Logigque & Analyse 153-154 (1996), 35-50

ON FINITE AND INFINITE FORK ALGEBRAS
AND THEIR RELATIONAL REDUCTS

Paulo A. S. VELOSO

Abstract

A fork algebra is a relational algebra enriched with a new binary opera-
tion, called fork. Such algebras have been introduced because their
equational calculus has applications in program construction. They also
have some interesting connections with algebraic logic. We examine
the finite and infinite fork algebras and their relational reducts. The aim
is twofold: contrasting finite and infinite fork algebras as well as com-
paring relational and fork algebras. First, we show that the finite fork
algebras are essentially Boolean algebras, being somewhat uninterest-
ing. Then, we argue that this is not the case with the infinite fork alge-
bras: they display a large diversity of behaviours even if their relational
reducts are kept fixed.

1. Introduction

A fork algebra is a relational algebra enriched with a new binary operation,
called fork. Such algebras have been introduced because their equational
calculus has applications in program construction. They also have some
interesting connections with algebraic logic.

In this paper we examine the finite and infinite fork algebras and their
relational reducts. The aim is twofold: contrasting finite and infinite fork
algebras as well as comparing relational and fork algebras. First, we show
that the finite fork algebras are essentially Boolean algebras, being some-
what uninteresting. Then, we argue that this is not the case with the infinite
fork algebras: they display a large diversity of behaviours even when their
relational reducts are kept fixed.

Algebraic properties concerning simplicity and subdirect decompositions,
of fork algebras closely parallel their analogues for relational algebras.

Thus, a complete description of the finite (simple) fork algebras is not
difficult to obtain. The finite fork algebras are completely described as the
finite direct powers of the two-element fork algebra, showing that they are
essentially Boolean algebras. The spectrum of the finite fork algebras can-
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not be covered by the simple ones, in contrast with the infinite ones: there
are simple fork algebras with each infinite cardinality.

In the finite case. the relational reduct of a fork algebra already deter-
mines its (unique) fork expansion. As a measure of to what extent a rela-
tional algebra constrains its fork expansions, we introduce the fork index.

We also introduce a simple tool for the analysis of fork algebras, which is
connected to the set of fixpoints of the underlying coding. Then, a set-theo-
retical construction is provided for producing special codings with pre-
scribed sets of fixpoints.

These constructions are then brought together to exhibit infinite relational
algebras with many fork expansions. These elastic relational algebras dis-
play a broad diversity of possible fork behaviours.

2. Preliminaries

The purpose of this preliminary section is fixing some general algebraic
terminology and notations and recalling some concepts about algebras of
relations.

We shall call an algebra trivial when its carrier has a single element. As
usual, an algebra is simple iff it has no proper homomorphic images. We
shall call an algebra prime iff it is simple and non-trivial.

Consider a class A of algebras with the same signature. We will use the
notation |Al for the (cardinal) number of pairwise non-isomorphic algebras
in A, i. e. |Al is the cardinality of A/=, where = is the relation of being iso-
morphic algebras. Given a cardinal k, we use A[k] for the class of algebras
in A with cardinality k; so IA[k]l gives the (cardinal) number of pairwise
non-isomorphic algebras in A with cardinality «.

A fork algebra is a relational algebra enriched with a new binary opera-
tion, called fork. A relational algebra is an expansion of a Boolean algebra
with some Peircean operations and constant.

We now briefly recall some concepts pertaining to algebras of relations
on sets and their abstract versions [Jénsson & Tarski '52; Maddux '91].

We first recall the proper, set-based, versions of algebras of relations.

A proper algebra of relations (PAR, for short) on set U is an algebra

P=<P,u,N,~,V,IT1,>,such that

- its reduct <Q,U,N, ~, 3, V> is a field of subsets of V c U? (where
U2:=UxU;

- operation T:Q — Q is relation transposition;

- operation :Q X Q — Q is relation composition;

- 1y eR is the identity (diagonal) relation on U:ly ={<u,v>
eU2/u=v}.



ON FINITE AND INFINITE FORK ALGEBRAS 37

We recall [Jonsson & Tarski '52, Theorem 4.24, p. 140] that, in a PAR %
on set U, universal V is an equivalence relation on U.

Given an equivalence relation V on set U, the powerset §(V) is closed
under the Boolean and Peircean operations and constants; we thus have the
PAR P (V):=<@(V),u,Nn,~,B,V,I,T,1;, >, called the powerset PAR of V.

The full PAR on set U is the PAR PU?:= <@(U?
u,N,~,3,U2,1,7,1,> . The full PAR $(U?) and its subalgebras are
simple. (Because they havc V=U? [J6nsson & Tarski *52, Theorem 4.28, p-
142].)

We now briefly examine the abstract relational algebras (ARA’s for
short). Much as Boolean algebras arise as abstractions from fields of sets,
these relational algebras are abstractions from their set-based versions.

An abstract relational algebra is an algebra R=<R, +, », ", 0, =, ;, T, 15,
satisfying familiar equations, to the effect that
- itsreduct <R, +, », 7, 0, e> is a Boolean algebra with Boolean ordering

<-

- its Peircean reduct <R, ;, Jf l> lS a semigrou Tp with ldentlty le R and
involution T: :R—R, so IT—l (r ) =rand (r; s) (s )(r ),
for all , seR: (r1)i(ris)<s™, i. e. (r1)(ris) +5=s",
The class of ARA’s has an equational characterisation [Chin & Tarski ’50;
Jénsson & Tarski ’52], forming a variety which we will denote by ARA.
Recall that the simple ARA’s are those satisfying Tarski’s rule: oo;r;co=c0
whenever r#0 [Jénsson & Tarski ’52, Theorem 4.10, p. 132, 133].
In contrast with Boolean algebras, not every ARA can be represented as
some proper algebra of relations (see e. g. [Maddux '91]).
A pair of (conjugated) quasiprojections for ARA R=<R, +, », ", 0, 0, ;, T,
1> amounts to elements % & R such that y;)<1, §*;8<1, and y*; 8 =co
[Tarski & Givant "87, p. 96]. A quasiprojective ARA (a QRA, for short) is
an ARA that has a pair of quasiprojections. Quasiprojective ARA’s are rep-
resentable by proper algebras of relations: each QRA is isomorphic to a
PAR on a set [Tarski & Givant '87, p. 242].

3. Fork Algebras

A fork algebra is an expansion of a relational algebra by a new binary oper-
ation, called fork, with certain properties. We shall use A for the signature
of the ARA’s, and ¢ for the signature obtaining by adding to A a new binary
operation (symbol) V.

Given a ¢—algebra F=<F, +, », ", 0, =, ;, T, 1,V> we can form its V-reduct
&v: the A-reduct <F, +, 8,7, 0, =, ;, T, 1>. Conversely, consider an algebra
R=<R, +,,7,0,0,; T, 1> of signature A; by adding a binary operation
V:RXR—R, we obtain a ¢—algebra RV:=( R, V), called its V-expansion.
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Note that in any ¢-algebra F=<F, +, », ", 0, =, :, T, 1, V>, we have the el-
ements m=(1Vee)T and p=(eoV 1)1, called its (defined) projections.

3.1 Abstract Fork Algebras

The new binary operation (symbol) V and the (defined) projections exhibit
proper behaviour if one imposes some constraints on them. We now con-
sider an equational formulation for these constraints and introduce the ab-
stract fork algebras (AFA’s, for short) [Frias et al. '95].

An abstract fork algebra is a ¢-algebra F=<F, +, o, , 0, o, ;, T, 1, V>, such
that

- its V-reduct Fy=<F, +, ®, *, 0, o, ;, T, 1> is an ARA with ordering <;

- algebra ¥ satisfies the following three fork properties:

for every r, 5, p, g€ F: (rVs); (pVg)=(r; pT)e(s;gT) (V&)
for every r,se F: er=(r;7tT)0(s;p ) (V&0),
v p<1 (Vel)

(with m:=(1Veo)T and p.=(ooV1)T as above).
Equation (Vé&e) gives a property of V with respect to relational operations,
equation (V&) connects V to the defined projections, and inequation (V
81) states a property required of the defined projections.

Notice that, in view of equation (V&8), fork operation V and the defined
projections 7 and p become interdefinable. This simple observation leads to
some important properties of AFA’s.

Since the class of ARA’s has an equational characterisation, so does the
class of AFA’s. We use AFA for the variety of the abstract fork algebras.

It is not difficult to see that, in any AFA ¥ the defined elements T=(1V
o} and p '=(r>oV1)Jr form a pair of quasiprojections (such that
(m;m)e(p;pT)<1) [Frias et al. *95]. Thus, the ARA reducts of AFA’s are
QORA’s,

We now examine some simple results connecting the algebraic structures
of fork and relational algebras [Veloso '96a].

These algebraic structures are very tightly connected because of the fol-
lowing expansion construction.

Consider an AFA ¥ and an ARA . Every surjective A-homomorphism
h:F—R from V-reduct Fy onto R is a ¢-homomorphism from AFA F onto
an AFA (R,V") expanding .

We wuse the ]projections to define V "mRxR—R by rV
hs:=[r;h(rnT)]es;h(pT)].

Thus, we can characterise the simple AFA’s as those with simple rela-
tional reducts.

- AnAFA 7 is simple iff its V-reduct &y is a simple ARA.
We can also see that the non-simple AFA’s are those with non-trivial

direct factorisations, just like ARA’s [Jénsson & Tarski ’52, Theorem 4.13,
p. 134].
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- An AFA i is non-simple iff §=®x3 for some non-trivial AFA’s &
and #.
In a similar manner, we can see that we have a correspondence between
subdirect decompositions for AFA’s and their relational reducts.
- Given an AFA 3, each subdirect decomposition of V-reduct Jy into
simple ARA’s can be expanded to a subdirect decomposition of 3.
Thus, the subdirect decompositions for ARA’s Jénsson & Tarski ’52,
Theorem 4.15, p. 135] carry over to AFA’s.
- Every AFA § is isomorphic to some subdirect product of simple homo-
morphic images of 3:

3.2 Proper Fork Algebras (of Relations)

We now examine the set-based versions of fork algebras. Algebras of rela-
tions involve relations on a set (of points), whereas fork algebras of rela-
tions deal with relations involving structured objects. Such structured ob-
jects present a behaviour akin to that of pairs. To have a set-based version,
we use a fork operation on relations induced by a coding on the underlying
set.

A natural way of combining two relations amounts to feeding a common
input to both of them. This idea produces a binary operation on relations:
the cartesian fork ©, defined by r@s:= {<u, <v,w>>e UxU¥/ <u,v>er&
<uU,W>€s}.

Now, the cartesian fork of relations r and s on U is a relation r©s be-
tween U and U2. If set U happens to be closed under cartesian product, then
the cartesian fork of relations r and s on U is again a relation r©s on U.

In general, we may resort to a coding function (or relation). Notice that, if
function *: U2—U is injective, one can recover v and w from v*w. For in-
stance, for the universe U=N of natural numbers, one might consider a
Godel-like coding *:N—N, given by , say, m*n:=2".(2n+1), coding pair
<m,n> of naturals by the single natural m*ne N.

By a pairing relation for set U we mean a relation * from U2 to U. A
pairing relation for set U induces a binary operation * on relations on U,
defined by r*s:=(r@s)I*. So, r@s={<u,z>€ U2/3<x,y>e U2:<u,x>€ r& <u,y>
€ s&<<x,y>,2>€ *}.

A simple property of the induced fork is its monotonicity with respect to
inclusion: if rcp and scq then r¥scp*q.

Given a universal equivalence relation VU2, we wish to have the fork of
any two relations included in V. In view of monotonicity, it suffices to
guarantee that VAVCV. For this purpose, it is sufficient (and necessary) to
require Vto be closed under *: <x,z>eV whenever <x,y>eV and
<<x,y>,z>€*. For such a closed equivalence VU2, the powerset (V) is
closed under operation *, and we can expand the powerset PAR P (V) to the
¢-algebra (P(V),*), which we denote simply by ?*(V). To guarantee that
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P*(V) satisfies the fork equations, it is sufficient (and necessary) to require
the restriction of pairing relation * to V to be an injective function
V]*: V'—>U. .
By imposing these constraints on the underlying pairing relation *, we ar-
rive at the concept of proper fork algebras of relations on a set.
A proper fork algebra (of relations) (PFA, for short) on set U is a ¢-algebra
0=<0,U,N, 7, A, V,I,T, 1,,,£>, such that
- its Z-reduct O =<0, U, N, " &, V,|, T, 1,> is a PAR on set U:
- operation £:0xQ—Q is induced by a pairing relation * whose restric-
tion to V is an injective function vi¥:VoU ,i.e.
rs={<ux*y>e U}/3<x,y>€ Vi<u,x>e r&<u,y>es}.
Notice that the underlying pairing relation is hidden: its exact definition is
not important, as long as one can recover the appropriate arguments.
In particular, each injective *:l2—U gives rise to the full PFA
P*(UR):=(P(LR),*). The full PFA’s and their subalgebras are simple.
Like Boolean algebras and contrasting with ARA’s, every abstract fork
algebra can be represented as some proper fork algebra of relations on a set
[Frias et al. *95]. Here we shall make only limited use of this result.

4. Finite and Infinite Fork Algebras

We now wish to compare the finite and infinite AFA’s. For this purpose, we
shall examine the finite AFA’s and show that they are essentially Boolean
algebras, being uninteresting.

We begin by examining some simple results concerning the Boolean
AFA’s (where fork is Boolean meet) and the finite AFA’s [Veloso '96b].

4.1 Boolean Relational and Fork Algebras
Two very simple finite AFA’s are those with one and two elements. It is not
difficult to show that these are the only finite simple AFA’s (see 4.2).

The trivial one-element AFA 1 has single element 0=1=co. It is isomor-
phic to the full PFA % * (), with carrier §( )={D}, and underlying pair-
ing *=0.

The two-element AFA 2 has two elements 0 and 1=co with coVoeo=co, It is
isomorphic to the full PFA ®*({<u,u>}) over a singleton {<u,u>}, with un-
derlying pairing function * given by u*u=u.

The (simple) AFA’s 1 and 2 are the only AFA’s, up to isomorhism, with
respectively 1 and 2 elements (since 0V0=0 and 0<1<c).

The ARA reducts of the simple AFA’s 1 and 2 are QRA’s, with 1=c as
both quasiprojections. They are Boolean ARA’s as well.
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Recall that a Boolean ARA is one where ; is », T is the identity function,
and l=co [J6nsson & Tarski *52, p. 151]. . Thus, a Boolean ARA is a
somewhat uninteresting expansion of a Boolean algebra to an ARA.

Clearly, every Boolean ARA is a QRA, with 1== as both
quasiprojections. Also, a direct product X, R, of ARA’s is Boolean iff
every R; i€, is Boolean.

By analogy with the Boolean ARA’s, let us call an AFA §=<F, +, », *, 0,
o, 5, T, 1, V> Boolean iff its fork V is e. Clearly, an AFA is Boolean iff its
projections are the identity (x=1=p).

It is not difficult to see that the relational reduct of a Boolean AFA is a
Boolean ARA. The converse being clear, we have:

- An ARA QR is a Boolean ARA iff (R,s) is a Boolean AFA.

So, Boolean AFA’s, like Boolean ARA’s, are essentially Boolean algebras.

Thus, the Boolean AFA’s can be characterised as the subalgebras of direct

powers of the two-element AFA 2.

- A ¢-algebra ¥ is a Boolean AFA iff 3% can be embedded into some di-
rect power 2 of the two-element AFA 2

Also, a Boolean ARA has a single AFA expansion: the Boolean one.

- ForaBoolean ARA R, (R,V)is an AFA iff V is e.

4.2 Finite Fork Algebras

We now describe the finite AFA’s as the finite direct powers of the simple
ones, the latter being those with one and two elements.

By a property of Boolean algebras, a finite AFA must have cardinality 27,
for some n20. The direct power 2, provides an (uninteresting) example of a
(Boolean) AFA cardinality 2, for each n>0. Thus, the finite spectrum of the
AFA’s is the set {27 lneN}.

It is not difficult to see (by examining the iterates y* = ¥;...;¥ (k times)
of the quasiprojections) that finite simple QRA’s must have at most two el-
ements. (For a proper QRA P over a finite set U, IUI<1 [Tarski & Givant
'87, p. 96].) We thus have the following upper bound on finite simple
ORA’s:

- There exists no finite simple QRA with more than two elements.

Since AFA’s have (quasi)projections, we can see that, up to isomorphism, 1
and 2 are all the finite simple AFA’s. We thus have the following descrip-
tion of the finite simple AFA’s.

- A ¢-algebra i is a finite simple AFA iff §=1 or F=2.

In view of the subdirect decomposition of AFA’s, we can now see that the
finite AFA’s are Boolean.

- Every finite AFA is a Boolean AFA.

By induction on their sizes, we now have a complete description of the fi-
nite AFA’s as the finite direct powers of the two-element prime AFA 2.
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- A ¢-algebra 3 is a finite AFA iff % is isomorphic to some finite direct
power 2 of the two-element AFA 2

Thus, there exists exactly one, up to isomorphism, AFA of each finite car-
dinality 2" for n>0. In particular, the ARA reduct of a finite ARA has exactly
one, up to isomorphism, expansion to a fork algebra.

This description of the finite AFA’s is summarised in the following table:

Cardinality 27, AFA Simplicity
n=0 1 trivial

n=1 2 prime

n>1 2 non-simple

Summing up, the finite AFA’s have the following properties:

- every finite AFA is a Boolean AFA;

- for each finite n20: e AFA[2"] iff F=2" (so IAFA[2"]I=1);
- afinite simple AFA with n elements is simple iff n<2.

4.3 Infinite Non-Boolean Fork Algebras
As we have seen, the finite AFA’s are Boolean, so the simple finite AFA’s
have at most two elements. Thus, the finite spectrum of the AFA’s is not
covered by the simple ones. We shall now show that the situation is entirely
different in the case of the infinite AFA’s.

Every Boolean algebra can be expanded to a (Boolean) AFA. Thus, there
exists an AFA of each infinite cardinality.

We shall now establish the existence of simple non-Boolean PFA’s at
each given infinite cardinality.
- For each infinite set U, there exists a simple non-Boolean PFA with
cardinality |UI.

Since set U is infinite, there ex1sts an injective and non-surjective func-
tion *:U2—U. The full PFA ®*(U2) over U is simple PFA with V—U2 and
VX¥V£V (as *:U?—>U is not surjective). Thus, the subalgebra of ®* (U?)

generated by the set § (U?) of the finite subsets of U2 is a PFA as as-
serted.

We thus see that the simple infinite PFA’s already suffice to cover the
infinite spectrum of the AFA’s, in contrast with the finite case.

5. Relational and Fork Algebras
We have seen that finite and infinite AFA’s differ in one aspect: the breadth

of the simple algebras. We now wish to contrast them even further, to see
that the infinite AFA’s are much more interesting than the finite ones.
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We have already seen another aspect that render the finite AFA’s uninter-
esting. The finite AFA’s, being Boolean, are uniquely characterised by their
relational reducts, which does not happen with the infinite AFA’s, as we
will shortly see. So, this contrast between finite and infinite AFA’s is con-
nected to a comparison between ARA’s and AFA’s.

The close parallel between the algebraic structures of ARA’s and AFA’s
indicates a similarity in the behaviour of ARA’s and AFA’s. But, repre-
sentability, as mentioned previously, is already a clear difference
(expressivity is another one [Veloso & Haeberer '91]). Some further dis-
tinctions, indicating that they are quite different, will be examined in the
sequel.

For the purpose of comparing (mainly infinite) ARA’s and AFA’s, we
now examine some considerations and introduce some terminology.

5.1 Fork Expansions of Relational Algebras

What AFA's have more than ARA’s is a fork operation. This difference van-
ishes in the Boolean AFA's, when fork is . In the case of finite ARA's, as
we have seen, the Boolean fork is the only possibility of expansion to an
AFA. We will shortly see that this is not so for the infinite ARA's. For this
purpose, we examine possible expansions of an ARA by a fork operation.

Consider an ARA R with carrier RCF. We naturally call ARA R expand-
able by binary operation V:FXF—F iff R is closed under V.

Expandability of subalgebras of reducts is easily characterised.

- Given an AFA ¥, a A-subalgebra Rt of its V-reduct Jy. is expandable
by V:FxF—F iff the projections m=(1Ves)t and p=(=cV 1) are in R.

As a tool for comparing ARA’s and AFA’s, we introduce the concept of
fork index. By giving an indication of how much freedom is available in
expanding a given ARA to an AFA, it serves as an answer to the question:
“How much information about a fork algebra is already given by its rela-
tional reduct?”

The fork index of ARA R is the cardinality @@ ):=IFRK(?R) of the set
FRK(R):=({Fe AFA/Fv=R } of fork expansions of R.

Since fork operations define projections, an upper bound on fork indices
of ARA’s can be easily obtained.

- Forevery ARA R: oCR)<IRI2.
We shall call an ARA R explosive iff it has fork index @(%R)=IR|2.

Not surprisingly, some ARA’s (for instance, those that are not QRA’s)
have null fork indices; let us call them non-forkable.

Also, let us call an ARA R rigid iff it has exactly one, up to isomorphism,
AFA expansion: ¢(R)=1. As we have seen, the Boolean ARA’s (in particu-
lar the finite ones) are all rigid.
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At the other extreme, an ARA may have many non-isomorphic AFA ex-
pansions. ARA’s with high fork indices will be of special interest, since
they exhibit quite clearly the diversity of possible fork operations.

The elastic ARA’s will be those with infinite fork indices. Notice that
elastic ARA’s cannot be Boolean.

In the sequel we will construct examples of ARA’s by combining given
ARA’s. We shall then have occasion to use some bounds on the fork indices
of some direct powers and products of ARA’s.

Each fork expansion of a direct product of ARA’s gives rise to fork ex-
pansions of the components. Thus, the following upper bound is clear.

- For a direct product :xS of ARA’s: RXS)<Q(R).¢(S).

Conversely, fork expansions of components produce fork expansions of
their direct product. But, to obtain lower bounds, we must know that certain
fork algebras among these are not isomorphic.

We shall consider two special cases involving direct-product factorisa-
tions.

Let us call ARA P a factor of ARA R iff R=PxL) for some non-trivial
ARA £. The prime factors of a direct product x,_, R, of prime ARA’s are
the components %R, ie /. (This can be seen by examining the corresponding
ideal elements [J6nsson & Tarski '52, p. 129-135].)

We can now establish some lower bounds.

- For each prime ARA R, if [#J then (RN=p((R).

- Consider a prime ARA R with cardinality I%RI=p. For every set of prime
AFA’s 9; with cardinality 1£;l=n; with ARA reducts %; i€ I, such that
pue (v lielh (X, P IxR]2p(NR).

5.2 Analysis of (Proper) Fork Algebras
We now introduce a tool for the analysis of fork algebras.

Given a ¢-algebra i, let 2:=1V 1, and consider the set of its sub-identities
of 2: SI2(F):={feF/f<2e1}.

Any ¢-isomorphism between ¢-algebras ¥ and & provides a bijection
between SI2(3%) and SI2(®), so ISI2(F)I=ISI2(G)!.

A proper fork algebra & has set of sub-identities of 2
SI2(£2)={ge Q/q=2 N 1y}. For a simple PFA, its set of sub-identities of 2
is connected to the set of fixpoints of its underlying coding.

Given a function *:U2-U, consider its set of fixpoints
Jxpt(*):={ue Ulu*u=u}. This set of fixpoints can also be conveniently rep-
resented by its identity 1py,(,):=(<w,u>e UHu*u=u}. Notice that
20 1= ppigy)-

We can see the following connection between the set of sub-identities of
2 of a simple PFA and the set of fixpoints of its underlying coding.

- For a simple PFA Q=<Q,u,n, ~, @,U2,T 1y,,2£> with fork 2 in-
duced by coding *:U2—U, we have SI2()=8 [1fp(,)] N Q.
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6. Constructions for Infinite Algebras of Relations

In the sequel, we shall construct some infinite (simple) proper algebra of re-
lations with given infinite cardinalities and prescribed fork indices. We
shall control the cardinalities of the PAR’s by means of the sizes of their
sets of generators. We shall control their fork expansions by means of the
sizes of the sets of sub-identities of 2.

6.1 Special Codings and Sets of Fixpoints
To control the set of fixpoints of its underlying coding, and so the set of
sub-identities of 2 of simple PFA’s, we employ special codings with given
sets of fixpoints.
We now present a set-theoretical construction for a special coding on an
infinite set U with prescribed set of fixpoints.
- Consider an infinite set U. For each subset TC U with cardinality
ITI=|U1, there exists a bijection *S:U2—U with fxpt(*5)=S, where §:=U-
i
Indeed, we can partition T into disjoint subsets A and B of U, both with
cardinality |UI. So we have a bijection f:1;7—A. We also have a bijection
8:T—B without fixpoints (obtained by partitioning Bas B=u,_y B,).
We now define *S:U2 U as follows:

for ue S we set u*Su:=u (notice that ue AU B):
for ue T we set u*Su:=g(u) (notice that g(u)e B);
for <v,w>e 1~ we set v¥Sw:=f(v,w) (notice that fv,w)€ A).

So, *S:U2—U is a bijection, from U2=15Ul, Ul,” onto U=SUBUA,
since it is the disjoint union of bijections with pairwise disjoint domains
and images.
Also, u*Su=u iff ue S, because for ug S u*Su=g(u)#u. Thus frpt(*$)=S.
On an infinite set we have many special codings.
- Given an infinite set U, for each subset S € U with cardinality ISI<|UI,
there exists a bijection *S:U2—U with fxpr(*S)=S.

6.2 Infinite Explosive Algebras of Relations

We will now construct some infinite (simple) non-Boolean proper algebra
of relations that have infinitely many fork expansions. We control their fork
expansions by means of the sizes of the sets of sub-identities of 2.

For this purpose, we now examine fork expansions of simple PFA’s.

Each injective function *:U2—U induces a fork operation
iEkSO(U?)xXO(UQ)—) P&UQ), which gives rise to induced projections
p =" U2)T and ¢ :=(U2*1;)T. Now, consider a (simple) subalgebra &
of the full PAR P (U?), and notice that
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- if induced projections p* and g™ are in the carrier P, then PAR P is ex-
pandable by the induced fork operation * to PFA ®*:=(%,*);

- if So[yxp,*)]gP, then PFA ®"=(%,*) has set of sub-identities of 2
SI2(%P )=§0[1fxpr(*)]-

By putting together these constructions and considerations, we can now

construct a prime explosive proper algebra of relations of each infinite car-

dinality.

Proposition Large prime explosive PAR's

For every infinite cardinal k 2 X, there exists a prime explosive PAR P
with cardinality |9 (|I=x: PAR & has k, pairwise non-isomorphic, fork-
expansions Dyfor each smaller cardinal < K.

Proof outline

Consider the set U:=x. For each_cardinal <, ¥ is a_subset Y= U with

IYl=Y<; so, we have a bijection * ' :U2—U, with fxpt(* ' )=y, inducing fork

* " and projections pY and g .

Set H:=0 ((U2)UUy [{pY.q¥}U # (1,)] (notice that IHI=x) and
consider the subalgebra 5 « Of the full PAR X’?(UZ) generated by H.

Then, & is a simple PAR of cardinality |% ,|=k >R, (so prime), which

has a fork expansion Oy = (P ., xT) with ISIZ(QY)Iz 27, for each y<x.

QED

We thus see that at each infinite cardinality there exist PAR’s that convey
a very modest amount of information concerning their possible fork expan-
sions.

This results shows that the class EXP of explosive PAR’s is populated at
each infinite cardinality with simple PAR’s. We now wish to see that it is
not sparsely populated.

Towards this goal, we combine prime PAR’s. We can guarantee that di-
rect products of ARA’s are not isomorphic by controlling the numbers of
ideal elements of their factors.

- Given an infinite cardinal x>, for every cardinal { <« the direct
product 28x® . is a representable explosive ARA with cardinality x
and 25+! ideal elements.

Since 2% <x, the direct product 28xP . is a representable ARA with
cardinality k. Its prime factors are rigid 2 and explosive P, so
O(25xP )=x. Clearly, 2Ex%P « has 28.2 ideal elements

We have thus achieved our aim of exhibiting many elastic PAR’s with
prescribed infinite cardinalities: at each infinite cardinality k > ¥ there are
at least x pairwise non-isomorphic explosive PAR’s.
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Theorem Many large explosive PAR’s
For every infinite cardinal x =R, there exist at least K pairwise non-iso-
morphic explosive (so elastic) PAR’s with cardinality x: IEXP[ k]IZ k.

We thus see that at each infinite cardinality there are many PAR’s that
constrain very little their possible fork expansions.

6.3 Other Infinite Algebras of Relations

The preceding results show that there are many pairwise non-isomorphic
elastic PAR’s at each infinite cardinality. But such elastic ARA’s do not ex-
haust the infinite PAR’s.

We now examine infinite non-forkable and rigid proper algebra of rela-
tions. We will show that the classes NFK, of non-forkable PAR’s, and
RGD, of rigid PAR’s, are populated at each infinite cardinality with simple
PAR’s.

We first consider (simple) infinite proper algebra of relations with null
fork indices. The non-representable relational algebras are non-forkable,
but we wish non-forkable proper algebra of relations.

For this purpose, we make the following considerations.

We first present a denumerably infinite non-forkable simple PAR.
- The algebra S, of definable binary relations in the structure
J=<N,S,0> is a simple non-forkable PAR with cardinality | Swl=Xg.

Clearly, S is a simple PAR with cardinality | 5, |=R. Assume PAR §,
forkable. Then, the binary relation 2=1NV1y is definable, but its image
Im[2] is neither finite (because 2 is total, functional, and injective) nor
cofinite (since Im[2]NIm[IN~V IN]=D).

We now know that there exist (simple) non-forkable proper algebra of
relations at each infinite cardinality.

- For every infinite cardinal k=X, there exists a simple non-forkable
PAR $¢ with cardinality | S¢l=x.

The representable ARA’s form an elementary class in the wide sense
[Tarski '55]. Thus the class SRQ of simple representable ARA’s that are not
QRA’sis ECy as well. Hence, for each infinite cardinality x = X, we have
some S, €SRQ (whence a simple non-forkable PAR) with cardinality
| Sel=lxl.

We now consider (simple) infinite rigid proper algebras of relations.

Rigid proper algebras of relations are quite easy to construct. For each
infinite cardinal x =R, one can easily construct a Boolean, so rigid, sim-
ple PAR of identities /,. with cardinality | [, _|=x.

- For each infinite set U, there exists a simple rigid Boolean PAR of
identities Iy with cardinality [[;=IUI

The powerset PAR P (ly ) of 1y is a simple PAR
<O(11),U,N, -V, T 1> with cardinality 1£(1)I>IU. We take Iy as its
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subalgebra generated by the set 2 oly) <& (1py) of finite subsets of 1;;
(notice that | 82 ,,(1;,)I1=IU)).

We can now use direct products to show that the classes of rigid and of
non-forkable proper algebra of relations are not sparsely populated.

Proposition Many large non-forkable and rigid PAR’s

For every infinite cardinal x 2 X: INFK[ k]I x and IRGD[ k]I>x.

For every cardinal { < x:

a) the direct product 2 3;><5,,c is a representable non-forkable ARA with
cardinality x and 25+ ideal elements;

b) the direct product ZQXIK is a representable rigid ARA with cardinality
x and 28+! ideal elements.

We can also use direct products to construct some new elastic (and non-
explosive) infinite representable ARA’s. We can exhibit many infinite rep-
resentable ARA’s with prescribed infinite fork indices.

Consider infinite cardinals ¥ > Ry and Xy <y < k:

- the direct product P, x I, is a representable ARA with cardinality x,
fork index y and 4 ideal elements;

- for every cardinal {<x, the direct product 25x% x I is a repre-
sentable ARA with cardinality x, fork index y and 25+2 ideal ele-
ments.

The following table gives an overview of the examples of elastic infinite

proper algebra of relations presented. For each infinite cardinal k > Ry the

following representable algebras of relations are pairwise non-isomorphic

elastic (so, non-Boolean) ARA’s with cardinality x:

Fork index Xgp < y<x Xj<y<x(non-explosive) y=k (explosive)

Cardinal {<x 25%P x ke 28xP

7. Conclusion

Fork algebras have been introduced because their equational calculus has
applications in program construction. They also have some interesting con-
nections with algebraic logic.

We have examined the finite and infinite fork algebras and their relational
reducts. The finite fork algebras are completely described as the finite di-
rect powers of the two-element fork algebra, showing that they are essen-
tially Boolean algebras. In contrast, the infinite fork algebras display a
large diversity of behaviours even when their relational reducts are kept
fixed.

To examine the contrast between fork algebras and their relational reducts
that occurs in the infinite case, we have introduced some novel concepts
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(such as fork index) and techniques (for the analysis and construction of
fork algebras).

This comparison between relational and fork algebras is based on the
concept of fork index, which indicates how much information about a fork
algebra is already given by its relational reduct. This immediately suggests
classifying relational algebras according to their fork indices as non-fork-
able, rigid, elastic, explosive, etc.

As a technique for the analysis of fork algebras we have used the set of
sub-identities of 2=1V 1, because of its close connections with the set of
fixpoints of the underlying coding. A set-theoretical construction is pro-
vided to produce codings with prescribed sets of fixpoints, thus enabling
the control of the sets of sub-identities of 2.

These ideas are used to exhibit examples of infinite relational algebras
with a wide diversity of fork behaviour, ranging from none or a single one
to high number of fork expansions.

We should mention that we have provided complete descriptions only for
the finite (and for the Boolean) fork algebras. For the infinite fork algebras,
we have concentrated on showing the diversity of their fork behaviour be-
yond the relational reduct.

The concept of fork index appears to capture an important aspect of the
interplay between fork algebras and their reducts. The fork index appears
to provide a useful manner for a more detailed classification of the spec-
trum. In this connection, our examples suggest some questions:

- are there infinite relational algebras with other fork indices?

- are there simple elastic, non-explosive relational algebras?

Other useful tools for the analysis of fork algebras, and particularly their
relational reducts, are connected to the iterates of the projections and in-
dices of their idempotency or nilpotency. These also appear to be control-
lable by variations of our set-theoretical construction.

Institute of Mathematics and COPPE
Federal University of Rio de Janeiro
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