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ALGORITHMS FOR RELEVANT LOGIC
Leo Apostel in memoriam

Paul GOCHET," Pascal GRIBOMONT and Didier ROSSETTO

Abstract.

The classical analytic tableau method has been extended successfully to
modal logics (see e.g. [3, 4, 5]) and also to relevant and paraconsistent
logics [1, 2]. The classical connection method has been extended to
modal and intuitionistic logics [10], and the purpose of this paper is to
investigate whether a similar adaptation to relevant logic is possible. A
hybrid method is developed for B+ with a specific solution to the
“multiplicity problem”, as in the technique of modal semantic diagrams
introduced in [7]. Proofs of soundness and completeness are also given.

1. Introduction

The sequent calculi and tableau methods suffer from three kinds of redun-
dancies: duplication of redundant information, the consideration of reduc-
tions that do not advance the search toward finding a proof, and the need to
distinguish derivations that differ in the order in which sequent rules are
applied [10, p.82]. The connection method has proved computationally
more efficient for classical, modal and intuitionistic logics; it may therefore
be useful to extend it to other non-classical logics. This is especially true
for logics used in artificial intelligence, for which efficient theorem proving
techniques are needed. Bloesch has conjectured that such an extension is
feasible in several cases [1, p.24]:
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“It is not clear how to create connection method style proof systems for
many non classical logics. In particular the relevant and paraconsistent
logics seem particularly difficult since the law of noncontradiction does
not hold in most paraconsistent logics and many relevant logics. By re-
lying heavily on the properties of classical logic, the connection method
gains great efficiency but at the cost of poor flexibility. It does however
seem fair to conjecture that techniques, such as using truth signs to rep-
resent exclusive semantic classes, developed in later chapters, could be
applied to the connection method.”

The main purpose of this paper is to investigate the connection method
style for B+, the most basic system of relevant logic, with the simplified
semantics introduced in [8, 9]. The connection method presented here
draws from two sources: Wallen’s connection method for modal logic K
and Bloesch’s tableau method for relevant and paraconsistent logics. Both
methods will have to be modified to fit our purpose. B*is known to be de-
cidable. We present a decision procedure which automatically supplies fi-
nite models when applied to a formula which happens to be satisfiable.

This paper goes on as follows: the axiomatic system B* is recalled,
Bloesch’s Tableau Method for B* is briefly presented, Wallen’s Connection
Method for modal logic is adapted to B*, and the soundness and the com-
pleteness of the extension are proven.

2. The axiomatic method for relevant logic B*

(o8

.1 Axioms

A— A

.A>(AvB),B—>(AvB)
.(AAB)> A (AAB)> B
(AABVO)>S((AABVO)

(A BAASO)S(AS(BAO)
(A BABSO))—>((AvBY—S 0)

N B

2.2 Rules

A
%li (modus ponens), and its disjunctive form.

% Ai (adjunction) and its disjunctive form.
AnB

A—-B C—->D
(B>C)—»(A—- D)

(affixing rule) and its disjunctive form.
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Ao A, . o g . .
Comment. If I—Bf’* is a rule then its disjunctive form is the rule

CvA,..,CvA,
CvB )

2.3 Example
Let us prove that formula 1 is a theorem of B+

(P=q) > (s> q)Vv((rap)—q)) (1
Proof
1. (rap)->p (axiom 3)
2. q—q (axiom 1)
3. (po@)—>rap)—>q) (rule 3 (1, 2))
4. (p>q)—>(p>9q) (axiom 1)
5. ((rap)> @) > (s> v((rap)—=q)) (axiom 2)
6. (p=a)>((rap)>@)>(p>9) > (s> @V((rap)—q)

(rule 3 (4, 5))
7. (p=@)=>{(s—=>q)v{(rap)—q) (rule 1 (3, 6))

This theorem will be proven again by the method presented here.

3. Semantic tableau method for relevant logic B*

The principle of the semantic tableau method is rather straightforward. It is
a systematic search for a model that falsifies the formula being checked for
validity. If such a model does not exist, the formula is valid.

The formula ¢ to be proven is assumed first to be false inworld w, (we
write F, ¢). Next it is reduced by applying rules which remove the con-
nectives stepw1se starting with the less deeply nested connective until each
branch of the tableau becomes closed or gives rise to a model of —¢. If all
the branches of the tree are closed (i.e. there is no model that falsifies @),

F, ¢ cannot be forced and ¢ is valid. This process is not deterministic.
Generally several tableaux can be produced depending on which order we
chose when we apply the reduction rules.

The reduction rules are based on the truth conditions. For example,
AAB is true iff A and B are rrue. The truth conditions of the relevant
conditional bear some resemblance with those of the classical conditional.
Indeed, when the relevant conditional A — B is false the antecedent A is
true and the consequent B is false, and when the relevant conditional is
true, the antecedent is false or the consequent is true. However, as the rele-
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vant conditional is intensional, something more is needed to capture its
meaning. Just like modal formulas, the intensional formula A — B is eval-
uated at a world w and an accessibility relation relates the world w to the
worlds w' and w" at which A and B respectively are evaluated. The interpre-
tation of relevant implication involves three worlds, instead of two for
modal operators, so the relevant accessibility relation R is ternary.! The
contrast between F A — B and T,/ A — B matches the contrast between
F,OA and T OA. Formula A — B is false at w iff w' and w" exist such
that R, -, A is true at w' and B is false at w", just as OA is false at w iff
there exists a world w' such that R, and A is false at w'. Formula A — B
is true iff for all w' and w" such that R, .., A is false at w' or B is true at

LU

a o | & B B B
Toany | Tox | Ty F,xany |Fox|F,y
F,xvy |F x|F,y T,xvy [T, x|T,y

o o, | ma, v vB, | vB,
F,x—y Twlx F.y| |T,x—>y ijx T,»

w; and wy (j=k iff i=0) are new w; and wy are such that Rw‘ij‘
worlds and R, ,, is added was previously added

Fig. 1.: Reduction rules for B*

Taking advantage of this semantics, Bloesch [1, p.88] gives reduction rules
for F,A— B and T,A — B Whenever a formula such as F A — B ap-
pears on a branch, we record, for that branch, that R, and we add the
formulas T, A and F,.B to the branch, where w' and w "are new worlds,
L.e. they do not appear on the branch, and w' = w" iff w = w, (i.e. the base
world). Whenever a formula such as T,A — B appears on a branch, if we
have R, on that branch, we may create two sub-branches with the for-
mulas F ;A onone and T,.B on the other.

Since the tableau rule for F_, is a hybrid rule which bears similarity both
to 7m-rule (modal rule dealing with T,) and to a-rule, it is appropriate to
introduce the category of “ ma-rule”. Analogously a tableau rule for T, is

a hybrid rule which falls under the heading of “ vf-rule” (modal v-rule
deals with Tp).

1 A frame in modal logic is a graph; a frame in relevant logic is a hypergraph.
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The tableau rules based on the semantics of the connectives fall therefore
in four types: «, B, ma and v (figure 1).

1. Prolongation rules (or a-rules).Each a-node gives rise to a prolonga-
tion of the current branch. Two successive nodes are added, one of
which is labelled with «, and the other is labelled with «,.

2. Branching rules (or p-rules).Each g-node splits the branch into two
sub-branches one of which bears a node labelled with g, and the other a
node labelled with 3, .

3. Relevant prolongation rule (or ma-rule). Each ma-node gives rise to a
prolongation of the branch. Two successive nodes are added, one of
which is labelled with 7o, and the other is labelled with 7a,.

4. Relevant branching rule (or vf-rule). Each vfB-node splits the branch
into two sub-branches one of which bears a node labelled with v, and
the other a node labelled with vf,. The vf-rule can be used y times;
M, also called the multiplicity of the vf-formula, is the number of pairs
of worlds related to w; previously introduced by the application of a
o -rule ( RW w, Was prev1ously added to the branch).

Comment. The parameter U associated with a vf3-formula has a definite

value only at the end of the derivation. Here is the feature that will raise the

multiplicity problem in the connection method.

4. Connection method extended to relevant logic

The principle of the connection method is the same as that of the tableau
method: a formula is said to be proven by a connection proof whenever its
attempted refutation fails. The connection method proceeds in three stages:

a syntactic tree, an indexed formula tree and a path tree are successively
built.

4.1 The syntactic tree

The syntactic tree or formation tree displays the structure of the formula.
For example, figure 2 shows the syntactic tree of formula 1.The nodes are
numbered by traversing the tree depthfirst, from left to right.



334 PAUL GOCHET, PASCAL GRIBOMONT AND DIDIER ROSSETTO

)
)

2:p 3:q 5 — 8: —
6: s T q 9: A 12: ¢
10: r 11: p

Fig. 2.: Syntactic Tree

4.2 The indexed formula tree

In tableau proof trees, a derivation is done by removing connectives in ac-
cordance with logical rules of elimination which we call reduction steps.
These steps are graphically depicted (e.g. the elimination of an asserted
conjunction gives rise to a prolongation of the branch, the elimination of a
denied conjunction gives rise to the splitting of the branch, ...). The sign of
the initial formula tested for inconsistency is F since a refutation proof is
intended. The sign of the other formulas is determined by the sign of the
input formula and by the reduction rule applied to it (e.g. the denial of a
formula whose main connective is a conjunction leads to the disjunction of
the denials of each conjunct).

In the connection method, these pieces of information are encoded in the
indexed formula tree.The indexed formula tree associated with a signed
formula ¢ can be represented as an array (figure 3} shows the indexed for-
mula tree of formula 1). Each line of this array is a record representing a
signed subformula of ¢ obtained when applying recursively the reduction
rules (figure 1) to ¢.
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k | pol(k) lab(k) Pr(k) | St(k) | wik) | h(k)
ay | F |[(p2@=>(s>v(rap)=g)| ma | - | wy | O
a T p—q v | moy | owy 1
a | F P - | VB | m | 4
a% T q - vB, | wy 4
a3 F p - vB | wy 7
ag | T q = | VB | ws | 7
a, F (s> q)v((rap)—q) o oy | wy 1
as F sq o o w) 2
ag T s - oy | wo 3
as F q - Ty | Wy 3
ag F (rap)—gq o s Wy 2
dg T rap o oy | wy 5
apg T r = Q) Wy 6
ay; T p . oy Wy 6
apy F q - o, | ws 5

Fig. 3.: Indexed Formula Tree

The indexed formula tree has seven columns. The first column is a key
identifying the line;2 the key will be a, where i is the index of the subfor-
mula in the syntactic tree of ¢.Some formulas have to be repeated (see
later); superscripts are used to distinguish the multiple occurrences of these
formulas, and are transmitted to their children. The second column, named
pol(k) (where k is the key), records the polarity of the formula (T or F). The
third column, named lab(k), records the label, i.e. the signed subformula it-
self. Each non atomic signed formula has a type, which can be a, 8, na or
vf3, and also two components, called children, as we saw in figure 1. Each
child has its own type, called the primary type; its secondary type is the
(primary) type of the parent formula, with the subscript 1 or 2, as indicated
in figure 1.The fourth column, named P1(k), records the (primary) type of
the subformula; an atomic formula has no primary type (- in the fourth col-
umn). The fifth column, named St(k), records the secondary type of the
subformula. The main formula ¢ has no secondary type (- in the fifth col-
umn). The columns “Pt(k)”and “St(k)"” are introduced merely to support the
understanding of the indexed formula tree. In relevant logic, as in modal
logic, the polarity is ascribed to a formula relatively to a given world. The

2 The path tree will deal with these indices to represent the (sub)formulas in an efficient
way.
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sixth column, named w(k), records this piece of information; worlds are
given names from the unlimited sequence wy, w;,w;, ... Indeed two identical
formulas of opposite signs such as TA and FA will combine together to
yield a contradiction only if they are evaluated at the same world. The last
column, named h(k), records the history: it contains the number of the step
during which the line is created. Column 7 is also introduced to support the
understanding of the indexed formula tree.

We now give the iterative procedure to construct the indexed formula
tree. Throughout the execution, the procedure maintains for each line a
binary variable, whose value can be “active” or “passive”. Furthermore, for
each line of type vf3, a set Q of ordered pairs of worlds is maintained.

Each step of the procedure selects an active line € and generates two or
more new lines €, £,,, ... In every case, the label of a new line is a child of
the label of the parent line, according to the type-dependent reduction rules
given in figure 1. After the generation, line £ becomes passive, whereas
lines €, €,,, ... are active if their label is non atomic and passive otherwise.
The set L associated with a new vf3-line is empty.

Initial step 0. Create an initial line.

* The initial line has key ay; its label is the given signed formula, to which
we ascribe the initial world wy. The history is 0. The line is made active if
its (primary) type is ¢, Sor 7a, and passive otherwise.

Iterative step n > 0. Select an active line of key k.

* If Pt(k)=a, two lines are added to the indexed formula tree. Their labels
respectively are the ;-child and the a-child of lab(k,) determined by the
a-reduction rule; their indices are extracted from the syntactic tree; their
world and history are w(k) and n, respectively.

* If Pt(k)=P, two lines are added to the indexed formula tree. Their labels
respectively are the f3;-child and the f3;,-child of lab(k), determined by the
B-reduction rule; their indices are extracted from the syntactic tree and
their world is w(k). The history of both new lines is n.

* If Pe(k)=ra, two lines are added to the indexed formula tree. Their labels
respectively are the 7a;-child and the zay,-child of lab(k) ,determined by
the worreduction rule; their indices are extracted from the syntactic
tree.The worlds w; and w, associated with these two formulas must not
have been used before, say the first elements of the world sequence
which differ from all worlds associated with existing lines. The history of
both new lines is n.Furthermore, each existing vf-line ¥ (i.e. Pt(k))=vf)
such that w(k') = w(k) is made active again.

* If Pr(k)=v, t he set E of all passive existing ma-lines k' (i.e. Pt(k")=mcr)
such that w(k")=w(k) is determined. For each k' in E we do the following.
As k' is passive, it has two children, say k" and k"', whose associated
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worlds are w(k'") and w(k™). If (w(k"), w(k")) is not an element of the set
(k) associated with line k, two new lines, say € and €', are added to the
indexed formula tree. Signed subformula lab(€) and lab(€') are the
children of lab(k), as determined by the vf-reduction rule; the indices ¢
and €' are extracted from the syntactic tree. Remember that a superscript
is used to distinguish the different pairs of children of the parent formula.
The associated worlds w(£) and w({'") are w(k") and w(k™) respectively,
and the ordered pair (w(k"), w(k")) is added to Q(k). The history of each
new line is n.

Comment. It should be emphasized that a vf-line k may switch several
times from active to passive and conversely during the execution.
Besides, each step about the vf-line & may introduce any number of new
ordered pairs of children for , up to the size of the set E. Last, the worlds
associated with the children are not inherited from the parent line k, but
from other lines, of secondary type 7e; (i=1,2).

4.3 The path tree

The path tree (it is actually an acyclic graph, see [6] for an example) has the
same role as a tableau proof tree, but its construction is computationally
more efficient. The path tree comes from the following recursive definition
of a path.

Basis
* If a, is the root of the indexed formula tree, a, is a path.

Recursion

« If S is a path containing the node ;3
S\{ahu{a} u{m) is apath.

* If § is a path containing the node f3,
(SMBNUIB,) and (S \{ B}) U{ B, } are paths.

« If § is a path containing the node 7c,
S\ ma})u{ro} v {mm,} is a path.

* If § is a path containing the node v,
S\{vB}Aty, ..., 1, ), where £,(1<i < ) is either v or vf3;, are paths.
Comments. There are 2¢# such paths, where 4 is the multiplicity associ-
ated with vf. The u ordered pairs (vf,, v3;) used here are the y ordered
pairs (among the ordered pairs (v, vf,) got during the building of the
indexed formula tree) which are frame compatible with the nodes of the

3 i.e node of the indexed formula tree whose label is a signed formula of primary type a.
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current path, i.e.vf, and vf3, are associated with worlds already involved

in the current path.4

Each step in the construction of the path tree consists of the application of a
rule (&, B, 7y, or vf) to a formula. These applications generate new paths.
It should be emphasized here that as soon as a the successors of a path have
been determined, this path can be erased. In fact it is erased when the con-
nection method is implemented on acomputer; the path tree never resides
wholly in the computer memory. Only its leaves, i.e., the atomic paths, are
saved and determine models of —¢ if they do not contain connections. The
atomic paths contain only atomic formulas and (vacuously true) vj-
formulas.

The formula tested is a theorem if and only if each leaf of the path tree
contains a connection, that is, two signed formulas T, Aand ijB, with
w; =w, and A identical to B.

To ensure soundness, the path tree has to respect a reduction ordering
which combines two orderings: the subformula ordering and the modal
ordering. The reduction ordering (denoted <) is the transitive closure of the
union of the subformula ordering (denoted <) and the modal ordering
(denoted Cy), so <= (< U 4)*[10].

Therefore the recursion has to be applied in the following way.

1. Respecting the order of the world indices: consider nodes related to
world w; only when all nodes attached to world w; with j < i have been
considered.

2. Respecting the necessity order: consider vf3-nodes related to world w,
only when all other nodes related to world w; have been considered.
This is automatically done if the recursion is applied in the order recorded

in the seventh column A(k) of the indexed formula tree.

The reason behind the frame compatibility restriction is this: allowing the
introduction in a path of formulas that are not frame compatible with the
other formulas of the path would amount to allowing a move from one sub-
branch to another in a tableau proof tree, which would clearly be unsound.
Let us observe that if we consider the semantic tableau style of proof, a
vf-formula could introduce y successive branching that lead to 2# splits of
the branch. In the path tree, all the 2# paths generated by its instantiation
are got in one step. Indeed, in tableau trees we do the branching and
instantiation separately. On the contrary here we combine branching with
modal instantiation when applying vf-rules. Our policy produces a reduc-

4 A syntactic criterion to check frame compatibility between two formulas is the
following: formula ¢ is frame compatible with formula v if and only if the primary type of
their common ancestor in the syntactic tree is neither § nor vj
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tion of the number of nodes since 2# nodes are needed instead of
i 2i=2u4 2,

When building the path tree, the same operation applies for rules of any
category: we replace the parent formula by its children. Here again our
technique diverges from the standard one used in modal logic, where
whenever a necessity rule is applied, a child is added but the parent formula
is maintained; if the n' instantiation has failed to produce a contradiction, a
new instantiation takes place; multiplicity is demand driven [10].

Demand driven policy secures completeness. However if the formula
tested fails to be unsatisfiable, a loop may occur. The policy advocated in
this paper rules out the risk of non termination as far as B* is concerned.
Moreover it automatically supplies finite models whenever the formula
tested for inconsistency happens to be satisfiable. Our treatment of the
multiplicity problem establishes a tight correspondence between the vf-re-
duction rule and the semantics of vf-formulas.

The path tree corresponding to formula 1 is represented in figure 4. To
help the reader to understand the path tree, the node developed is under-
lined once and the indices standing for connections are underlined twice.
There are four atomic paths, each of them containing a connection, so no
model exists for signedformula F, ¢, and ¢ is a B*-valid.

We see that the four atomic paths all contain a connection, therefore no
frame that falsifies formula 1 exists, i.e. this formula is B*-valid.

{a}
{01,0_4}
la,, a5, a5}
{al’ a6' as, a_a]
{ay, ag, a7, ay, )y}

I o4
{a’z,vazraﬁa {a:}]’a%v aﬁy [aésagr aﬁ; {ai,ag, aﬁ,
ay, g, Ay} Gg, Ao, Ay} Gy, Ao, Ay} @y, Ay, )

{a}, a3, a5,a;, {a},a}, a5,a;, {a},ai, a5,0,, {4}, a3, a6, 05,

@y, Gy, Gy} @y, Gy, Gy, } @y, @y, 4y} a1, @y, Gy}

Fig. 4.: Path Tree
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5. Soundness and completeness

In this section we prove that our method is a sound and complete decision
procedure for relevant logic B*.

5.1 Complexity
If A is a (signed or not) formula, its degree d(A) is the number of internal
nodes of the syntactic tree associated with A, i.e. the total number of con-
nectives contained in A. In other words, the degree of an atomic formula is
0; d(—A)=1+d(A) and if o is a binary operator, d(AcA')=
1+d(A)+d(A"). The notion of degree also applies to signed formulas:
d(TA)=d(FA)=d(A).

If € is a set of formulas, its complexity c(€) is the sum of the degrees of
its elements.

Every finite set of formulas has a finite complexity. Furthermore, with
usual notation, we have the following inequalities:
o if €, <%€,, then c( €,) <c( é,,).
s c(Gufa))>c((E\{ahula, a,}),

since d(a) > d(a,) +d(a,).
* (€ U{B))>max(c((é \ {BHU{B)), c((E\{BHU{B,))),

since d(f8)>d(fB,) and d(B) > d(83,).
* (€ ufma))>c((€é \ {ra) u{ra,, ma,}),

since d(ma) > d(ra, )+ d(ra,).
* (8 U{vB))>max(c((B \ {vB))U{VB]), c((€\{vBY)U{VB,)),

since d(vf)>d(vp,) and d(vf)>d(vp,).

5.2 Auxiliary structure

As a preliminary result, we need to know that the execution of the construc-
tion procedure for the indexed formula tree always terminates. We first ob-
serve that every step induces the addition of finitely many new lines (or
nodes). This is trivial, even for vf3-steps, since the number of lines added in
a vf3-step cannot exceed 2n where 7 is the total number of lines introduced
before this step. As a consequence, termination could be prevented only if
an infinite number of steps could take place.

In order to prove that every execution involves finitely many steps, we
will suppose that each step of the construction procedure updates not only
the indexed formula tree, but also an auxiliary structure defined below; it
will then be sufficient to prove that this structure can be updated only
finitely many times. The auxiliary structure is a set of hypertrees; the nodes
of the hypertrees are worlds (so each hypertree is a frame). Each node w;, is
labelled with a set €(w; ) of signed formulas.

We describe now the update induced on the auxiliary structure by each
step of the construction procedure, for a signed formula ¢.
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Initial step 0. (Creation of the initial line.)

* The structure initially contains only one frame; this frame consists of a
single node wy, whose label contains a single element, which is the initial
signed formula:€(w;) = { @}.

Iterative step n > 0. (Addition of children of line k.)

In every case, frames that contain world-node w(k) with signed formula

“pol(k) : lab(k)” in £(w(k))) already exist in the auxiliary structure.

* If Pi(k)=a, in each frame such that the signed formula o = pol(k) : lab(k)
is a member of €(w(k)), we update £(w(k)), by replacing its elemento by
the corresponding elements ¢, and .

* If Pt(k)=P, each frame of the auxiliary structure that has a node named
w(k) with the signed formula 8 = pol(k) : lab(k) in its label €(w(k)), is up-
dated as follows. First, the frame is replaced by two identical frames; sec-
ond, in the label £(w(k)), the element f3 is replaced by the corresponding
element B, in the first frame and f3, in the second one.

* If Pt(k)=ma, each frame of the auxiliary structure that has a node named
w(k) with the signed formula 7a = pol(k) : lab(k) in its label £(w(k)) is
updated as follows. Two nodes w and w' and the hyperarrow (w(k), w, w')
are added to the frame, where w and w' are the new worlds associated
with the children of line k. The new nodes are labelled respectively €(w)
= {7, } and £(w)={7a,}.

* If Pi(k)=Vp, each frame that contains node w(k), with vf € €(w(k)) and
that has a hyperarrow (w(k), w, w') for some w and w' is updated as fol-
lows, if it has not been done yet. First, the frame is replaced by two iden-
tical frames; second, the children signed formulasvf, and vf3, are added
to €(w) in the first frame and to £(w') in the second frame respectively.

We first observe that duplication of frames is induced by f and vfB-reduc-
tions. However, a branching formula can be a subformula of another
branching formula, so B-reductions and vf-reductions can be reused several
times. As a result, the number of frame duplication is bounded by d(¢)! and
the total number of frames in an auxiliary structure cannot exceed 24(¢',
Furthermore, each frame of the auxiliary structure is finite. First, such a
frame is a finitary hypertree since the number of successors of any node of
the frame is bounded by the number of wa-subformulas contained in the
initial formula, and therefore by its degree d(¢). Second, the length of a hy-
perbranch cannot exceed d(¢) = c({ ¢}), since the complexity of a successor
node is strictly less than the complexity of the parent node. An upper bound
for the number of nodes in a frame is d(¢)?@*!, and an upper bound for the
total number of nodes in the whole structure is therefore
L, =4 299'd()4@*1 (this is also an upper bound for the number of hy-
perarrows). Tighter bounds can be found, but we do not need them here.



342 PAUL GOCHET, PASCAL GRIBOMONT AND DIDIER ROSSETTO

Comment. The notion of auxiliary structure applies not only to a signed
formula, but also to a finite (conjunctive) set of signed formulas.

5.3 Termination proofs
We can now give an upper bound for the length of any execution of the
construction algorithm for the indexed formula tree. Each step induces at
least one of the following operations:
1. Extension of the auxiliary structure (fB-step, ma-step, useful v3-step)
(cannot be performed more than X, times);
2. Addition of a formula to a node label (useful vf3-step,wa-step)
(cannot be performed more than d(@)x X, times);
3. Reduction of an element of a node label (o-step, B-step)
(cannot be performed more than d(@) x X times).
Comment. A vf3-step about line k will do nothing at all if no new ordered
pair of worlds accessible from w(k) has been created since the last activa-
tion; however, as vf-lines are “reactivated” by ma-steps, useless steps can
occur only finitely many times.
This completes the termination proof for the indexed formula tree algo-
rithm.

In order to prove the termination of the path tree algorithm, we observe
that each step adds a finite number of paths to the path tree, which is a
finitary tree. Due to Konig’s lemma, it is sufficient to establish that a new
path is always strictly less complex than its parent. However, this is not
true for the notion of (multi)-set complexity introduced above; indeed,

c((S\{vBHU{vB!,..., vﬁf:})<c(S), wherei; €{1,2} (1<j<pu),

cannot be guaranteed.

The problem is, we know the multiplicity y to be finite, but nothing else.
To solve this, we define another well-founded ordering on paths. First, to
each path S we associate m(S), a multiset of natural numbers, which are the
degrees of the elements of the path. Second, we show that, for some rela-
tion C, the domain of multisets is well-founded. Third, we show that, if S is
produced by the algorithm from the path S, then m(S') C m(S).

A multiset of natural numbers can be represented as a decreasing se-
quence of numbers; the lexical ordering on these sequences is defined as
follows:

(- W = |

if there is a number r € N such that rsn,r<m,a;,=b fori=1,...,r and
eitherr=nand r<m,orr<n,r<mand a,,, <b,,,.

r+l
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As (N,<) is a well-ordered set, so is (N*, £). Besides, the lexical ordering
C induces a (partial) ordering (also noted C) on the set of paths:

sSc§ = def m(S)cm(S)

and this ordering is well-founded.

Last, we observe that each reduction step for a path consists in replacing
an element of the path by finitely many elements of lower degree; this al-
ways leads to a C-smaller path.

5.4 Hypertree-models

The auxiliary structure is in fact a set of frames, and each frame is an inter-
pretation of the initial signed formula @, called a hypertree-frame; it is a
hypertree-model for ¢ if @ holds at the initial world w,. A hypertree-frame
is consistent if no world label contains a pair of opposite formulas. We first
prove the following lemma.

Lemma 1. A (hypertree-)frame S is consistent if and only if §, w, =y, for
all worlds w; € § and for all signed formulas y €€ (w,).

Proof. The “if” part is trivial: if S,w, =y and S,w, =& then {y, £}
cannot be a pair of opposite signed formulas. For the “only if” part, we
proceed by induction on the height of the nodes in the frame. A leaf w (a
node without successor) has height h(w) = 0, and if w is an internal node
with successors {(w;, w;), ..., (w;, w,)}, then h(w) = 1 + max {(h(w,)+
hOW)),s .o (W) + (W, )} S

Base case. If the world w has no successor in cal S, the label €(w) contains
only atoms and vf3-formulas. The vf-formulas are vacuously true, and the
atoms are forced to be true at w, which is possible since there is no opposite
pair.

Induction case. Let w be a node of height n>0. As for the base case, all
atomic formulas can be forced at w. Non atomic formulas are vf or 7er. Let
{(wi, wy)s..., (W, W)} be the (non empty) set of successors. All w; and w)
have a height less than n, so the induction hypothesis applies to them. Let
VB €£€(w); due to the construction process of the frame, either vBi efw;or
vBjefw, forall i =1, .., k, so by the induction hypothesis, either vBi is
forced at w; or vf3j is forced at w; for all i = 1, ..., k, and sovf is forced at
w. Similarly, let 7o €€(w); due to the construction process of the frame,
mey e€(wy) and ma, e€(w)) for some i € 1, ..., k, so by the induction hy-

5 Node w has successor (w', w") if (w, w', w") is a hyperarrow.
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pothesis, 7a, is forced at w; and 7oy, is forced at w; for some i, and so 7o is
forced at w.

Lemma 1. If @ is a satisfiable finite set of formulas, then at least one of the
hypertree-frame of the ®-auxiliary structure is a (hypertree-)model of .

Proof. We proceed by induction on the complexity of ®.

Base case. If the complexity of @ is 0, ® contains only atomic signed for-
mulas, and its hypertree-frame contains the single world w, where each ¢
in @ is forced; this is possible if and only if ® is satisfiable. This frame
clearly is a model of ®.

Induction case. ® contains at least one non-atomic signed formula.

If @ contains an o-formula, then (®\ {a}) U{e,, ,} has lower complexity
than @ and is also satisfiable; therefore one of the hypertree-frames of
(®\{ah) i, a,} is amodel of (@ \{a})U{e,, a,} and also of~®.

If @ contains a B-formula, then (P \ {8}) U {B,} or (®\ {B)w{B,} that has
lower complexity than ®, is also satisfiable and has a hypertree-model,
which is also a model of ®.

If the set ® contains only mo-formulas and vB-formulas, let ®=P U N
with @ = {zal,..., mon} and N = {vB!,..., vBm} Furthermore, let Niz=
{{vBl;-s VB;:}: iyt €{1,2} and}vB € N}. If X € N\,, let X, be the
set of vf3,-elements of X and X, the set of vf3,-elements of X. If ® is satisfi-
able, then for each ordered pair ( @], 7o) such that wa' e P, there exists
an element X € N, such that the sets ®i={zrai}u X, and
@, ={ras}U X, are also satisfiable with a lower complexity, and
therefore have a hypertree-model. The corresponding hypertree-model of ®
is obtained as follows: the root is a world w,, with € (wg,) = @, and there are
n outgoing hyperarrows, leading to the 2n hypertree-models of the
®{,,i=1,...,n. (Renaming of worlds is used to avoid name clashes.)

Comment. The case n = 0 is not ruled out; a set of vf-formulas is always
B+ -satisfiable, and every one-world frame is a model.

Theorem 1. Signed formula ¢ has a model if and only if some hypertree-
frame associated with ¢ is a hypertree-model of ¢.

It is an immediate consequence of lemmas I and II.
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5.5 Path tree, soundness and completeness
Lemma 111. The path tree associated with a finite (conjunctive) set of signed
formulas is finite.

Proof. See §5.3, where the termination of the construction algorithm for the
path tree has been proven.

A line in a hypertree-frame is a sequence (¢,,..., ¢,) of signed formulas
such that @, is the initial formula, ¢, is a child of ¢, , and ¢, has no
child.

Lemma IV. If S is a path, there exists a hypertree-frame such that S contains
exactly one member of every line.

Proof. This is true for the root of the path tree, and if it is true for some
path, it is also true for every successor-path.

Lemma V. There is a correspondence between (hypertree-)frames and
atomic paths associated with a finite set @ of formulas; each atomic path is
the set of signed atomic formulas of a frame, and the set of signed atomic
formulas of each frame is an atomic path.

Proof. By induction on the degree of ¢.

Theorem 2. Signed formula ¢ has a model if and only if (at least) one of its
atomic path does not contain an opposite pair.

Proof. Signed formula ¢ has a model if and only if it has a hypertree-model
(theorem 1). The corresponding atomic path (lemma V) is consistent and
does not contain an opposite pair.

Corollary. The method is sound and complete.

Conclusion. We are half-way to an extension of the connection method to
the decidable relevant logic B*. The method introduced here inherits most
of its properties from the tableau method [2]: soundness, completeness and
termination. The next step is to obtain a true connection method, and to in-
vestigate its properties by using a matrix-characterization of B+, Extensions
to more powerful systems of relevant logic should also be possible.
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