Logique & Analyse 150-151-152 (1995), 285-328

BLOCKS. THE CLUE TO DYNAMIC ASPECTS OF LOGIC
Diderik BATENS!

Abstract

The present paper introduces a new approach to formal logic. The
block approach is especially useful to grasp dynamic aspects of reason-
ing, including formal reasoning, that fall beyond the reach of the usual
approaches. A block language, the block analysis of proofs, and se-
mantic systems in terms of blocks are articulated. The approach is first
applied to classical logic (including proof heuristics). It is used to solve
two important problems for adaptive logics (that have a dynamic proof
theory). Some further applications are discussed, including meaning
change.

1. Aim of this paper

In the present paper, I want to propagate a new approach — or perhaps
some related approaches — to logic. The problems that brought me to the
approach are explained in section 2. The kernel of the approach is the idea
of blocks. Roughly, a block is a formula, sentence, or term, that is consid-
ered as an unanalyzed entity. The entities dealt with in a proof, a semantics,
etc., are not seen as well-formed strings made up from a stock of symbols,
but as blocks, possibly compounded by some logical terms.

Fascinating about the block approach is that it enables us to get a grasp on
a number of dynamic aspects of reasoning. Most of these aspects belong to
a dimension of logic that cannot be comprehended in terms of the abstract
and static features of the usual metatheory. In the present paper, I offer a
diversity of illustrations of such aspects. These include dynamic aspects of
proofs in classical logic (henceforth CL), and dynamic aspects of proof
search processes. They also include the peculiarities of dynamic proofs
(that are characteristic of adaptive logics); as such proofs evolve, lines writ-
ten earlier may have to be deleted in view of later added lines, and it may
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become possible to add lines that could not be added before. And they in-
clude a notion of information that is relevant to logical omniscience and to
the informative character of deductive moves. Finally, I shall also show that
the block approach offers an outlook on meaning change.

After section 2, I apply the block approach to a familiar domain: proofs in
CL. My main aim is to introduce the approach, to make and justify some
choices while designing the block language, to show that the approach
makes sense, to show that it enables us to articulate some insights that re-
main implicit on other approaches, and to point to some alternatives
(section 6). These sections include the formulation at the predicative level
of the block language (section 4) and of the block semantics (section 5). In
section 8, I briefly discuss the application of the approach to proof heuris-
tics and to some pedagogical matters, while still concentrating on CL.

In the next series of sections (9 to 12), I tackle the two problems ad-
vanced in section 2. This will require that I briefly introduce the basic para-
consistent logic, and the semantics as well as the (dynamic) proof theory of
the inconsistency-adaptive logic APIL1. I show that the block approach is
revealing to understand the dynamics of the proof theory, and that it en-
ables us to solve both problems each of which is essential to logics with a
dynamic proof theory.

In sections 13 and 14, I discuss some further promises of the block ap-
proach. One of them is building formal languages that allow for meaning
change in one direction, viz. by the specification of formerly primitive
terms. The other suggests a way to apply the block approach to other forms
of meaning change as well. This suggested mechanism is intended as a
formal instrument for the problem solving approach to creativity and dis-
covery.

In the final section 15, I list some open problems and suggest some more
promises of the block approach.

That the present paper is rather long and its contents diverse has two
causes of a rather different nature. The first is that the approach is new, and
that I better try to push its cause. The second is that this paper was written
for the Leo Apostel memorial volume of Logique et Analyse. Leo was my
best friend and the deepest philosopher I met. I wanted to write a paper that
he would have liked: concerning a new idea, programmatically interesting,
and with an eye on underlying philosophical problems.

2. Two problems with dynamic proof procedures

Several aspects of real-life reasoning (argumentation) are dynamic. We not
only drop conclusions after obtaining more information, but also after we
analyzed the premises better.
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Some logics have a dynamic proof theory, for example adaptive logics
(see, e.g., [5], [11], and [10]) and some versions of non-monotonic logics
(see, e.g., [18]).2 This is why, it may be argued, they form a step in
bridging the gap between formal logic and argumentation. The step takes
off from the tougher side, by introducing dynamics without loss of
precision or clarity.

The dynamics of a formal logic raises two important difficulties: Is the
dynamics real? And how do we gain control over it? I shall articulate both
difficulties as clearly as possible, because they formed the major motivation
for articulating the block approach. But before tackling them, I need to
clarify the dynamic character of the proof theory of adaptive logics.

The dynamics comes to this: it depends on the stage of the proof which
steps may be added to it, and formulas derivable at some stage need not be
derivable at a later stage (and vice versa). The dynamics may be expressed
by deleting lines written previously, or by marking lines as in or out. Such
dynamics justifiedly raises suspicion. Suppose that both John and Mary
write a proof from the same set of premises. They start off in different
ways, add lines and delete some in view of the dynamic character of the
proof theory. After a while they end up with rather different sets of derived
formulas. There is nothing special about this as exactly the same situation
may arise with CL. However, as for CL, one wants to require that, if a
formula is derivable from the premises, then both John and Mary should be
able to derive it by extending their proof.

Clearly, “derive” and “derivable” are ambiguous here. In view of the dy-
namics, we should distinguish between derivability at a stage and a form of
derivability that is independent of the stage of the proof. The latter is called
final derivability. A is said to be finally derivable from I iff there is a stage
of a proof from I" such that A is derived ar that stage and will not be deleted
at any later stage.’

Final derivability provides us with stability. But we need something
more, viz. unigueness: what is finally derivable in John’s proof need to be
finally derivable in (an extension of) Mary’s proof as well. And it is indeed
possible to show that, for any I, a (decent) adaptive logic defines a unique
set of formulas finally derivable from I'. Such set may be captured by the
semantics: the formulas finally derivable from I are the semantic conse-
quences of I". The general idea here is that we allow for non-classical
models of I" and define the semantic consequences of T as the formulas that

2 A basic difference is that adaptive logics do not rely on any non-logical preferences —
see [9].

3 In some cases we have to add a requirement on the extensions of the proof; see, e.g.,
section 6 of [5].
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are true in all models of I" that are (in a precise sense) as classical as possi-
ble. As the dynamics should be minimally clear by now, I come to the two
difficulties. ‘

First, is the dynamics real? As it is possible to define, in an absolutely
static although non-monotonic way, the set of semantic consequences of T,
what is the use of the dynamics of the proof theory? Why write lines if it is
determined from the outset that they will have to be deleted later on? A dy-
namic proof theory seems ‘realistic’ in that real-life reasoning proceeds dy-
namically. But maybe real-life reasoning is just inefficient, or clumsy, or
sloppy. If so, logicians should not worry about it.

There is a partial answer to this difficulty. It may be shown that, in the
context of an adaptive logic, dynamic procedures are superior in that they
guide us, often much faster than any static procedure could do, towards a
situation in which final derivability is reached —see [12] and [13] for this
justification of dynamic tableau methods for inconsistency-adaptive logics.
Concrete matters of efficiency are often overlooked by logicians, and
unjustifiedly so. But although the argument seems convincing in itself, it
seems to refer dynamics outside the abstract domain to which belong
derivability, semantic consequence, soundness and completeness, the Godel
and Skolem theorems, and even decidability. If we want to give dynamics a
place in that domain, we should at least find a semantic counterpart of the
proof theoretical dynamics. We should, for example, show that derivability
at a stage corresponds to some notion of semantic consequence.

I now come to the second difficulty: how do we gain control over the dy-
namics? The most important aspect of this difficulty is related to the effec-
tiveness of proofs. If the proofs are dynamic, how can we tell whether some
formula derived at a stage of a proof from I is finally derivable from I'?
Remember that the aforementioned definition of final derivability was non-
effective: it refers to all possible future stages of a proof. As a consequence,
it does not provide us with a criterion to decide on the basis of a proof at a
stage (and there are no other proofs) whether some formula is finally de-
rived. When swimming in decidable waters, semantic considerations may
provide us with such criteria. But these refer us outside of the proof itself.
Up to now, no published paper even partially meets the second difficulty.

Both difficulties are extremely important. If we cannot resolve them, we
can hardly claim to have an appropriate insight in the nature of the dynam-
ics of the proof theory of adaptive logics. In the present paper, viz. in sec-
tions 9-12 I shall show that both difficulties are resolved in terms of
blocks. I shall do so by applying the approach to one adaptive logic only,
APIL1, and shall keep the applications as simple as possible.
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3. Formal-logical proofs

To see that the inference from (1) and (2) to (3) is a correct application of
Disjunctive Syllogism, it is not required to be aware of the internal struc-
ture of the wffs involved. It suffices to see that the triple {(1), (2), (3)) has
the form (Av B, ~ B, A).

() (p&(~g2(r&s)))v(((rvp)Dg)vs)
2y ~W(rvp)og)vs)
(3) p&(~g>(r&s))

A different way to express this, is that one has to recognize a block and two
compounds of blocks. I represent them here in a provisional way (in which
I follow some obvious conventions on dropping parentheses):

@) [p&(~g>(r&snlvI(rvp)oq)vs]
6) ~lrvpog)vs]
©) [p&(~g>(r&s))]

Blocks may look like meta-variables, but they are not. They are formulas of
the object-language that are considered as unanalyzed. Of course, there are
other ways to analyze (1)-(3) in terms of blocks. Here is one of them:

@) ([pl& ([~ gl=2[r&s]) v {(rv p)>qlvsh
(59 ~([(rv p) > g]vsh
(6" [P1& ([ ~ gl = [r& s

Suppose that the proof is annotated: a number and a justification is attached
to each line, and the justification consists of the numbers of the lines from
which the formula is derived and the rule by which it is derived. In such a
case, we know which are the blocks that the author of the proof has mini-
mally distinguished, and this gives us a unique block analysis.# If the justi-
fication of (1) and (2) is “Premise” and the justification of (3) is “(1), (2);
Disjunctive Syllogism”, then the analysis is as in (4)-(6). If a (correct)
proof is not annotated, we may consider all possible annotations that make

4 Later I shall also use the term “formula analysis” to indicate that a formula that occurs
in a proof is reduced to one or more shorter formulas. For example, A& B is analyzed if both
A and B occur in the proof. Similarly, A > B is analyzed if either ~A or B occurs in the
proof (and these may be obtained from A D B by applying either modus tollens or modus
ponens in the presence of ~B, respectively A). Similarly for the formula analysis of goals
(formulas one tries to derive from the premises).
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it a correct proof, and each of these will give us a unique block analysis. In
view of this, I shall suppose in the sequel that proofs are annotated.

Let every step in a proof (every addition of a line to the proof) define a
stage of the proof. Obviously, the transition from stage n to stage n+1 may
modify the block analysis of the formulas in the proof, even of the formulas
that were present already at stage n. Here is an example:

1 (po~q)D(p&(~rv~p)) Premise

2 pDO~q Premise

3 p&(~rv ~p) 1, 2; Modus Ponens
4 }/ 3; Simplification

Let us now consider the four stages of this proof in terms of blocks. To

make life easier, I (provisionally) represent each block by a number be-
tween double square brackets.

STAGE 1:

1 [ Premise

STAGE 2:

1 [1] Premise

2 2] Premise

STAGE 3:

1 [21=[3] Premise

2 (2] Premise

3 [3] 1, 2; Modus Ponens
STAGE 4:

1 [2]o([4]&[5D) Premise

2 2] Premise

3 [4] &[5] 1, 2; Modus Ponens
4 [4] 3; Simplification

The identification of the blocks at the stages of this proof will be obvious.

But if we generalize it, we hit upon a problem. Suppose that the proof is
continued as follows:

5 pvipo~q) 4; Addition
The block analysis of stage 5 will contain the same lines as stage 4 plus

5 [41vlel 4; Addition
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For the application of Addition to be correct, the second disjunct might be
any block, and in this concrete proof it happens to be [2]. But there is no
need to identify it as such because none of the applied inference rules re-
quires that [6] is identical to [2].

Of course, the way in which blocks are represented may interfere here. If
a block is represented as a formula between square brackets, blocks that
have the same contents are identified. (Hence, the second disjunct in 5 is
[2].) So, let us be careful and look at possible further complications before
we settle the way in which blocks are represented.

Consider the following application of Addition:

6 pVv((po~q)D(p&(~rv~p))) 4; Addition

How shall this be blockwise analyzed? The second disjunct of 6 happens to
be the first premise. But the block analysis does not reveal this. By the time
the analysis arrives at line 6, we find there

6 [pv(po~q)o(p&(~rv~p)] 4; Addition

We know that we have to analyze it as
6  [plvi(po~a)o(p&(~rv~p)]

But remark that the block [(p o~ g) D (p&(~ rv ~ p))] nowhere occurs in
the proof, and hence cannot be identified with anything. For sure,
lp o~ gl > ([pl&[ ~ rv ~ p]), viz. [2] > ([4]&[5]), occurs in the proof.
But nothing in the (annotated) proof reveals that the second disjunct of 6 is
identical to the first premise. Only further analysis might reveal this — but
no sensible further analysis ever would reveal it. So, there seems to be no
good reason to write the second disjunct of 6 as [2] o ([4]&[5]).3

In such cases, the best policy seems to follow the strictest convention: we
consider blocks as identical only if they must be identified in view of the
annotation of the proof. This convention saves us further trouble. Indeed, if
the second disjunct of 6 were (p D~ g) D (~rv ~ p), should we analyze it
as [2]o[5]? And if it were p>((p D~ g) D (p&(~ rv ~ p))), should we
analyze it as [4] o ([2] o ([4]&[5]))?

In view of the convention, I shall write a block as a number and a formula
between double square brackets. The formula will be called the contents of
the block. The numbers allow us to indicate that two blocks with the same

5 The matter would be different if we learned from the annotation of the proof that 6 was
written by application to 1 and 4 of the derivable (but redundant) inference rule A, B/ A vB.



292 DIDERIK BATENS

contents are not identified, as in [4, p] and [5, p] The contents is mentioned
because we should be able to analyze it further in order to add steps to a
proof. Especially in view of the complications required by predicate logic, 1
also introduce a shorthand notation and write [p}* and [p[° instead of [4, p]
and [$, p]l. Let me stress again that the only function of the numbers is to
express that two blocks that have the same content are or are not identified.

4. The general block-analysis and the block language (for predicate logic)

What is the general procedure to be used in the block analysis of a proof?
We first write each formula in (the stage of) the proof as a single block.
Starting from the top, we look at the justification of each step. If a block
follows from one or two other blocks by some rule, the rule specifies
whether some blocks have to be analyzed further and in which way they
should be analyzed. An important convention is that, if a block is divided,
then it is divided everywhere in the proof. In stage 4 of the previous exam-
ple, block [p&(~ rv ~ p)]3 is replaced by [p[#& [ ~ rv ~ p]3 in both 3 and
1. If we did not do so in 1, we could not see from the block proof that 3 fol-
lows from 1 and 2.6

Moving to the predicative level involves quite a few complications.” At
first sight, it seems natural to let quantifiers function like the unary connec-
tive “~” with respect to blocks. This gives us such blocks as
[2,(Vx)(Pxv ~ Rax)] and such block formulas as (Vx)[17, Pxv ~ Rax],

(Vx) ([12, Px] v[29, ~ Rax]) — there is no system whatsoever behind the
numbers of these blocks and of those used in later examples, and I use the
full notation until the complications are settled.

The main complication is related to instances of formulas. Clearly, it
should be possible that both [14, Pa] and [52, Pa] occur in a proof (as
unidentified blocks). But suppose we are block-analyzing a proof that con-
tains

i (Vx)(Px) e
i+1  Pa from i by Universal Instantiation

or that contains

6 Some purposes do not require that we can see so. So, sometimes there is no need for the
convention — see section 8.

7} shall disregard functions, but including them does not involve any special difficulties.
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J a=b
j+1  Pa>Qa s
j+2  Pa> Qb from j and j+1 by Substitutivity of Identity

What are the recognized blocks in such cases? In the first example, we have
to recognize a block that is common to i and i+1, we have to see that x oc-
curs in that block in £, and that a occurs in the block in i+1, and we have to
see that the block in i is preceded by a universal quantifier over the very
same x. It seems to be a step in the good direction to analyze the first ex-
ample as follows:

i (VO[T P-](x) .
i+1  [7,P-](a) from i by Universal Instantiation

in which the dashes denote open places that have to be filled by the variable
or constant mentioned behind the block. On the same account, the second
example becomes

J a=b
j+1 [5,Pac0-](a) ..
j+2 [5Pa>Q-](b) from j and j+1 by Substitutivity of Identity

Two things are special here. First, in view of the justification of this proof
fragment, there is no need for the first occurrences of a in j+1 and j+2 to be
recognized as such. The second remark concerns line j. Its formula may be
seen as a block with two open spaces, in which case it would be analyzed,
say, as [4, —=-](a, b). But, in view of the justification of this proof frag-
ment, the block [4, — = -] should be recognized as an identity. Once it has
been so recognized, there is no sense in which it might be not identified
with any other identity.

The remark hinges on the nature of identity formulas. On the one hand,
identity is a binary predicate, which shows in expressions like [4, — = —|(a,
b). Once the binary predicate is identified as an identity, its force becomes
that of a logical term, and hence its meaning becomes fully transparent.

Clearly, this approach should be sophisticated. Variables and constants
should themselves be seen as blocks, that need not to be identified even if
their contents is identical. If, for whatever reasons, the first occurrence of a
in j+1 and the first occurrence of a in j+2 have been localized, then the pre-
sent analysis gives us:

J a=b
i+l [5P-o0-](a,a) ...
j+2  [5,P->0-](a,b) from;and j+1 by Substitutivity of Identity
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However, there is no need why the two occurrences of a in j+1 should be
identified. This leads to a more sophisticated (and final) analysis:

J [11, a] =[12, 5]

j+l IIS,P—DQ—]](HZI,CI]},[[II,G]])

j+2  [5,P-5Q-1(21,4],[12,5]) fromjand j+1 by Substitutivity of
Identity

Applied to the first example, this analysis results in

i (V[35, xD)[7, P-1([35, 1) :
i+1 7, P=]([121, a]) from i by Universal Instantiation

We can easily increase readability by extending the shorthand notation. I
shall write the number of a block as a superscript following the right
bracket, forget the brackets around constants and variables (as the number
refers to one symbol only), and write the constants and variables (followed
by their superscripted number) instead of the dashes that indicate their
place. On these conventions, we obtain a still unambiguous (and more
readable) notation:

i (Vx35)[Px3s])7

i+1  [Pa21]7 from i by Universal Instantiation

and

j all=p12

i+l [Pa? > Qals .

j+2  [Pa? o Qb5 from j and j+1 by Substitutivity of
Identity®

The upshot is that we have four kinds of blocks. Let us give at once names
to their sets. Let sB be the set of sentential blocks. These contain fully un-
analyzed formulas, for example [14, p], [81, a=b], [95, (r&Pa) v (Vy)
(Ry> Qby)] — in shorthand: [p]'4, [a=b]31, [(r&Pa)v (Vy)(Ry>Qby)]%.
cB and v B will be the set of constant blocks and variable blocks
respectively, having members as, for example, [18, c] and [63, x] — in
shorthand c!8 and x63. Finally, fB will be the set of functional blocks. These
contain a formula with, say, n (= 1) open places, and have to be followed

8 Remember that I supposed that the first occurrence of a in j+1 and in j+2 had been lo-
calized. If they are not, the block formulas read [Pa > Qa'']® and [Pa > Qb12]%; in full
notation [5, Pa> @ - [([11, a]) and [5, Pa> Q- ([12, b]).
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by an n-tuple of members of cBUVB; examples: [15, P-[([99, a]), [54, P-
&~(Q->R--)([39, 4], [14, 4], [38, x]) and [71, (Ix)R—cx Db=d|([39, a]);
in jﬁl_,?rthand: [Pa®®]!5, [Pa*®&~(Qa'* 5 Ra39x38]54 and [(Ix)Ra9cx>
b=d]'!.

In the last formula, the occurrence of 432 is transparent, whereas the oc-
currence of the other constants and variables is not;? no constants or vari-
ables occur transparently in members of sB. Remark that, in the second ex-
ample of a functional block, two transparent occurrences of a are not iden-
tified with each other.

It should be clear to the reader that, on the above conventions and in view
of the first paragraph of this section, any stage of an annotated proof de-
fines a unique block analysis. The latter displays a structure that corre-
sponds to the minimal discriminations made by the author of the proof. As
the analysis is unique, we may define block proofs as obtained from
‘normal’ proofs by the block analysis. This saves me the trouble to intro-
duce a proof theory for blocks — it is possible to do so, but we would not
gain anything for present purposes.

Any correct proof of any formal logic may be reconstructed in terms of
blocks along the above lines. Also, each stage contains at least as much dis-
criminations as each previous stage; in other words, a block may be turned
into a block formula, but not the other way around.!?

Some readers might object that it is impossible to find out that
[Pv ~Rab] and [P v ~Rab] are two occurrences of the same block without
coming to know the formula contained in the block. Actually, they are
mistaken. The mental operations required in checking that two blocks are
identical need not include the mental operations required to grasp the con-
tents of the blocks. Similarly for identifying one block as an instance of an-
other block. Direct arguments are obtained from observation. A strong indi-
rect argument derives from (efficient) computer programming. Any pro-
grammer knows that there is no need for a computer programme to recog-
nize any symbol in the string “(p v g)&~r" as a propositional letter, con-
nective, etc., in order to find out that it is identical to “(pvq)&~r’.
Similarly, a procedure that is able to recognize “(pv q)&~r" as the con-
catenation of “(p v ¢)”, “&”, and “~r” need not find out anything about the
contents of the first and third elements of the concatenation. However, a
programme needs to recognize the second string of the concatenation as a
conjunction symbol in order to derive the first string by Simplification.
Similarly, a procedure may identify Pav~Raa as an instance of

91 relaxedly use “transparent” to refer both to formulas and to block formulas.

10 Alternatives are possible here, but they do not fit in the present programme.
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(Vx)(Pxv~Rax) as follows: after deleting the quantifier in the second
string, compare each symbol in the strings; if the symbol in the second
string is an x, the symbol in the first string must be an a; otherwise the
symbols must be identical.!!

I now come to the definition of the block language LB. I shall proceed in
an indirect way. Let L be the usual language schema for CL; for future ref-
erence, I say that L is defined in the usual way from (S, C, V, P1, P2, sy T
which S is the set of sentential letters, C the set of (letters for) constants, V
the set of variables, and P the set of predicates of rank r. Let F be the set of
formulas and W the set of wffs of L.

sB is defined in such a way that, for any Ae W, sB contains a denumer-
able set of blocks of the form [i, A]. Similarly for ¢B (from C) and for vB
(from V). The definition of functional blocks is just a trifle more compli-
cated. Any A e F-W defines a set 6(A) of strings in which at least one oc-
currence of a free variable is replaced by a “-”; for example
o(Pxax>(Vx)Qxy) = {P-ax>(Vx)Qxy, Pxa->(Vx)Oxy, Pxax>(Vx)
Ox—-, P—a->(Vx)Qxy, P-ax2>(Vx)Qx~-, Pxa->(VYx)Qx-, P-a->
(Vx)Qx-}. B contains a denumerable set of blocks of the form [i, A]. for
any member of {A | for some BeF-W, Aeo(B)}. Where there are n open
places in A, we shall say that [i, A] has rank n; let fB!, fB2, ... be the sets of
functional blocks of rank 1, 2, ...

The set of all blocks, sBucBuUVBUTB, is denumerable, and hence all
blocks that have a different second element may be given a different first
element (i.e. number).12

BF, the set of block formulas, is the smallest set such that (i) sB S BF, (ii)
if AefB” and 0, oy, ..., o, € cBUVB, then A(ay, a, ..., a,) € BF, (iii) if
oy, 0y € cBUVB, then ay=0p € BF, (iv) if A € BF, then ~A € BF, (v) if A,
B € BF, then (A > B), (A&B), (Av B), (A=B) € BF, and (vi) if A € BF and
o € VB, then (Va)A, (Jo)A € BF. The set of well-formed block formulas,
BW, may simply be defined by saying that A € BW iff the result of delet-
ing all occurrences of “[”, “J”, “,”, and numbers in A is a member of W.
Needless to say, BF and BW are denumerable.

11 That the matter is more complicated if a universal quantifier over x occurs within the
scope of the first one does not change anything to the general claim I am making.

12 Here is an obvious way to do it. Given a list A, A,, ... of the members of F, start a
new list and add, for each i (= 1), first a copy of all formulas already in the list (if any) and
next A; This gives us: A}, A, A,, A, A, A,, A;, etc. This well-defined list contains each
member of F a denumerable number of times. The latter list is then turned into a list of
blocks: [41-3, A, ], [42-3, A, ], [4°-3, A,], etc. which contains all members of sB. For cB, vB,
and fB we use respectively 4'-2, 4i-1, and 4¢ (i 2 1).
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5. Block semantics for CL

The semantics for the propositional level is very simple. v assigns values
from {0, 1} to members of BF and the rules for block formulas are as usual.
For example, v([p]?&[q]* = 1 iff v([p]7) = v([g]*) = 1. Remark, however,
that nothing prevents, for example, that v([p&q]!7) = 1 and v([p]”) = 0; or
that v([p]”) # v([p]'2). The values of primitive blocks are independent,
even if their contents are related. It is important to realize this; it is a typical
feature of the block approach and essential for its force, as we shall see in
subsequent sections.

I now come to the semantics for the predicative version. This semantics is
very close to the usual semantics for CL. As one would expect, members of
cB and vB are treated like constants and variables, members of sB are
treated like sentential letters, and members of fB” are treated like predicates
of rank r. Here is the list of meta-variables that I shall use from now on:
—¢"1, 8", ... for members of fB”

— 7"y, ', ... for members of Pr

-, B, a4, ... for members of cB\VB as well as for members of CUV
—A, B, ... for members of BF as well as for members of F

All ambiguities will be resolved by the context.

A BCL model M = (D, v) in which the domain D is a set and v is an as-
signment defined by

Cl.1 v:sB—{0,1}
Cl2 v:cBuvB—D
C1.3 v :fB" ->P(D) (the power set of the r-th Cartesian product of D)

The valuation function vy determined by the model M is defined as follows:

C2.1 vy: BW—{0, 1}

C2.2 where AesB, vi(A) = v(A)

C2.3 vp(p(0...0)) = 1iff (v(0y), ..., v(o,)) € v(g")

C2.4 vy(o=B) = 1 iff v(ct) = v(B)

C25 vp(~A) =1iff vi(A) =0

C2.6 v({ADB) = 1iff y(A) =0 orv(B) = 1

C2.7 vm((Va)A(e)) = 1 iff vy (A(e)) = 1 for all models M* that differ at
most from M in v(o).

Other logical terms are supposed to be explicitly defined. Validity and se-
mantic consequence are defined as usual.

For PIL, the basic paraconsistent logic presented below, I consider ®-
complete models only. In preparation, I introduce this restriction (in the
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same style) in the above block semantics. This leads to the following
changes:

C1.2 v :cBUVB—D is such that D = {v(a)|o.ecBUVB)
C2.7 vm((Vo)A(e)) = 1 iff vi(A(B)) = 1 for all B € cBuUVB

For the following lemmas and theorems, we suppose that CL refers to a
specific inference system that defines (normal) CL-proofs and hence block
proofs. Depending on the context, BCL refers to CL-block-proofs or to the
above block semantics.

There is an obvious way to faithfully embed BCL in CL. Considering L,
letS={py, p2, ... },C={ay, ay, ...}, V={x1, x2, ...}, and, for any r, P" =
{P"y, P"5, ...}. Also, let all blocks with a different second element have a
different first element — see the next to last paragraph of the previous sec-
tion. Define a translation function tr as follows:

where [i, o] € ¢B, tx([i, o]) = a;

where [i, o] € vB, tx([i, af) = x;

where [i, A] € sB, tx([i, A]) = p;

where [i, ¢'] evB, tx({[i, ¢']) = Pr

tr(~A)=~tr(A)

tr(ADB) = tr(A)Dtr(B); similarly for v, &, and =
tr(a=B) = tr(a)=tr(B)

tr((Vo)A) = (V tr(a))tr(A); similarly for 3
tr(I)={tx(A)|AeT}.

The embedding is completed by the two following theorems.

Theorem 1. T t—pgcr Aiff tr(I') ¢ tr(A).

Proof. For the left-right direction, consider a block-proof (at its ‘final’
stage) of A from I'. Transform it to a list of wffs obtained by replacing any
block formula B in the block proof by tx(B). To see that the result is a
proof of tx(A) from tx(I), first note that the translation of each premise of
the block proof is a member of txr(I), and that tr(A) is the last step in the
proof. Next, an obvious induction on the length of the proof delivers the re-
quired result. To make things concrete, suppose that the proof proceeds in
terms of a system with axiom schemes. If the block formula C is added be-
cause it is an axiom, then its form should reveal so. But then it is easily
seen that tr(C) is an axiom as well. If C is derived by Modus Ponens from
the block formulas D> C and D, then obviously tr(C) follows by Modus

Ponens from tr(D>C), ie. tr(D)otr(C), and tr(D). Similarly for
predicative rules.
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The right-left direction is even easier. Simply consider the block analysis
of the proof of tr(A) from tr(IN). The block analysis of the original proof
is obtained by systematically replacing members of sB, B, vB, and fB" by
members of the same sets. B

Theorem?2. TEpgcLAifftr(T)FE L tr(A).
Proof. For the left-right direction, suppose that t r(I') ¥ ¢, tr(A) and
hence that there is a CL-model M = (D, v) that verifies tr(T") and falsifies
tr(A). This model is readily transformed into a BCL-model M' = (D, v')
by setting v ' (A) = v(tx(A)) for any block A. I leave it to the reader to ver-
ify (by induction) that M' verifies I and falsifies A.

For the right-left direction we suppose that I' ¥ g¢y, A and proceed in the
same way, this time transforming the BCL-model that verifies I" and falsi-
fies A into a CL-model that verifies tr(T") and falsifies tr(A). W

In view of the correctness and completeness of CL with respect to its se-
mantics:

Corollary 1. T g, Aiff T = gL A.

It is important to realize that we consider a block proof as the result of the
block analysis of the final stage of a (normal) proof of A from I" (where
{A}UT cF). A is a semantic consequence of I"in view of the blocks that
have been discriminated in members of I and in A at the final stage of the
block proof. This tells us nothing about the relation between the semantic
counterpart of the different stages of the block proof. I shall comment on
that in the next section.

6. Stage by stage vs. continuous semantics

It is useful to consider the semantic counterparts of the different stages of a
proof. As far as the previous analysis is concerned, the models of stage n
need not be a superset of the models of stage n+1. Consider again the dif-
ferent stages of the proof of section 3. The models of the premises of stage
2 verify [(p>~q) o (p&(~rv ~p))]! and [p>~q[?; [p&(~rv ~p)]3 is false in
some of them. The models that verify the premises in stage 3 verify
[p>~ql?, [p&(~rv~p)I3, and [po~gl? >[p&(~rv ~p)]3, but some such
models falsify [(p>~g) > (p&(~rv~p))JL.

In other words, the block semantics proceeds stage by stage. If a proof is
correct, then, at each stage, all block wffs occurring in the block analysis of
the proof at that stage are semantic consequences of the block premises at
that stage. But the models of the block premises at some stage need not
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verify the block premises at a previous (or later) stage if the block premises
at the two stages are different.

One might prefer a continuous semantics: a semantics on which the mod-
els of the premises not only verify all block wffs that occur in the proof at
the stage, but also verify all block wffs that occur at previous stages. After
all, if a block formula A belongs to the proof at stage n, and disappears
from it at stage n+1, then it has been analyzed, i.e. turned into a (more
complex) block formula B. There clearly is a relation between the A and B,
in that the latter is an analysis of the former. This fact would be clearly re-
vealed by a continuous semantics. A continuous semantics would moreover
reveal that more and more consequences of the premises are obtained as the
proof (and the block analysis of the premises) proceeds, and that, at least
for a monotonic logic like CL, no losses occur during the journey.

Let us again consider the proof of section 3. The models of stage 2 are
obviously a subset of the models of stage 1. The first problem occurs at
stage 3, at which the block

(D [p2~g)>(p&(~rv-~p)!

disappears from the proof and is replaced by
®  [po~ql olp&(~rv~p)P?

To obtain a continuous semantics, we want the models of each stage to be a
subset of the models at the previous stage. In other words, we want to char-
acterize the transition between stage 2 and 3 as the transition from the set of
models of stage 2 to the subset containing the models in which (7) and (8)
have the same truth value, viz. 1. This might even be expressed in the nota-
tion, by writing (9) rather than (8) — a line I shall not continue.

) llp > ~gI? o [p&(~rv ~p)IP]!

A continuous semantics is easily obtained. On the stage by stage semantics,
the models for a stage of the proof are the models verifying the premises as
analyzed at that stage. On the continuous semantics, the models of a stage
are those that verify the premises as analyzed at the stage and at each pre-
vious stage.

It is easily seen that, if a set of premises is consistent then each stage of
the proof has a set of models on the continuous semantics, and this set be-
comes in general smaller as the proof proceeds. To be precise, the set be-
comes smaller whenever a block is analyzed as a block formula or when-
ever two blocks are identified. It is also easy to see that, on the continuous
semantics, the set of models of a proof at a stage is the intersection of the
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set of models of that and each previous stage on the step by step semantics.
If the premises are consistent, this intersection is never empty.

Incidentally, the continuous semantics is attractive for a different reason.
Every step in the analysis of the premises provides us with new informa-
tion. The continuous semantics reveals this in that the set of models be-
comes restricted with every such step. The continuous semantics also re-
veals that each step in the analysis of the premises is in principle informa-
tive: if one were to skip over a number of such steps, and move directly to a
deeper analysis of the premises, then one obtains a larger set of models.

1. Information from deduction, omniscience, and uninformative moves

It is often said that deduction does not provide one with new information.
This largely derives from the view that a deductive inference is correct iff
all the information contained in the conclusion is contained in the premises.
This view is obviously correct, but reveals only part of the truth about the
matter. There is a sense in which it is ridiculous to claim that, for example,
Godel’s theorem did not provide us with new information. And for some-
one who is not a trained logician, to see that ~B is derivable from ~(A&B)
and A may be most informative.

The continuous block semantics offers a means to approach this notion of
information. It does not allow for an exhaustive theory about it, but expli-
cates a sensible part of the story. With every new step in the block analysis,
more information is unveiled. That this is so, is expressed in terms of the
most traditional and unquestioned criterion: the set of models is re-
stricted.!3

Omniscience is directly related to deductive information. Omniscience is
partly related to the available deductive rules and to economic considera-
tions. Even if each of these partly goes beyond the resources of the block
approach, the latter allows for a sensible partial explanation of the riddle.

That certain sentences belong to one’s knowledge system, does neither
warrant nor require that these sentences have been analyzed to the deepest
level — if there even is one, see sections 13 and 14. Only to the extent that
the block analysis of these sentences is pushed deeper, they do release the
information contained in them.

I3 The information meant here is quite distinct from the one that plays a role in the
relevance logic tradition (to which I am most sympathetic). The notion of information that
surfaces from that tradition is a rather old-fashioned one: sets of derivable disjunctions of
primitive wffs.
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The results offered by the block approach seem rather realistic. A person
who derives A from A&B, is bound to see that B is derivable as well. But
this person should not realize all the consequences of either A or B, and
should not necessarily identify these blocks, say [A]? and [B]/, with all
blocks that share their content with one of them. The least one should con-
clude is that the block approach, in contradistinction to the traditional ap-
proach to deduction, provides us with an instrument for discussing the con-
sequences that a rational person should derive from his or her knowledge.

I now come to a problem that is completely and satisfactorily solved by
the block approach. All sensible logicians realize the difference between,
say, Simplification and Modus Ponens on the one hand, and Addition and
Irrelevance (A / BoA) on the other. The former two are informative in a
sense in which the latter two are not. And yet, the move from A&B to A in-
volves a weakening, just as much as the move from A to Av B. On tradi-
tional approaches, the distinction is phoney. In [15], Hempel argued that
the problem of partial self-explanation cannot be solved, because any ex-
planation can be phrased as a partial self-explanation: the explanation of Pa
from (Vx)(Qx>Px) and Qa can be reformulated as an explanation of
(Pa&Qa) v (Pa&~Qa) from (Vx}Qx>Px) and (Pa&Qa)v (~Pa&Qa),
which Hempel deems a partial self-explanation. !4

The block approach enables us to make the desired distinction.
Informative moves such as Simplification and Modus Ponens require a
deeper block analysis of the premises. Uninformative moves such as
Addition and Irrelevance at most require the introduction of a new block. In
model theoretic terms: informative moves require a restriction of the mod-
els whereas uninformative ones do not.

In a sense, the block approach discloses a truism. When hearing an utter-
ance, some people apprehend it and are even able to retain it for a long
time, but fail to see its consequences because they fail to see its logical
structure. Some do not realize that “Children are singing” and “Children are
inexperienced” start off with a different quantifier. As all the words sound
familiar, no bell rings; they think they grasped both sentences. And in a
sense they do: they can reproduce them. Logicians often conclude that such
people are just unintelligent, but this is only part of the truth. As we shall
see in section 14, the human ability to (consciously or more probably un-
consciously) neglect deductive information contained in sentences might be
essential for — that is, a prerequisite for — the progress of our knowledge

14 years ago, in [1], I tried to crack this nut by introducing a theory of meaning relations.
An attempt to refine this theory brought me to paraconsistent logics.
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in general and of our conceptual systems more in particular. Needless to
say, this is not a plea against elementary logic.13

8. Proof heuristics and pedagogical matters

I refer to [6] for natural proof heuristics, and consider the type of formal
system and the type of heuristics discussed there. Blocks are very intuitive
in proof heuristics (and in automatic theorem proving).

A proof search contains analyzing moves and goal directed moves. Some
analyzing moves apply to a single formula. In this case, one typically goes
one level down in looking at the block’s contents. For example, one looks
for blocks that can be analyzed as [...J&[...] in order to apply
Simplification, or for blocks that can be analyzed as ~([...]&[...]) in order
to apply Negation of Conjunction. The matter is somewhat more compli-
cated if the analyzing move requires the intervention of another formula.
For example, in order to apply Modus Ponens, one looks for a block that
can be analyzed as [...]>[...], where the antecedent either occurs as such
in the proof or may be analyzed in such a way that it is identical to a block
formula that occurs in the proof.

It is often useful to check off the formulas that have been analyzed. This
helps to direct (especially the students') attention. For example, in the pres-
ence of a block formula of the form ~A or of a block formula of the form B,
a block formula of the form A > B may be checked off. Again, A and B may
be single blocks, but often they are not (at the stage at which the complex
formula is checked off or at a later stage).

Goal directed moves may themselves lead to the analysis of a (sub)goal
or to steps in the proof, for example the introduction of a hypothesis. I
leave to the reader the exercise to translate the instructions for such moves
from [6] in terms of blocks.

I also refer to section 6 and 7 where I argued that the continuous seman-
tics reveals the informative character of the steps in the block analysis of
the premises.

The present purpose (proof search) does not require that the block analy-
sis of previous stages is retained, and does not require that a block is ana-
lyzed everywhere in the proof. For example, once a block formula has been

15 Elsewhere, I defended a contextualist view — see [3], [7] and [8]. The same mech-
anisms — even those of the deductive logic sort — do not apply in all situations. ‘Natural’
languages should be considered as flexible means for communication and thinking, rather
than as monoelithic systems. The meanings of their terms get at best fixed, and usually only

partially and vaguely, in a specific context. The present section seems well in agreement
with these views.
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checked off, it becomes ‘in principle’ useless and might again be consid-
ered as a single (checked off) block. I shall not pursue this line of thought
here, as I need the block analysis from section 4 for the subsequent sec-
tions.

It is correct that the proof heuristics story may be told in terms of meta-
variables. But this is so only because they share some features with blocks.
Moreover, the story is more transparent in terms of blocks. Especially be-
ginning students should be taken away from being impressed by the com-
plexity of strings of symbols. We want them to learn, for example, to see
(1) as a disjunction of two blocks, and (2) as the negation of the first block
in (1). More often than not, it is extremely helpful to convince them to dis-
regard the contents of the blocks.

Precisely the same situation arises if one tries to teach students to formal-
ize sentences from natural language in an ad hoc formal language.
Especially (but not only) in the case of a propositional formal language, one
tries to induce the students to see a rather complex sentence as the concate-
nation of a few blocks and some logical terms. I now leave the matter and

turn to demonstrating the use of the block approach with respect to dynamic
proofs.

9. The paraconsistent logic PIL

The inconsistency-adaptive logic APIL1 is based on the paraconsistent
logic PIL. The latter consists of full positive classical logic together with
A v ~A (alternatively, (AD~A)D~A). A (perhaps unexpected) result is that
replacement of identicals is restricted as follows:16

A=2 o=B>(ADB) where B is obtained by replacing in A an occurrence
of o that occurs outside the scope of a negation by B

Semantically, PIL is characterized!” as follows. Let F~ be the set of formu-
las of the form ~A. A model is a couple M = (D, v) in which D is a set and v
is an assignment function defined by:

ClLl v:S— {01}
Cl2 v:CuV - DissuchthatD = {v(a) | € CUV}

16 gee [11] and [13] for a justification of the proviso, which does not prevent that full
positive CL (theorems and rules) is contained in PIL.

17 C1.2 restricts the semantics to models with countable domain D. A more general
semantics is presented in [13], but the present is closer to the usual CL-semantics.
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Cl3 v :P" — P(D") (the power set of the r-th Cartesian product of D)
Cl4 v:F - {01}

The valuation function vy determined by the model M is defined as follows:

C21 wvy:W—={0,1)

C22 where A € S, vil(A) = v(A)

C23  wvprray...op) = 1iff (v(oy), ..., v(o,)) € v(nth)
C24 wvy(a=B) =1 iff v(o) = v(B)

C25 wvu(~A)=1iff vi{A) =0orv(~A) =1

C26 vyADB)=1iff vyy(A)=0orvy(B) =1

C2.7 vy(A&B)=1iff vi(A) = 1 and vy(B) = 1

C28 vumAvB)=1iff n(A)=1orvy(B)=1

C29 wvy(A=B)=1iff vi(A) = vi(B)

C2.10 v((Va)A(o)) = 1 iff vi{A(B)) =1 forall B € CuV
C2.11 vy((Jo)A()) =1 iff vi{A(B)) = 1 for at least one B € CUV

Truth in a model, semantic consequence and validity are defined as usual. I
refer to [11] for a proof that PIL is sound and complete with respects to the
PIL-semantics and for some further meta-theorems.

10. The inconsistency-adaptive logic APIL1

I now turn to the inconsistency-adaptive logic APIL1. This logic adapts it-
self to the specific inconsistencies that occur in a theory or set of premises.
The basic sources about APIL1 are [5] and [11]. I refer to those papers
(and to [10]) for motivational matters and for many technical details, but
mention enough technical stuff to give logicians a feel of what is specific
about APIL1. Let me start with an example of a very simple APIL1-proof.

1 pv~g Premise

2 ~pvr Premise

3 g Premise

4 ~svi Premise

5 s&~p Premise

6 p 1, 3, Av~B,B / A {q}] deleted at stage
11

[7 r 2,6;,~AvB,A/B {q. p}] deleted at stage
11

8 s 5;A&B/A 0]

9 ~p 5,A&B/B %)

10 (p&~p)v~q 1,9;A, BvC/(B&AVC O
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11 (p&~p)v(g&~q) 10,3;AvB,C/Av(C&B) @
12 ¢ 4,8,~AvB,A/B {s}

Lines 6 and 7 are typical conditional derivations. The rule Av ~B, B/ A is
not valid in PIL. Nevertheless, APIL1 enables us to apply the rule pro-
vided B is reliable. At the moment one may take this to mean that one may
rely on the consistent behaviour of B. In this specific case, B corresponds to
g, and for this reason we list {g} as the fifth element of line 6. The reason-
ing for line 7 is similar, with a small exception. To derive line 7 from 2 and
6, p should be reliable. But line 6 depended itself on the reliability of 4.
Hence line 7 depends on the reliability of both p and g, as is indicated in its
fifth element. For lines 8-10, no formula needs to be reliable. At line 11,
we discover that the consistent behaviour of p is connected to that of g: one
of them behaves inconsistently. The strategy followed by APIL1 is to con-
sider both as unreliable.!® As a result, lines 6 and 7 have to be deleted as
soon as line 11 is added to the proof. Line 12 contains again a conditional
derivation. As the proof is propositional, it is easy to see that, on the pre-
sent premises, s is consistent and that its consistent behaviour is not con-
nected to the consistent behaviour of any other formulas. Whence line 12
will not be deleted at any later stage of the proof. Below I offer the precise
definitions and rules that govern this proof.

Suppose that, in an extension of the proof, we were able to derive p&~p
without relying on any other formula. At that moment, line 11 would not
any more provide a reason to consider g as unreliable. Hence, a duplicate of
line 6 could be added again to the proof. In general, the addition of new
lines may render underivable formulas that were derived earlier (because
new formulas turn out to be unreliable), but may also render formulas
derivable that were not derivable earlier (because formulas that appeared
unreliable earlier turn out to be reliable). In other words, we have to distin-
guish between derivability at a stage, and final derivability. As mentioned
in section 2, a formula is finally derivable if it is derived at some stage and
will not be deleted in any (possibly qualified) extension of the proof.

The example should give the reader an idea of both the dynamic character
of APIL1-proofs, and also of the adaptive character of this logic. The logic
reacts to the specific (disjunctions of) inconsistencies that occur in the
proof. By its reference to reliability, it allows us to interpret a set of
premises ‘as consistently as possible’.

Let me now turn to the precise formulation of APIL1. As this is a pred-
icative logic, several definitions are somewhat tedious. At the propositional

18 Other inconsistency-adaptive logics follow a different strategy. See [11] for the
APIL2-strategy, which is less cautious than that of APIL1.
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level, all is much simpler. I trust that the above example will make it easier
for the reader to get a grasp on the definitions.

Where (A&~A) is a formula in which the variables oy, ..., o (k 2 0) oc-
cur free (in that order), let 3(A&~A) be (Joy)...(Joy)(A&~A). Let
DEK(Aj, ..., Ap) refer to 3(A1&~A1) v...v I(A,&~Ap). | shall say that A,
..., Ay are the factors of DEK(Ay, ..., Ay). As permutations of the factors
and of the quantifiers in *“3” result in equivalent formulas, I shall also use
sets to refer to any such permutation, as in DEK(Y).

It is handy to write APIL1-proofs in a specific format (as in the above
example) according to which each line of a proof consists of five elements:

(i)  aline number,

(i1) the formula derived,

(iii) the line numbers of the wffs from which (ii) is derived,

(iv) the rule!? that justifies the derivation, and

(v) the set of formulas on the consistent behaviour of which we rely in
order for (ii) to be derivable by (iv) from the formulas of the lines
enumerated in (i1i).

The formula in (ii) is a wff, but (v) may contain open formulas. For exam-
ple, Px occurs in (v) if (ii) is derived relying on the falsehood of
( Ix)(Px&~Px).

We need some definitions. A occurs unconditionally at some line of a
proof iff the fifth element of that line is empty. A behaves consistently at a
stage of a proof iff I(A&~A) does not occur unconditionally in the proof at
that stage. The consistent behaviour of A} is connected to the consistent be-
haviour of the members of A iff DEK({A } UA) occurs unconditionally in
the proof and DEK(©) does not occur unconditionally20 in the proof for
any © c{A}UA. A is reliable at a stage of a proof iff A behaves consis-
tently at that stage and its consistent behaviour is not connected to the con-
sistent behaviour of any other formula.

Apart from the premise rule, proofs in APIL1 are governed by an un-
conditional (meta-)rule, a conditional (meta-)rule and a deletion rule (that
causes the dynamics of the proofs).

RU If = py (A1&...&A,) DB, and Ay, ..., A, occur in the proof, then
add B to it. The fifth element of the new line is the union of the fifth
elements of the lines mentioned in its third element.

19 As appears from the examples, I mean an application of the meta-rules RU or RC (see
below), rather than one of these rules themselves.

20 gee sections 4 and 5 of [4] for the rationale of this requirement.



308 DIDERIK BATENS

RC If —pqL DEK{CY, ..., Cp}Vv((A 1 &...&A,;)DB), and Ay, ..., A, oc-
cur in the proof, then add B to it provided that each factor of
DEK{Cjy, ..., Cy} is reliable (at that stage). The fifth element of the
new line is the union of {Cy, ..., C,;} and of the fifth elements of the
lines mentioned in its third element.

RD If Cis not (any more) reliable, then delete from the proof all lines the
fifth element of which contains C.

Wiffs that occur unconditionally are PIL-derivable from the premises (and
cannot possibly be deleted later). The unconditional occurrence of DEK-
formulas at a stage determines which formulas are reliable at that stage.
Wifs that occur in the proof at a stage are derivable at that stage. But we
clearly want a more stable notion, called final derivability, that does not
depend on the stage of the proof.

Definition. An extension of an APIL1-proof from I is intelligent iff: if both
DEK(Z) and DEK(X U ®) occur unconditionally in the extension, then the
former precedes the latter.2!

Definition. A is finally derived at some line in an APIL1-proof iff it is the
second element of that line and the line will not be deleted in any intelligent
extension of the proof.

Definition. I" t— ppiL1 A (A is finally derivable from T') iff A is finally de-
rived at some line in an APIL1-proof from I,

Like CL, PIL is not decidable. Hence, unlike for its propositional frag-
ment, there is no algorithm for writing intelligent proofs. Yet, Cnaprp1(D),
the set of APIL1-consequences of I, may be characterized without refer-
ring to the dynamics of the proofs (but by referring to PIL only).

In order to characterize APIL1 semantically, we need some more defini-
tions. EK(M) = {A | vy( 3(A&~A))=1}. DEK(A) is a minimal DEK-conse-
quence of I'iff I' = pyr, DEK(A) and, for no © cA, I k= pyp, DEK(®). U(DD),
the set of unreliable formulas, is the set of the factors of all minimal DEK-
consequences of I'. A PIL-model M of T' is an APIL1-model of I' iff
EK(M) cU(T).

21 Intuitively: if a formula is reliable on the premises (in an absolute sense), then it is not
unreliable at any stage in an intelligent extension of the proof.
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Definition. I' = pppr1 A iff A is true in all APIL1-models of I".22

That the proof theory of APILI is sound and complete with respect to its
semantics is proved in [11]. I now turn to the problems raised in section 2.

11. Block semantics for APIL1 — a dynamic semantics

In section 2, I argued that we need a semantic counterpart for the dynamics
of the proof theory of inconsistency-adaptive logics. The block approach
(and nothing else that I can imagine) enables us to do so. Let BPIL, re-
spectively BAPIL1, refer to the block proof theory as well as to the block
semantics of PIL, respectively APIL1.

The BPIL-semantics is easily obtained. We consider the block language
LB and define BF~ as the set of all (primitive and other) block-formulas of
the form ~A — “~” followed by a block formula. For this language we de-
fine a BPIL-model as a couple M = (D, v) in which D is a set and v is an
assignment function defined by:

Cl.1 :sB—{0, 1}
C1.2 : cCBUVB —D is such that D= {v(a) | o« € cBUVB}

v
v
Cl3 v :fB" — P(D") (the power set of the r-th Cartesian product of D)
Cl4 v :BF—{0,1)}

The valuation function vy determined by the model M is defined as follows:

C2.1 wvy:BW—{0,1}

C2.2 where A € sB, vi(A) = v(A)

C23  wplgray...a,) = 1iff (v(og), ..., v(e,)) € v(g")
C24  vy(o=B) = 1iff v(er) = v(B)

C25 wvpm~A)=1iffvi(A)=0orv(~A)=1

C26 vMADB)=1iff nf{A)=0orvy(B)=1

C27 vmA&B) =1iff vi{A) =1 and vi(B) = 1

C28 vpAvB)=1iff v(A)=1orvy(B)=1

C29 vmA=B) = 1iff vi(A) = vi(B)

C2.10 vp((Va)A(@)) =1 iff vi{A(B)) =1 for all B € cBuUVB
C211 wvp((Fa)A(e)) = 1 iff vi(A(B)) = 1 for at least one B € cBuUVB

22 The inconsistency-adaptive logic APIL2, which is also based on PIL, has a much
simpler semantics: the APIL2-models of T are the minimally abnormal PIL-models of I".
However, the proof theory of APIL2 is more complex than that of APIL1.
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Truth in a BPIL-block-model, semantic consequence and validity are
defined as usual. That the BPIL-semantics is sound and complete with re-
spect to BPIL-proofs may be shown, as for CL, by an embedding of BPIL
in PIL. Actually the translation function is the same as for CL and so pro-
ceeds the proof of

Theorem 3. T Fppy A iff tx () — pyp, tr(A).

The proof theory of BAPIL1 is defined (again) as the result of the block
analysis of an APIL1-proof.

The semantics of BAPIL1 is obtained from the semantics of BPIL in the
same way as the semantics of APIL1 is obtained from the semantics of
PIL. So, I repeat, metavariables now referring to block formulas:

Definition. Where M is a BPIL-model, EK(M) = {A | vi( I(A&~A))=1}.

Definition. U(T') is the set of the factors of minimal DEK-consequences of

Definition. M is an BAPIL1-model of T iff it is a BPIL-model of I and
EK(M) cu).

Definition. I Egaprr1 A iff A is true in all BAPIL1-models of T.

If you think that I reached a trivial result, you could not be more mis-
taken. The result is natural in that the proof theory and semantics for
BAPIL1 are obtained exactly as the proof theory and semantics for BCL
were obtained before. But the result is far from trivial. Indeed, the
BAPIL1-semantics is a dynamic semantics. It corresponds to the stages of
a BAPIL1-proof. In other words, I' = gaopyL1 A captures APIL1-deriv-
ability at a stage, a form of derivability that may be overruled at a later
stage.

To illustrate the result, let us consider again the example from the previ-
ous section. Here is the block analysis for stage 7:

1 [pl!v-~[q]? Premise

2 ~[pl v Premise

3 lq Premise

4 [J~svi?* Premise

5 [s&~p]? Premise

6 [pl! 1,3;Av~B,B/A {[q]?}

7 1B 2,6;,~AvB,A/B {[q]2, [p]'}
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What is significant about this is that, with respect to the present block anal-
ysis, 6 and 7 are finally derived from the premises 1-5. This is easily veri-
fied by the block semantics. However, for some readers it will be easier to
see what happens if one replaces each block by a propositional letter. That
leads to:

1' pv~q Premise

2 ~pvr Premise

3 g Premise

4 s Premise

5t Premise

6 p 1,3;Av~B,B/A {q}
T r 2,6;~AvB,A/B {q.p}

And it is easily seen indeed that, in APIL1, 6' and 7' are semantic conse-
quences of 1'-5'".

Let us now turn to the block analysis of stage 11 of the proof:

1 [plv~[q]? Premise

2 ~[pI'v[P Premise

3 [q]? Premise

4 [~svie* Premise

5 [s]0&[~p]” Premise

6 [p]! 1,3;Av~B,B/A {[ql?}

7 [ 2,6;~AvB,A/B {lqlP. [21"}
8 [s]6 5, A&B | A @

9 [~pl" 5,A&B /B %)

10 ([pl'&[~p1") v ~[4]? 1,9;A,BvC/(B&A)VC @

11 ([pl'&[~p]") v ([q]2&~[gl? 10,3;AVvB,C/Av(C&B) @

On the block analysis, 6-11 are indeed semantic consequences of 1-5 and
as no DEK-formula occurs in 1-11, there is still no reason whatsoever to
delete any line from this proof. Such a reason is only obtained when 11 is
recognized as a DEK-formula, in other words, if [~p]7 is identified with
~[p]!. Once that is done, lines 5, 9, 10 and 11 become:

5 [s]6&~[p]} Premise
9 ~[pI! 5. A&B/B )
10 ([p]'&~[p]") v ~[4]? 1,9;A, BvC/(B&A)VC @

11 ([p]'&~[p]") v ([g[P&~[q]? 10,3;AvB,C/Av(C&B) @

At this point, and only at this point, lines 6 and 7 are deleted.



312 DIDERIK BATENS

The feature is worth being stressed. Just as one may fail to recognize
s&~p as a conjunction of two wffs, and hence fail to apply Simplification
to it, one might fail to recognize 11 as a disjunction of contradictions, and
hence fail to delete 6 and 7. In other words, the mental operations for deriv-
ing ([p]'&[~pI") v (Iq]*&~[g]?) are different from the mental operations
required to recognize this as ([p]!&~[pI") v ([q[P&~[g]?).

However, the rules RC and RD refer to the occurrence of DEK-formulas
in the proof. If one were to fail to see that 11 is a DEK-formula, and hence
would fail to delete lines 6 and 7 at stage 11, then the proof would not any
more be correct. To put it differently, RC and RD require that DEK-formu-
las be transparent. It follows that only the last block analysis is the correct
block analysis of stage 11 of the proof.

It is easily seen that [[p]! and [r]P are not semantic consequences of the
premises according to the correct block analysis of stage 11: there are
BAPIL1-models of the premises in which [p]! and [r]? are false.

What exactly happened from a semantic point of view? On the step by
step analysis, the BAPIL1-models of the premises at stage 10 and the
BAPIL1-models of the premises at stage 11 do not overlap. Indeed, [p]!
and [r]? are true in all the former models, but not in some of the latter.
What even more strikes the eye is that the former models are consistent
whereas none of the latter is.

On the continuous analysis, we obtain ... a discontinuity. The apparent
riddle is readily removed if we look at the PIL-models. There, continuity is
obviously preserved. The transition from sta%e 10 to stage 11 requires that
we identify, in analyzing 5, the value of [~p] with the value of ~[p]!. As a
result, all consistent PIL-models of the premises at stage 10 are eliminated,
as appears from line 11. So, all BAPIL1-models of the premises at stage 10
— all of these are consistent — are eliminated from the PIL-models of
stage 11. Hence, the BAPIL1-models of the premises at stage 11 cannot
possibly be BAPIL1-models of the premises at stage 10.

Two comments seem useful. The first is that, in a much deeper sense than
was the case for CL, the block analysis of the premises proves informative.
It even induces drastic changes in insight concerning the consequences of
the premises. The second comment is that the dynamic character of the
proof theory of BAPIL1 provides a deep understanding of the non-mono-
tonicity of the logic. The dynamics does not derive from adding premises,
but from realizing (step by step) what the premises mean.23 To put it more
generally, there is a different dimension to logic than the abstract and static
features expressed by the usual notions of derivability and semantic conse-

23 The relation with logical omniscience is apparent. If we were logically omniscient, we
would, even in the case of non-monotonic logics, have no need for any dynamics.
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quence. We experience this in searching for a proof, even in CL, but more
clearly where non-monotonicity is involved. The block semantics reveals
this further dimension, and it does so in a perfectly stringent and formal
way.24

Let us now turn to an extremely perverse APIL1-proof: the only premise
seems to lead to the clearcut derivability of a consequence, but the further
analysis of this consequence leads to its rejection.

1 (p&~p)v (g&(p&~p)) Premise
2 q&((p&-~p) 1;(A&~A)vB /B {p}

Here 2 is derivable from 1 on the condition that p is reliable at this stage of
the proof from the premises. But obviously, p&~p is derivable from 2 (and
hence from 1). Only, nothing in the present proof enables us to see so: no
DEK-formula occurs in the proof. So, the above proof is a correct APIL1-
proof (at stage 2) of 2 from 1.

Applying the block analysis to stage 2 of the proof, we obtain:

1 ([p)'&~[p]") vIg&(@&~p)?  Premise
2 [q&(pé&~p)? 1;(A&~A)vB /B {lp]'}

Remark that 2 is only derivable from 1 iff it is realized that the first disjunct
of 1 has the structure [p]!&~[p]!. If the inconsistency were not recognized,
2 would not be derivable.

What about the semantics? Only two blocks matter: [p]! and
[g&(p&~p)]2. The premise is true in three sorts of BPIL-models: those in
which v([p]!) = v([¢&(@p&~p)P) = 1 and v(~[p]") = 0, those in which
v([p]") = 0 and v(~[p]") = v([g&(p&~p)]2) = 1, and, finally, those in which
v([p]") = v(~[p]") = 1 and v([g&(p&~p)]P) is either 1 or 0. So, 1 has con-
sistent models, and in all of these v ([g&(p&~p)[®) = 1. Whence
[g&(p&~p)]? is a BAPIL1-consequence of 1.

Extending the proof, we sooner or later shall find (perhaps with different
line numbers):

3 ¢ 2;A&B/A {p}
4 p&~p 2;A&B /B {p}

24 Leo would have liked this: the endeavour to develop dynamic proof theory and block
semantics belongs to the same philosophical enterprise that takes ideological problems
serious and approaches them in scientific terms.
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It is easy to see that, whenever A is APIL1-derivable from some premises
on the condition that the members of ¥, are reliable, then DEK(X U {A}) is
unconditionally derivable from the premises. Whence any sensible person
shall continue the proof by

5 (p&~p)v(p&~p) LLAV(B& )/ AvC @
As 5 is a DEK-formula and hence is transparent, the block analysis gives us:

1 ([p]'&~[pIYH) v ([qPP&(pl* &~[p]*)) Premise

2 [qP&(pl&~pI) I; (A&~A)vB/B ﬂ%}]l}]del.
3 [qP 2; A&B /A {[PI' 1] del.
4 [pl&-~[p]* 2, A&B /B ?E[S]]l}]del.
5 (Ip1'&~[pI") v ([pl*&~ [P 1;AvB&C)/AvC agts

Remark that 24 have to be deleted at stage 5, even if [p]! and [p[* are not
identified at that stage. But these blocks may be identified, and that will
provide us with the information that p&~p is (finally and unconditionally)
derivable from 1. If this wff is derived at line 6, the block analysis of stage
6 is as that for stage 5 except in that [p]* is replaced everywhere by [p]!
and that the following line is added

6 [plt&~[pl! 1;AVA/A )

Actually, nothing about g is derivable from 1: 1 is PIL-equivalent to p&~p,
and it can be demonstrated that, if I and A are PIL-equivalent, then they
have the same APIL1-consequences.

Two further comments seem useful. The first is that the deleted lines
have taken care of the (formula) analysis of 1. In this sense, they are far
from useless (except for a trained logician who sees at once that p&~p is
derivable from 1). Remark that 1 does not have any consistent models,
whereas its block analysis (at stages 1-3) does have consistent block mod-
els. This supports my claim that the block analysis and the dynamic proofs
reveal an aspect of reasoning that surpasses the usual semantics.

The second comment is that the dynamic character of the proof does not
merely derive from the non-monotonic character of the logic. It is not the
case that lines 2—4 are derivable from 1 but have to be deleted in view of
the presence of further premises. The dynamics derives from the (block
analysis and formula) analysis of 1, and the block semantics captures this
analysis nicely.
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Let me now return to the first problem I mentioned in section 2: to find a
semantic counterpart of the proof theoretical dynamics. This problem is
clearly solved (even if I did not offer any proofs). But exactly how is it
solved? There is no distinct semantic counterpart for each stage of a proof.
But there is one for each set of stages that share the same block analysis.
Put in other terms, if stage n+1 does not introduce a new block premise and
does not require that a block is replaced by a block formula, then the for-
mula derived at that stage is a semantic consequence of the premises as
analyzed at stage n (where “semantic consequence” refers to the block
semantics).2 If stage n+1 introduces a new block premise or requires that a
block is replaced by a block formula, then the formula of line n+1 need not
be a semantic consequence of the premises as analyzed at stage n — in the
continuous semantics, the models are restricted.

The block approach offers new insights in the proof dynamics. In devis-
ing the proof theory, I was constantly haunted by the question which for-
mulas should count as an indication that some lines of the proof should be
deleted. Is line 4 sufficient to delete 2-3? If so, why not also line 4 itself.
And if we unconditionally derive A, and later unconditionally derive ~A,
should this be taken as a symptom of the unreliability of A, or should we
wait until A&~A has been unconditionally derived? The block approach of-
fers the guideline to answer such queries. It provides the insight that is nec-
essary to see the effects and viability of the conventions we might introduce
at such points. I shall not continue the matter here, but the block approach
indeed suggests a slight modification to the rule RC and to the implicit rule
concerning the transparency of DEK-formulas.

12. A proof theoretical criterion for final derivability

I now come to the second problem mentioned in section 2: devise a proof
theoretic criterion for final derivability in APIL1. I shall restrict the dis-
cussion to the propositional level — the predicate level requires numerous
complications, but offers no fundamentally new insights.

Let me first point out that I do not promise a ‘positive test’ for final
derivability. If we have a positive test for I' — A, we may start a Turing
Machine, with A (as its goal) and (the possibly infinite set) I' (as its
premises) on its tape, and we have the guarantee that, if A is finally APIL1-
derivable from I, the Machine will stop with a positive answer after a finite
time. There is a positive test for PIL-derivability,26 there also is a decision

25 Remark that this holds even if a new block is introduced by Addition, Irrelevance, or a
similarly uninformative move.
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method for final derivability for finite (and most plausibly also for infinite)
I' in the propositional fragment of APIL1, but whether there is a positive
test for final derivability in APIL1 is still an open question — the criterion
presented below may be turned into a positive test for finite sets of propo-
sitional formulas, and there is a good chance that it can be generalized. But
for now, I promise a criterion: some APIL1-proofs allow us to decide that
A is finally derivable from I".

All unconditionally derived formulas are finally derived from the
premises. So, let us consider a proof from the premises Ay, ..., A,

1 B Ay
2 B ' Az
n B, Ay

in which A, # @. Our problem will be to decide whether B,, is finally de-
rived from the premises at line n. In order to do so, we have to find out
whether all members of A, are reliable on the premises Ay, ..., A,,. Let us
first consider a special case. Suppose that the last line of the proof reads

n ~(p&-p) —/ ~(A&~A) ()

where the rule “~ / ~(A&~A)” indicates that any wff of the form ~(A&~A)
may be derived at any stage of a proof (on the supposition that A is reli-
able)?’. The block analysis of this proof will deliver the following last step
(the block number is arbitrary):

n  ~([pl"&~[p]" -/ ~(A&~A) {lp17}

If p does not occur in any premise, then n is obviously finally derived. It is
even possible to show — and I shall soon do so — that » is finally derived
if p is a subformula of some premise but ~p is not, or if ~p is a subformula
of some premise, but p does not occur in any premise outside the scope of a
negation. If both p and ~p occur in some premise outside the scope of a

negation, then p might be unreliable on the premises and hence we should
take action.

26 The next edition of Boolos and Jeffrey's [14] should absolutely offer some examples

on paraconsistent logics. Turing Machines just love non-standard logics (even if they don’t
apply them).

27 By an application of RC in view of — py1, (p&~p) v~(p&~p).
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The first type of action concerns the block analysis. If both p and ~p oc-
cur in some premise outside the scope of a negation, then all such occur-
rences of p should be made transparent. In other words, if p does not occur
within the scope of a negation in a formula ...p... of the proof, the block
analysis should be pushed further until we obtain ...[p]’...; similarly, if ~p
does not occur within the scope of a negation in a formula ...~p... of the
proof, the block analysis should be pushed further until we obtain
...~[pI... The second type of action concerns the formula analysis. This
means that certain derivations should be made in the proof in order to split
formulas into their components, as when A and B are derived by
Simplification from A&B. After these preparatory remarks, let us move on
to the general formulation of the criterion.

The criterion refers to a set (of block formulas) and to two requirements
(on the proof). First, I shall specify a set [] of block formulas. The set con-
tains the formulas of which we want to find out whether they are reliable.
The first requirement concerns the block analysis: it should be pushed fur-
ther until all members of [] occur transparently (with some exceptions that
I shall specify). The second requirement concerns the formula analysis: it
should warrant that any member of ] is unreliable at the final stage of the
proof if it is unreliable on the premises — see footnote 21.

As the central difficulty concerns the derivability of DEK-formulas, it is
useful to recall that the occurrence of a line

i B s A;
warrants that one may add the line
j B VDEK(A) . @

(The converse does not hold as line i can only be written iff all members of

A, are reliable at the stage.) An immediate consequence of this feature is
that the occurrence of a line

i C&~C A;

warrants that DEK(A; U {C}) is a DEK-consequence (but not necessarily a
minimal DEK-consequence) of the premises.

Which formulas should be included in [1? B, is finally derived at line n
of the proof iff all members of A, are reliable on the premises. So A, < [T.
Remember that A, contains (blocks and) block formulas.

Suppose that [p&glF€I1. Even if p&gq is made transparent everywhere in
the proof, we might fail to see that p and g are derivable (conditionally or
unconditionally) from the premises. Hence, we shall require: (i) all blocks
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that occur in a member of [] are added to 1, and (ii) if the formula of a
block in [] contains A$B, where “$” is any binary connective, then both A
and B are made transparent.28

There is a further complication. Suppose that A; NA,, # @ and that line i

reads
i C&D A;
whereas the proof also contains

j ~C&E A

The proof may be extended as follows

i C A;
j ~C Aj
J' C&~C A,‘UAJ'
Jj" DER(A;UA;U{CY) %)

Hence, some members of A, are unreliable on the premises, unless there is
a © cA;UA;U{C} such that DEK(@) is unconditionally derivable from
the premises and © NA, = @. This means that we should require that,
whenever A;NA,, # @, then A; c[1and B; €]].

Remark that this requirement also applies to line n itself. Indeed, if line n
reads

n (C&D)&~C Ay

then only by pushing the block analysis down to the level of C shall we be
able to find out that the proof may be extended as follows

n' C&~C Ay
n" DEK(A,U{C}) @

and hence that some members of A, behave unreliably on the premises un-
less DEK(C) is itself unconditionally derivable from the premises.

28 Requirement (ii) entails that the block analysis is pushed further until all blocks
contain either a sentential letter or a formula of the form ~A. The proof that the latter need

not be analyzed further is similar to the proof of ‘the difficult bit’ at the end of the present
section.
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Let me summarize. We need to know whether all members of A,, behave
reliably on the premises, that is: whether some member of A, occurs in a
minimal DEK-consequence of the premises. The obvious way to find this
out is by first going after the DEK-consequences of the premises of which
some member of A, is a factor, and then checking whether, for any such
DEK-consequence DEK( @), there is a DEK-consequence of the premises
DEK(A) such that A € © and A NA, = @. This lead to the following def-
inition of [T: the smallest set such that (i) A, =TT, (ii) if A; N[ # @, then A;
cI1 and B; €I1, (iii) if block A occurs in a member of [], then A €[, and
(iv) the block analysis of members of [] should be pushed further until each
block that belongs to I or occurs in a member of [] is either a primitive
formula or of the form ~A.

Pushing the block analysis deeper down. Two remarks are at hand. The
first is this: making A transparent in all formulas of the proof requires (i)
that A is itself (a block or) a block formula and (ii) that all occurrences of A
are identified with each other. The second remark is that the conditions on
the block analysis are exactly as in the earlier example: if, for some A €[],
both A and ~A occur in some premise outside of the scope of a negation,
then, if A, respectively ~A, do not occur in the scope of a negation in
...A..., tespectively ...~A..., the block analysis of this formula should be
continued until we reach ...[A]¥..., respectively ...~[AJK...

The analysis of block formulas. Let an atom be either a primitive block
formula, a block formula of the form ~B, or a block formula of the form
B&~B. 1 define a (special) conjunctive normal form CNF° for block formu-
las: A is in CNF” iff A is a conjunction of one or more block formulas of the
form [A ©]B in which A is a conjunction of (zero or more) atoms and B is a
disjunction of (one or more) atoms. For each formula, there are several
equivalent formulas that are in CNF".

Three steps are to follow. First step: a block formula that is not in CNF*
and occurs in the proof on the condition A is analyzed iff an equivalent
block formula in CNF® occurs in the proof on some condition ® CA.
Second step: a block formula A&B occurring in the proof on the condition
A is analyzed iff A occurs in the proof on some condition ® c A and B oc-
curs in the proof on some condition A cA. It is easily seen that, if all for-
mulas are analyzed in as far as the first two steps allow us to do so, then the
only non-analyzed formulas in the proof have the form [A ©]B in which A
is a conjunction of (zero or more) atoms and B is a disjunction of (one or
more) atoms.

The third and final step is to decide whether the members of A, are reli-
able in the proof. There is an obvious semantic criterion to do so: check
whether the set of non-analyzed formulas in the proof has a model in which
all members of A, are consistent. Of course it is possible to offer a proof
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theoretic criterion, but I skip this because it is complicated and there obvi-
ously is one anyway.

Is the criterion adequate? 1 have to show that, if all members of A, turn
out to be reliable, then continuing the proof, and hence pushing the block
analysis further, cannot result in the unreliability of some member of A,,. I
shall show that this holds, not only for A,, but for [] as well. There is one
difficult bit: if Ce[l, then it is not necessary to locate C in a formula in
which it only occurs as a subformula of a negated formula. Apart from this,
the matter is obvious. Suppose that we are able to derive (in the usual
proof)

i B; A;
J B Aj

where (i) A; ] # @ and (i) Ajn][1 = @ and no member of [T is a subfor-
mula of B;.

Suppose that, from i and j, we are able to derive unconditionally
DEK(®@ UA), where ©cll and ANl = @. As B,;vDEK(A;) and
Bj v DEK(4)) do not have any common subformula,?? it is obvious that ei-
ther DEK(é) is derivable from line i or DEK(A) is derivable from line j.
So, if some member of [] is reliable on the present block analysis, then
continuing the proof (and pushing the block analysis further beyond what is
required by the test) cannot possibly make it unreliable.

Similarly, if some member of [] is unreliable on the present block analy-
sis, then continuing the proof (and the block analysis) cannot possibly make
it reliable. This follows from the reasoning in the previous paragraph if we
set A = (. In other words, the problem is solved provided I prove the diffi-
cult bit.

I have to show that, if Ce[l, then it is not necessary to locate C in a for-
mula in which it only occurs as a subformula of a negated formula. Let me
first spell out the problem that might occur, and then show that it does not.

Consider a proof that contains the following lines:

R oy firl
j A | {C: o)

In line i, the context outside the parentheses may consist of two nil strings,
but the context within the parentheses should not be nil — occurrences of

29 This follows from the definition of ITin view of (i) and (ii).
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~C that do not themselves occur within the scope of a negation should be
made transparent.

In preparation of the demonstration, consider the conditions under which
APIL1 enables one to ‘open up’ negated complex formulas. I list the rele-
vant consequences and the conditions:

from: to derive: should be reliable:
~~A A ~A

~(A&B) ~Av~B A&B

~(AvB) ~A (resp. ~B) AvB

~(ADB) A (resp. ~B) ADB

Suppose now that A and some negated complex wff of which A is a sub-
formula occur (conditionally or unconditionally) in some APIL1-proof. I
now show that, if A behaves reliably on the present block analysis, then so
it does in an extension of the proof in which the negated complex formula
is ‘opened’. I first consider the basic cases. I shall list all details for the first
case only.

Case 1. Consider a proof containing the following lines:

i A Aj
j ~~~A Aj
According to the requirement on the block analysis, the formula on line j
may just be a single unanalyzed block (or a negation followed by a block,
etc.). I have to show that, if the block [A} is reliable on this analysis, then it
will remain reliable if the block on line j is further analyzed, viz. as
~~~[AF.

Suppose that the original proof is extended in that the block at line j is
further analyzed, and that the two following lines are added:

j ji~~BIB  Aju{~~A)
J' (A&~A)VDEK(A;UAjU{~~A)) i f; ... g

in other words, DEK({A, ~A} UA; UA;). If this formula is a minimal DEK-
consequence of the premises, then A is unreliable. Remark that, in the block
analysis of the extended proof, the block [A]f is transparent everywhere
(and occurs whenever A occurs in the usual proof).

As ~Av ~~A is a theorem of PIL, two more lines can be added, in view
of the unconditional rule RU, to the original proof on the original block
analysis. I write at once the block formulation in order to clarify the point:



322 DIDERIK BATENS

k  ~[AF v ~~[AF _ | N |
ko (AF&~A]) v (~~[Al &~~~A]) b(A; WA) U{~~[A]}

where b(A; UA)) indicates that the set has to be replaced by the correspond-
ing set of blocks (on the analysis of the original proof). By a fact mentioned
earlier, k' immediately gives us

k+1 DEK({[A], ~~[A]}} Ub(A; LA)) %]

This line too is derivable on the block analysis of the original proof.

Now (as the final step) consider the three following possibilities. (i) For
some @ cA;UA, either DEK(®), DEK(P® U{A}), DEK(® U{~~A}), or
DEK(® U{A, ~~A}) is a minimal DEK-consequence of the premises. Then
line i or line j of the original proof have to be deleted, and hence the prob-
lem evaporates. (ii) A&~A is a minimal DEK-consequence of the premises
(on the original block analysis). Then A is already unreliable on the block
analysis of the original proof. (iii) ~~A&~~~A is a minimal DEK-conse-
quence of the premises (on the original block analysis). Then, line j' has to
be deleted (or cannot be added to the proof) and line j" is not a minimal
DEK-formula. So, if A is not unreliable on the original proof, then it is not
unreliable in any continuation of it.

Case 2. Consider a proof containing A and ~(A v B). The reasoning pro-
ceeds as for case 1, except that we now rely on

A, ~(AvB) —piL (A vB)&~(Av B))

Similarly for a proof containing B and ~(A v B).
Case 3. Consider a proof containing ~A and ~(A > B), respectively B and
~(ADB). Here, we rely upon one of

~A, ~(ADB) —pq1, (A&~A) v ((ADB)&~(ADB))
B, ~(A>B)—piL (ADB)&~(ADB)

Case 4. Consider a proof containing A and ~(A&B), respectively B and
~(A&B). This case requires a slightly different approach. Suppose that A is
unreliable on the block analysis of the extended proof. Hence, (10) holds
(for some @), and hence, by properties of positive logic, also (11):

(10) T', A, ~(A&B), ~Av ~B —pyL (A&~A) v DE(D)
(11) T, A, ~(A&B)—pp1, ~BD((A&~A) v (A& B)&~(A&B)) v DEK(D))

But (12) and (13) hold generally:
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(12) T, A, ~(A&B) —piL B2 ((A&~A) v (A&B)&~(A&B)) v DEK(@))
(13) +—pq, Bv~B

Hence
(14) T, A, ~(A&B) —pi1, (A&~A) v (A& B)&~(A&B)) v DEK(@)

which means that A is unreliable on the block analysis of the original proof.
This finishes our basic cases (I skip equivalence). The general result fol-
lows by the usual induction on the complexity of the negated formulas.

13. The direct block approach — languages without basic meaning ele-
ments.

In the previous sections, I considered the block approach as a way of look-
ing at usual formal logic proofs, and devised a semantics that corresponds
to the result. But the block approach may very well be viewed as an alter-
native to the traditional approach to formal logic. I shall merely offer some
sketchy comments to this alternative.

According to the traditional approach to logic, there are primitive expres-
sions, apparently corresponding to elementary entities (elementary facts, or,
more often, elementary observational statements like ‘Protokolsitze’). The
primitive expressions are the basic meaning elements. Moreover, the prim-
itive expressions are usually seen as independent of each other. This ap-
pears not only from the semantics — the assignment treats the symbols as
independent — but also from traditional applications such as Carnap’s state
descriptions. Both suppositions, however, are (known to be) unrealistic.
The primitive expressions of natural languages and even of the languages
used in the sciences cannot be seen as corresponding to elementary facts
(etc.); and, partly for precisely this reason, they need not be independent of
each other. A further (obvious) discrepancy between traditional formal lan-
guages and real life languages is that the latter are subject to an evolution
which is determined in part by our changing views on the world.

In all three respects, a block approach to languages seems promising. The
idea is very simple. The primitive symbols of a language are not seen as
entities that have an elementary, independent, and fixed meaning, but as
blocks, which here signifies: primitive carriers of meaning. To put it in
other words: when the block analysis comes to an end, this now will be
viewed as provisional. A conceptual analysis of the language might reveal
that, e.g., some primitive predicate may be identified with a complex ex-
pression, like when Aristotle defined “human” as “rational animal”. Also, a
theoretical change may have as an effect that some term is ‘understood’ in
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some specific way, and hence is identified with some complex expression,
like when “heat” was interpreted as an internal movement.30 Primitive ex-
pressions that are not identified with complex ones will still be treated as
independent — the block approach as such does not offer a way out of this
— but if they are identified with more complex expressions, dependencies
may appear. In allowing for a ‘downward dynamics’, the block approach is
able to clarify at least in part both conceptual analysis and the change (in
the sense of specification) of a language.3!

The direct block approach does not require any change to the usual for-
malism. The change resides in the interpretation of the formalism. This is
why the embedding from section 5 is illuminating. If sentential letters are
interpreted as sentential blocks, n-ary predicates as blocks of rank n, etc.,
then the usual formalism will stand as is. Soundness, completeness and
other properties will have to be proved in a direct way (not by relying on
the usual system, as in section 5). Let me just mention a definition and a
theorem for the block approach to CL:

Definition. A block proof (at a stage) is correct iff all BCL-models of the
block premises verify all block formulas in the proof.

Theorem 4. For any CL-proof, if the block analysis of formulas 1 to n at
stage n is semantically correct, then so is the block analysis of these formu-
las at stage n+1. (MONOTONICITY)

14. More on meaning change

Meaning change in scientific disciplines often occurs in the course of a
problem solving process with inconsistent constraints. For example, there
may be a clash between different theories, each of which have their merits,
or between a theory and some principle, or between a theory and some em-
pirical laws. In trying to solve the problem, a scientist has to analyze the
situation, to locate the inconsistencies and their possible dependencies, to
order the different sides of the inconsistencies in terms of preferences, and
to build a theory that resolves the inconsistencies in agreement with those
preferences. During this process, the meaning of some terms will have

30 In both cases, blocks with a different contents (in the sense of section 3) are identified
and hence may be analyzed in terms of the more complex contents. An obvious variation is
where different complex expressions are identified. This situation belongs rather in the next
section, but limitations of space prevent me from discussing it there,

31 This obviously does not cover all forms of meaning change. Yet, as we shall see in
section 14, the block approach allows more than is spelled out here.
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changed. Such a change is radically different from the ‘downward dynam-
ics’ mentioned in the previous section.

Still, it seems to me that the block approach enables us to understand
such a change. The following suggestion is largely the result of thinking
about [19] and discussing the case with Joke Meheus. The suggestions are
mine; if they do not make sense, I alone am to be blamed.

In the case discussed in [19], the clash is between Sadi Carnot’s theory
and Joules principle, one half of which was based on a set of experimental
results (but that did not form a theory). Carnot’s theory was heavily depen-
dent on a specific meaning of “heat”: the identification of heat with a sub-
stance, caloric. The theory contained a conservation law for heat, and
viewed the production of work as a result of a movement, viz. a fall, of heat
(from a warm to a cold source). All this conflicted with Joule’s principle
according to which heat is transformed into work and vice versa. (Needless
to say, the matter was actually more complicated — I just try to give the
reader a feel of the type of problem.) At the end of a long creative process,
Clausius succeeds in formulating a theory that is in several respects similar
to Carnot’s — most importantly, it basically explains the Carnot cycle —
but that agrees with Joule’s principle. As Joke Meheus argues, his reason-
ing can only be reconstructed in terms of an adaptive logic.

In Clausius’ theory, heat obviously cannot be a substance. In this sense
Clausius’ interpretation of the Carnot cycle is radically different from
Carnot’s interpretation. But how did the meaning of “heat” change?

My suggestion is that “heat” functioned like a block in Clausius’
(inconsistency-adaptive) reasoning — actually several forms of heat are in-
volved, but that does not require any change to the suggestion. Where this
block was analyzed for Carnot and (differently) for Joule, Clausius consid-
ered “heat” as an unanalyzed block — one might say as “heat, whatever
that is”. And he did so for a number of other terms as well. In this sense he
was able to concentrate on theoretical statements and empirical laws and on
cooking a consistent theory out of them. Once the theory was ready, con-
ceptual analysis was sufficient to reveal what actually was the meaning of
“heat” and of other terms — that is, the meaning of the blocks that related
in a specific way according to the new theory.

My suggestion is by no means outrageous. The phenomenon described,
considering a formerly analyzed block as unanalyzed, occurs frequently in
everyday situations. Where words have a specific meaning for us, we have
often to forget about this meaning in talking to other people. The meaning
they assign to these words may be different ones, unknown to us. And we
have to consider those words as unanalyzed blocks in order to follow the

reasoning and slowly grasp what the meaning of those words might be for
them.
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It is worth pointing out that the block approach enables us to understand
not only changes to a language (such as English or the language of
physics), but also local and contextual changes (such as the ones we have to
perform to understand others). This is important from my philosophical
point of view, as I argued in [3] that languages do not exist as monolithic
entities, but are fictions constructed on the basis of local and contextual
verbal behaviour.

When it comes to meaning and meaning change, some people have the
tendency to refer to deep-structural phenomena such as neural networks or
(Freudian or other) subconscious structures. My suggestion goes rather in
the opposite direction. I see meaning change as the outcome of manipulat-
ing unanalyzed blocks — rather similar to Hilbert’s uninterpreted symbols
— and I see the conceptual analysis that later reveals the meaning of these
blocks as parasitic.

15. In conclusion

I hope to have clarified the block approach and to have shown that it is
promising. I have discussed a reinterpretation of proofs, a clarification of
proof search processes, the solution of technical problems of adaptive log-
ics, the advantages of the direct block approach, and some outlooks on
meaning change.

The promising character of the block approach is clearly connected to the
dynamic aspects of logic. It not only enables us to devise a semantics that
corresponds to dynamic proofs of adaptive logics. It also enables us to get a
grasp on the dynamic aspects of proofs and proof search procedures in log-
ics as monotonic and traditional as CL. And it enables us to understand
some linguistic changes as well. The dynamic aspects of logic concern con-
crete procedures and these have been shamelessly neglected by the tradi-
tional approach (that seems merely interested in the paradise of abstrac-
tion). For this reason too, the block approach seems promising.

Many open problems remain. The direct block approach has to be worked
out, and one should look for direct proofs that are independent of the tradi-
tional approach. The two problems for adaptive logics are solved only in a
heuristic fashion; they are in need of proofs (for all adaptive logics) and
presumably will require some reformulation of the dynamic proof theory it-
self. The claims on meaning change too need be worked out.

But there are promises and problems beyond the ones mentioned. In [16]
and [17], Samuel Issman proposed further restrictions to Anderson and
Belnap's approach to relevant logic.32 In his understanding, the relevance
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of inferences depends on the relations between steps in a derivation. I do
not want to take a stand here with respect to Issman’s proposal. I merely
refer to it to illustrate that concrete aspects of proofs may play a role in the
definition of derivability and hence of semantic consequence. A realistic
approach to those concrete aspects involves dynamics — were it only be-
cause of the undecidability of predicate logics. And the block approach is
able to handle this type of dynamics: it is typically a dynamics that depends
on the block analysis.
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Universiteit Gent
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