotient set m/R are denoted C TR OPR | §
x € m, then we define:19

x=xC, )

where C  is the equivalence class to which x belongs. Furthermore, we
still define:

m:={x:xEm)

Let X be the set X = it U M, where 1 is as above and M is a set such that
m N M = &. Then we define a superstructure 2 over the set X, called the
Quasi-set Universe.?0 As we will see, 2 is a ‘model’ for the quasi-set theo-
ry £2. The definition is as follows, where On is the class of the ordinals:

18The relationship between quasi-sets and quantum objects is explained in more detail in
[22], [15].

19The sets % are exactly H. Weyl’s aggregates of individuals, that is, an ‘individual’ and
an equivalence class to which the individual belongs. See [37, App. B].

20we are using the same notation as in the Section 2.2, but of course the superstructure is
not the same entity as the ‘copy’ of ZFU presented in that section.
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Definition 3.2

‘ZFC’

The elements of m are outside Q

0

The superstructure Q in ZFC

In accordance with the terminology of £, we call M-atoms, M-elements or
M-objects the elements of M, while the elements of 7 are called m-atoms,
m-elements or m-objects. The final goal is to interpret the basic elements of
£ in the objects of  with the same name.

For the sake of simplicity, we introduce another superstructure which we
will call 2°, constructed in a similar way as 2 above but having the set M
only in its ‘ground’ basis. The idea is that the sets of £ (that is, those x that
satisfy the predicate Z (x)) are interpreted as elements of 2.,

Now we define a translation from the language of £} into the the lan-
guage of ZFC. But firstly let us define on the set m/R the following rela-
tion, which turns out to be an equivalence relation, as is easy to see:

Definition 3.3 If x and y are elements of m, then:

f~3ifc,=c,
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If X ~ ¥, we say that x and y are indistinguishable. We note that in this
way we are identifying x and y by the class (or ‘state’, or ‘sort’) they are in,
represented by the equivalence class to which they belong to, and this is
done without direct reference to the objects themselves.2!

Let us turn to the translation. Suppose that A is a term or an atomic for-
mula of £; let us call A its translation into the language of ZFC.22 We still
suppose that all the sets (of ZFC) involved in the definition below belong to
9 and that the quantifiers are restricted to the sets in this class. Then,

Definition 3.4

1. IfAism(x),thenA'isx € m.

2. IfAisM (x),thenA'isx € M.

3. IfAisZ(x),thenA'isx€E 2’ Ax & M.

4. 1If Ais gc (x), then A’ is card (x), the cardinal of the set x.

5. fAisx=y,thenA'is(xE M Ay E m Ax~y)yx=Y).
6. IfAisx€Ey, thenA'isx € y.

The other formulas are translated in a usual way. By means of this defini-
tion, some of the definitions given in &2 can now be translated to ZFC. Let
us mention some examples:

1. In £, a quasi-set is an object which is neither an m-atom nor an M-
atom. The formal definition, let us recall, is Q (x) := — (m (x) v M (x)).
Due to the translation, in ZFC this simply means that x € 2 but neither
x € m nor x € M. That is, a set which in ZFC ‘represents’ a quasi-set

is a set in 2 that neither belongs to M nor is an ordered pair of the form
(xC,).

2. In £, the ‘pure’ quasi-sets are those quasi-sets whose elements are m-
atoms only. In the present case, they are interpreted (in ZFC) as subsets
of . Furthermore, in ) we definde D (x) := M (x) \/ Z (x), what sim-
ply means that x is either an element of M or of 2.*.

3. The Extensional Equality is definedin Qasx=, y:=(Q(x) A Q (y) A
VIEEXOZEY VMX)AMGPAx=Y), for all x and y. The
translation of this formula expresses (in ZFC) the usual identity be-

21we note that by the definition of 2, the elements x and y are ‘outside’ the superstruc-

ture, since one of the ground sets is /2 and not m itself. Technically, for all x € m, rank (x)
< rank (X).

22we use X, ¥, ... as individual variables in both theories.
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tween sets given by the extensionality axiom (of ZFC) (in particular, it
may expresses the identity between elements of M).

4. If x and y are similar quasi-sets (in £)), then in ZFC this means that
their elements are indistinguishable elements of 7 or that they are
identical. In fact, the translation of z E x A t € y — z =t (from the
definiens of Sim (x,y)) may be writtenz €E x A\t Ey - (z € m Nt E
m Az~ 1)\/z=t, which is obviously true in 2.

Now let us comment on the translations of the axioms of L. We will state
only informally how the translations of the ‘very peculiar’ axioms of £ can
be proved as theorems of ZFC. Those axioms of £} which are ZFU-like ax-
ioms will be mentioned only in brief. All the details can be performed
without difficulty.23

In £, the Axioms of Indistinguishability state that = has the properties of
an equivalence relation and that the substitutivity law holds for those indis-
tinguishable objects which are not m-atoms. If we consider item 5 of the
above definition of the translation, it is easy to see that the images of the
pairs (x,y) such that x =y define an equivalence relation in ZEC. But for
those indistinguishable objects which are no m-atoms, the formula x = yis
translated in the identity (of ZFC) between x and y; thus, the substitutivity
law is true in this case and (the translation of) axiom Q4 is also true in
ZFC.

Let us consider now axioms Q5-Q10 and their informal translations. The
translation of Q5 simply means that x cannot be simultaneously an element
of both M and m, which is a true fact due to the definition of the set X. 0])
says that Vx Vy (x € y — Q (y)); its translation simply asserts that the ob-
jects of 2 which have elements are not elements of either M or m, which is
true due to the definition of the superstructure. Axiom Q7 states that Vx (Z
(x) = Q (x)), that is, every set is a quasi-set. The translations of the formu-
las Z (x) and Q (x) both say that x is an element of the class 9 but that it is
not an element of either /m or M and also that the sets are particular quasi-
sets since the elements of 2 * are also elements of 9. So, the translation of
the axiom is of course true. Axiom Q8 says that no set can have an m-atom
as element. In symbols, ¥ ,x (3 ,y (y € x) = —Z (x)); the translation, in-
formally stated, is clearly true in ZFC due to the meaning of the word ‘set’
given by the above definition: a ‘set’ is an element of 9 *, and the m-atoms
are ruled out of such ‘sets’ by definition.

231 the present case, the elements of X play the role of the Urelemente in 2, while the
elements of #m act as the m-atoms.
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Axiom Q9, namely, ¥ ,x (Vy (y € x = D (3)) <> Z(x)), says that every
quasi-set whose elements are either sets or ‘classical’ Urelemente is a set,
and its translation is obviously true in ZFC and it is easy to realize. The
converse, namely, that the elements of a set (that is, of an object of 9°) are
either other sets or elements of M, is an obvious consequence of the defini-
tion of 7. Q10 is Vx (m (x) A x =y — m (¥)). In words, the translation
says that only elements of 72 must be in the relation ~ with elements of 1,
which is a direct consequence of the definition of ~.

The axioms Q11-Q18, except Q12, are adaptations of the axioms of ZFU
and it is easy to verify that their translations are true in ZFC. Axiom Q12
says that for every ‘sets’ x and y, if x = y, then they are extensionally iden-
tical, what is true in 2 taking into account the translation defined above.
The axioms for the concept of quasi-cardinal (Q19-Q26) do not present
problems since their translations simply state basic properties of cardinals
of the sets in 2. Axioms Q28 and Q29 (Replacement and Choice), when
translated, state the usual replacement and choice arguments concerning the
elements of 2, and they also hold in ZFC.

The translation of the weak extensionality axiom Q27 informally says
that those sets of 2 that have the same quantity of elements are identical,
which is a consequence of the axiom of extensionality of ZFC.

Thus, although roughly stated as above, it is easy to verify that we have
defined a way to read quasi-set theory into the scope of ZFC.

4. Further topics

Despite the improvements achieved by the theory £, quasi-set theory still
demands further investigation and mathematical development. The concep-
tual problems caused by the lack of sense in applying the concept of iden-
tity to some objects are subtle, and of course £ cannot be taken as the defi-
nitive theory of collections of elementary particles. Even so, it has been ap-
plied to some questions involving quantum objects [22], [14], [15], [3] and
in certain sense it might help us in clarifying some of the conceptual diffi-
culties of quantum theory.

Finally, let us mention a question remarked in a previous section concern-
ing how a macroscopic object is composed of microscopic elementary par-
ticles. Perhaps this question can be translated into £ by asking how an M-
atom could be ‘composed’ by m-atoms. Since the m-atoms lack identity,
how could such an M-atom then be individualized? With respect to macro-
scopic objects, Schrodinger suggested that there is a kind of Gestalt in-
volved [30]. In our case, of course £ does not answer this question, since
both the m and the M-atoms were taken as primitive concepts without any
kind of relationship among them. We suggest that perhaps one might add to
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the axiomatics of £) some kind of mereological axioms in such a way that
certain M-atoms could be viewed as objects whose ‘parts’ (in the mereolog-
ical sense) were m-atoms.

We do not know any elaboration of a ‘quantum mereology’ in this re-
spect, that is, a mereology suitable for quantum theory. In this sense, quasi-
set theory, due to the formalization of the notion of indistinguishable but
not identical objects, might play an important role in its development.
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