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A PROOF SYSTEM FOR FORK ALGEBRAS AND ITS
APPLICATIONS TO REASONING IN LOGICS BASED ON
INTUITIONISM

Marcelo F. FRIAS* and Ewa ORLOWSKAT

Abstract

Relational proof systems have been already proposed for certain modal,
relevant and substructural logics. In this paper we present a general
method for constructing Rasiowa-Sikorski-style deduction systems for
nonclassical logics within the powerful relational framework of fork al-
gebras. We apply the method to intuitionistic logic and a wide class of
intermediate logics. The method consists in establishing interpretability
of these logics in relational logics based on fork algebras (referred to as
fork logics) and in developing a Rasiowa-Sikorski-like calculus for the
respective fork logics. We prove soundness and completeness of the
presented proof systems.

L. Introduction

Since the introduction of the formalism of relation algebras by Tarski [34],
relational methods are increasingly applied in a variety of fields of logic,
algebra and computer science. A sample of recent developments can be
found in Brink et al. [1], Jaoua, A. [17], MacCaull [22], Lambek [20],
Vakarelov [38], and Venema [41]. In this paper a relational method is pro-
posed for reasoning in intuitionistic logic and some intermediate logics.
The paradigm of relational formalization of logical systems is based on the
principle of replacing any logic by a theory of a suitable class of algebras of
relations [22, 27, 28, 29, 30]. In order to define such a theory for a given
logic, the language of the logic is to be translated into a sufficiently ex-
pressive language of relational terms in a validity preserving manner, i.e. a
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logical formula «is valid iff its translation T(q) is a term such that
T(a)=1holds in every algebra of relations from the underlying class of al-
gebras, where 1 is the Boolean unit of the algebra. In this paper we show
that the class of fork algebras provides an adequate basis for intuitionistic
reasoning. The paper is a continuation of our work presented in Frias and
Orlowska [13], where modal and relevant logics have been represented in a
fork algebra formalism referred to as fork logic. Fork logic is a logical for-
malism based on fork algebras. Fork algebras were extensively investigated
in[5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 40]. In this paper, first, we define a
Rasiowa-Sikorski style deduction system for fork logic. Second, we define
a validity preserving translation from the language of intuitionistic logic
and minimal intuitionistic logic into the language of fork logic. Next, we
discuss three methods of intuitionistic reasoning within the framework of
fork logic. The first method consists in extending the Rasiowa-Sikorski
proof system of fork logic with some specific rules that reflect properties of
the accessibility relation from Kripke models of logics based on intuition-
ism. The second method is based on a kind of relational deduction theorem
that enables us to express derivability in fork logic of a term (representing a
formula of a logic) from a finite number of terms (representing conditions
on the accessibility relation). In this case the plain proof system for fork
logic is an adequate deduction tool. The third method employs the equa-
tional theory of fork algebras. We extend this equational theory with equa-
tions that represent the reqmred properties of the accessibility relation and
treat them as specific axioms.

2. Preliminaries

In this section we define elementary concepts to be used in further sections.
We introduce the notion of algebra of binary relations as well a their ab-
stract counterpart, relation algebras. We will also present arithmetical
properties of relation algebras that will be used without making explicit
mention in the proofs of the theorems to come.

Given a binary relation X in a set A, and a, b € A, we will denote the fact
that a and b are related via the relation X by (a, b) € X or aXb.

Definition 2.1 Let E be a binary relation on a set A, and let R be a set of bi-

nary relations satisfying:

1. URCE,

2. Let Id denote the identity relation on the set A. Then &, E and Id be-
long to R,

3. R s closed under set union, intersection and complement relative to E,
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4. R is closed under relational composition (denoted by ) and converse
(denoted by ~). These two operations are defined by
X|Y ={{a, b} : Ic such that aXc A cYb}

X ={(a, b): bXa}

Then, the structure (R, U, N, ,J, E,
relations (ABR for short).

,Id, ™) is called an algebra of binary

Definition 2.2 A relation algebra is an algebraic structure
9{ — (R, +, ‘, _9 0! 1, ;9 l,’ x>

satisfying the following set of axioms
Axioms stating that (R, +,-, ,0,1,) is a Boolean algebra.

2. Axioms stating that (R,;,1’) is a semigroup, in which ; is called the
relative product, and 1’ is called the identity.

3. The formula (r;s5)-t=0<(7F;t)-s=0&(t;5)-r=0 holds in R for
any r,s,t€ R. The operator ~ is called relational converse.

As an immediate consequence of Defs. 2.1 and 2.2 we obtain the following
theorem.

Theorem 2.3 Every algebra of binary relations is a relation algebra.

Notice that in the similarity type of relation algebras we have three con-
stants 0, 1 and 1’. Since 0 and 1 are the least and the greatest elements in a
Boolean algebra respectively, they can be defined as 0 = 11" and 1=1"+1".

We will use these definitions in further sections. We will also define 0’=1".
The relation 0’ is called the diversiry relation.

Notation 2.1 « In general we will denote algebras and structures by capital

german letters (2, 9B ...), and their universes by the associated roman letter
(A,B,..).

* Given algebras U and B, by 2 = B we denote the fact that 2 is embed-
dable in B.

* Given a set S, by %(S) we denote the power set of S.

* Given a relation algebra R and reR, by Dom (r) and Ran (r) we denote
the relations (r;7)-1’ and (7;r)-1’, respectively. When interpreted in an
algebra of binary relations, these relational terms yield partial identities
over the domain and range of r, respectively.
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* Given a concrete relation r (a set of pairs), by dom (r) and ran (r) we de-
note the sets {x:3y({x, y) € r)} and {y:Ix((x, y) € r)}, respectively.

« A relation F is called functional if F; F<1'.

* A relation C is called constant if it satisfies the following properties:
1. Cis functional,
2. C=1C,
3. Gl=1
When viewed as concrete relations, constant relations have in their range
one unique element (the constant being represented), and all the objects
are related with it. Condition 3 is necessary in order to guarantee that C is
nonempty.

* A relation r is said to be a right-ideal if r = r;1.

3. Fork Algebras

The class of proper fork algebras (PFA for short) is a extension of the class
ABR [19, 34] with a new operator called fork, and denoted by V. This new
operator induces a structure on the underlying domain of algebras from
PFA. The objects, instead of being binary relations on a plain set, are bi-
nary relations on a structured domain (A, *), where « fulfills some simple
conditions. Fig. 1 shows the relationship existing between fork and «,
namely, that fork is defined in terms of «.

SWE R(z)

/R

z Y *
\S

Nz e S(z)
Figure 1: The operator fork

As a particular instance of the application of the operator fork, we have the
relation 1’ V 1’. When this relation is viewed in a proper fork algebra, it can
be understood as a copying operation, that produces two copies of a given
element. Fig. 2 illustrates its definition. We denote this relation by 2.

3.1 Proper Fork Algebras

In order to define PFA, we will first define the class of powerset « PFA by
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Definition 3.1 A powerset proper fork algebra (denoted by « PFA) is a two
sorted structure with domains %(V) and U

(gP(V)s Ua o, m, ’1 @, Va

LId, ", V, «)

/.’L‘
1
T /2 *
N
Nz

Figure 2: The relation 2.

such that

1. Vis an equivalence relation with domain U,

2. |, Id,” and ’ stand for composition between binary relations, the diago-
nal relation on U, the converse of binary relations, and set complemen-
tation with respect to V, respectively. Thus, the relation algebraic
reduct (P(V),u,n,", B, V, |, Id, ‘) is an algebra of binary relations,

3. «:U x U — Uis an injective function when its domain is restricted to
v,

4. whenever xVy and xVz, also xV » (y, 2),

5. RVS={(x,*(y,2)): xRy and x5z}.

Definition 3.2 The class PFA is defined as S Rd[ « PFA] where Rd takes
reducts to the similarity type (U,n,”, @, V, |, Id,”, V) and S takes subal-
gebras.

Definition 3.3 Notice that according to Def. 3.1 each algebra A € PFA
contains a set U on which the binary relations are defined. This set will be
called the underlying domain of %, and will be denoted by U, .
In Defs. 3.1 and 3.2, the function « performs the rdle of pairing, encoding
pairs of objects into single objects. It is important to notice that there are =
functions which are distinct from set-theoretical pair formation, i.e., «(x, y)
differs from {x, {x, y}}.

In the proof of several theorems it will be necessary to explicitly con-
struct proper fork algebras. Let us consider the following definition.

Definition 3.4 A PFA{P(V),u,n,’, B, V, |, Id,”, V) is called a full proper
fork algebra (FullPFA) if V=A x A for some set A.
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Notice that in order to define a FullPFA it suffices to provide the set A and
an injective mapping « : A X A — A.

If by P we denote the closure operator that closes classes of algebras un-
der direct products, from Defs. 3.2 and 3.4 we obtain the following result.

Theorem 3.5 PFA = S P FullPFA
Given a pair of binary relations, the operation called cross performs a kind

of parallel product. A graphic representation of cross is given in Fig. 3. Its
set theoretical definition is given by

R® 8= {(x(x,y), *(w, 2)): xRw A ySz}.

It is not difficult to check that cross is definable from the other relational
operators with the use of fork. It is a simple exercise to show that

R®S=((1dVVY'|RY(VVId)'|S).

T R——we R(z
* ® *

y——8——z2€ S(y)

Figure 3: The operator cross.
3.2 Abstract Fork Algebras

Much the same as relation algebras [19, 23, 34] are an abstract version of
algebras of binary relations, PFA has also its abstract counterpart. The class
of abstract fork algebras (AFA for short) is a finitely based variety, i.e., its
axiomatization is given by a finite set of equations.

Definition 3.6 An abstract fork algebra is an algebraic structure
(R, +t _’ 03 1’ 3 1’& v’ v)
satisfying the following set of axioms
1. Axioms stating that (R,+,-, ,0,1,;,1’,") is a relation algebra! in

which the structure (R,+,-, ,0,1) is a Boolean algebra, (R,; 1') is a
monoid, and ~ stands for the relational converse,

1 Equational axiomatic systems for relation algebras are given in [2, 33, 35].
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2. er=(r;(1’V1))-(sv; (1v1)),

3. (rVs)(tVg) =(ri1)-(s;q),

4. (I'V1)" V(IVI’)" <1’, where < is the partial ordering induced by the
Boolean part.

From the abstract definition of fork induced by the axioms in Def. 3.6, it is
possible to define cross by the equation

R®S=((I'VD)"; V(AV1)"; S).

Once AFA is defined, a question is immediately raised: What is the rela-
tionship between PFA and AFA? It is clear that the axiomatization of AFA
is valid in PFA, but the inverse is not obvious. This problem was already
posed for relation algebras by Tarski in [34], when he was trying to estab-
lish the relationship between algebras of binary relations and models of the
calculus of relations. In [21], Lyndon shows with an example that some re-
lation algebras cannot be viewed as algebras of binary relations. The next
theorem will show that the representability problem has a positive answer
for fork algebras. The complete proof is given in [11].

Theorem 3.7 Every abstract fork algebra is representable, i.e., given an ab-

stract fork algebra U, there exists a proper fork algebra % and an isomor-
phismh : A > B.

The relations (1'V1)” and (1V1’)” behave as projections, projecting compo-
nents not necessarily of set-theoretical pairs, but of pairs constructed with
the injective function ». We call them respectively ® and p. They allow to
cope with the lack of variables over individuals of fork algebras. Fig. 4 il-
lustrates the meaning of these relations. We introduce the constant
vl by ;1=(1V1)". This constant is a right-ideal relation whose domain has
only urelements, i.e., primitive objects whose construction does not involve
the pairing function «. We also define the constant 1, by 1, =(1V1) and
15 =1;.1; has urelements in the range. Also a partial ldentlty ranging only
over urelements is defined by 1%, =(;;1;1,,))-1".

Figure 4: The projections 7 and p.
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Definition 3.8 The class of fork algebras with urelements (FAU for short) is
the subclass of AFA satisfying the equation 1;1°,;1=1. This equation is
denoted by Ur.

Notice that when a proper fork algebra 2 is being considered in Def. 3.8,
the condition Ur is equivalent to the existence of a subset of Uy (denoted
by Urely ) disjoint from the range of the pairing function «, i.e., the set
Urely contains those elements that are not pairs. The class of proper fork
algebras with urelements will be denoted by PFAU.

Definition 3.9 We define the class of simple proper fork algebras with ure-
lements (denoted by SPFAU) as the subclass of PFAU that satisfies the
condition

VR(R£0=1;R;1=1). (1)

It was shown in [19] that in the case of relation algebras (and the same is
true for fork algebras), condition (1) is equivalent to the standard notion of
simple algebra.

Theorem 3.10 Let V' be the variety generated by SPFAU. Then V' = FAU.

Proof. 1t is clear that ¥ FAU. Let us prove the other inclusion. Let
A eFAU Since in fork algebras, as well as in relation algebras, every al-
gebra can be decomposed as a subdirect product of simple algebras,
A<, A, with A, simple for all iel. By the representation theorem
(Thm. 3.7), A<IT,_, B, with B, eSPFAU for all iel. Therefore, by def-
inition of V', A eV, [ |

Regarding the expressiveness of fork algebras, it was proved [5, 39, 40, 13]
that first-order theories can be interpreted as equational theories in fork al-
gebras. Formally, let L be a first-order language. We assume variables con-
stitute an infinite countable set and are denoted by v,(n < ), constant
symbols in L are denoted by c,(i € I), function symbols are denoted by
f;(j €J), and predicate symbols by p,(k € K). Let us denote by (A, L')
the extension of the similarity type of abstract fork algebras (A) with a se-
quence of constant symbols L' containing symbols C,(ie ), F i(jeJ) and
P, (k € K). These new symbols will stand for binary versions of constants,
functions and predicates, and therefore satisfy the following conditions.

1. C, is a constant relation for all i/,

2. F; is a functional relation for all j e J, and

3. P, is aright ideal relation for all ke K.
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In what follows, £ is an abbreviation for (¢; ...;f) n times. For the sake of
completeness, #:0 is defined as 1°.

The following mapping translates first-order formulas into fork algebra
terms. The definition proceeds in two steps, since also terms (not only for-
mulas) need to be translated.

For the following definitions, ¢ will be a sequence of numbers increas-
ingly ordered. Intuitively, the sequence will contain the indices of those
variables that appear free in the formula (or term) being translated. By
Ord(n,0) we will denote the position of the index n in the sequence o, by
[0 @n] we denote the extension of the sequence ¢ with the index n, and by
o(k) we denote the element in the k-th position of o.

Definition 3.11 The mapping &, translating first-order terms into fork al-
gebraic ones, is defined inductively by the conditions:
L 6.(v)= {p;o"d(m)—l;n if i s not the last index in o,
7S p:Length(c)=1  jf j is the last index in G.
2. D Me)=C
3. 0,(fi(ty,. i t,)=(6,(1)V...V8,(2,)); F,

Before defining the mapping T, translating first-order formulas, we need
to define some auxiliary terms. Given a sequence o such that Length(o) = |,
we define the term A, ,(n < @) by the condition

SG(VG(I))V"'Vao(vG(k—l))VlUVBG(v()'(k+1))v'"VBG(VG(J!))
A = if k=0rd(n,[c®n))<l,
il BG(VG(I))V'"VBO(VG(I—I))VIU
if Ord(n,[c@®n))=1.

The term A , can be understood as a cylindrification [16] in the k-th. co-
ordinate of a /-dimensional space.

Definition 3.12 Once the mapping &, is defined, we are ready for defining
the mapping T, translating first-order formulas onto fork algebraic terms.
T(}(tl = l‘2) = (50(11 )Vag(tl 35231

& TO'(Pn(tl’ '“’tm)) = (aa(tl )Vvaa(tm ))’ P,,,:

To(—o)=Ty(),

To(avB)=T,(a)+T,(B),

To(aaB)=T,(a) T,(B),

To(Av, (@) =4, ,; Tigom (),

T,(Vv,(a)) =T (—3v,—a).

N s
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We will present the expressiveness theorem without proof. The complete
proof follows the lines of the proof given in [13]. We will denote the empty
sequence of indices by { ). '

Theorem 3.13 For any set of first-order sentences I" and any first-order
sentence 0. we have

FI—a«:»{T( )(7):1:yel“}+—v_w T( )(a):l.

The symbol y ;, in Thm. 3.13 is to be understood as provability in
equational logic under the theory of abstract fork algebras with urelements.

4. The Logic FL

In this section we will present the logic FL, also called the logic of fork al-
gebras, or more succinctly, fork logic.

4.1 Syntax of FL

Definition 4.1 Let IndVar and RelVar be two disjoint, infinite countable
sets, and let RelConst be a finite set such that 1’ ¢ RelConst, also disjoint
from IndVar and RelVar. The set IndTerm of terms over individuals is the
smallest set satisfying:

1. IndVarcIndTerm,

2. If t,t, €IndTerm, then the expression #,+t, € IndTerm,

We will also assume that there are infinite disjoint sets UreVar and
CompVar such that IndVar = UreVaru CompVar.

The set RelTerm of terms over relations is the smallest set satisfying con-
ditions:
1. RelVarURelConst RelTerm, _
2. If t,,t, €RelTerm, then {t, + 1,1, - 1), 1,315, 1, £, I’} S RelTerm,

We define the set of formulas of the logic FL (denoted by ForkFor) as the
set {1, Rt, : t;, 1, eIndTerm and ReRelTerm).

Notice that any subset X of RelConst determines a language. These lan-
guages will be referred to as fork languages and denoted by 2(X).

4.2 Semantics of FL

Definition 4.2 Given a fork language £(R,,..., R,) an adequate structure
for Lis atuple (%, R,,..., R,) such that
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1. UAisa PFAU,
2. ReAforallil<i<k.

Definition 4.3 A fork model for a language 2(R,...,R,) is a tuple
W = (11, m) such that

U=(, R, ..., R,) is an adequate structure for £,

m(R)e€A for all R e RelVar,

m(R;)=R, forall i,1<i<k,

m(1’)=IdeA.

=

ol b =

Clearly m extends homomorphically to a function m': RelTerm —A. For the
sake of simplicity we will denote both m and m' by m. Notice that in par-
ticular m(0) =& and m(1) =V, the greatest relation of the fork algebra 2.

Definition 4.4 Given a fork model I, a valuation over 2, is a mapping
Vv : IndVar— Uy satisfying

1. v(x)eUrely if xe UreVar,

2. v(x)eUy if x e CompVar.

Every valuation v extends homomorphically to a mapping v"
IndTerm— Uy . We will denote both v and v'by v.

Definition 4.5 A fork formula ¢ Ry, is satisfied in a model I by a valuation
Vv (denoted by M, vi=, R, ) if (v()), v(t,)) e m(R).

Definition 4.6 A fork formula 1,Rt, is true in a model JM (denoted by
M=, 1,Re,) if for every valuation v, M, vi=, 1,Rt,.

Definition 4.7 A fork formula ¢, Rt, is valid in FL (denoted by k=, L Rt,) if
it is true in all fork models.

This notion of validity extends in a natural way to sequences of formulas
Yis Yaseves Vis

Definition 4.8 A sequence of formulas ¥,, ,,..., ¥, is valid if for any fork
model I and any valuations v over IR, there exists i,1<i<k, such that
M vEw 7;

Finally, given sequences of formulas T, ..., T’,, we define:

Definition 4.9 The family of sequences of formulas (T';),;, is valid if for
all i,1<i<n, the sequence T, is valid.
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5. A Rasiowa-Sikorski Calculus for Fork Logic

The original Rasiowa-Sikorski proof system presented in [32] refers to the
classical predicate logic. The system is designed for verification of validity
of formulas of this logic. It consists of a pair of rules for each propositional
connective and each quantifier. Every pair of rules, in turn, consists of a
“positive” rule and a “negative” rule. A positive (resp. negative) rule ex-
hibits the logical behaviour of the underlying connective or quantifier
(negated connective or negated quantifier). For example, the rules for con-
Jjunction are the following

IaaB, A (PA)
T,a,A T.B.A
F, —.(aAﬁ),A (NA)
F, =0, '-'1[)., A

The system operates in a top-down manner. Application of a rule results in
a decomposition of a given formula into the formulas that are the argu-
ments of a respective connective or quantifier. In general, the rules apply to
finite sequences of formulas. To apply a rule we choose a formula in a se-
quence that is to be decomposed and we replace it by its components, thus
obtaining either a single new sequence (for ‘or’-like connectives) or a pair
of sequences (for ‘and’-like connectives). In the process of decomposition
we form a tree whose nodes consist of finite sequences of formulas. We
stop applying rules to the formulas in a node after obtaining an axiom se-
quence (appropriately defined) or when none of the rules is applicable to
the formulas in this node. If a decomposition tree of a given formula is fi-
nite, then its validity can be syntactically recognized from the form of the
sequences appearing in the leaves of the tree. In the present section we de-
fine a Rasiowa-Sikorski style system for the fork logic FL. The system is
an extension of the proof system presented in Orlowska [27, 30]. The sys-
tem consists of a positive and a negative decomposition rule for each rela-
tional operation from the language of fork logic, and moreover of the spe-
cific rules that reflect properties of the function  and the relational con-
stant 1°.

5.1 The Deduction System for Fork Logic
In this subsection we will present the rules of the sequent calculus FLC for

fork logic. Since we are dealing with fork algebras with urelements
(required in order to interpret first-order theories), the calculus we present
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is more involved than a calculus for fork algebras when no assumption is
done on the existence of urelements.

I, xR+ Sy, A (P4) I xR+ S8y, A
T, xRy, xSy, A T, xEy, A T, xgy, A

(N+)

I', xR- Sy, A P) F,xﬁy,A
T,xRy,A T, xSy, A T, xRy, xSy, A

(N)

T, xR; Sy, A ) T, xR;Sy, A
I, xRz, A, xR, Sy T, z5y, A, xR Sy ’ r, xizl, Z Sy, A T, x}_?zz, 25 Ey, A

(N})

[ xRy,A
AN, (N™)
I, xRy, A

T, xRy, A . T, xiy, A
= Y -l
I, yRx, A I, yRx, A

T, xRVSy, A
T, yl'uxv, A, xRVSy T, xRu, A, xRVSy T, xSv, A, xRVSy

(PV)

r, xﬁy, A (NV)
T, y0'u«v,, xRuy, xSv,, A T, y0upav,, xRuy, xSv,, A
T, y0'uyxvy, xRuy, xSv;, A T, yO'uyuv,, xRu,, xSv,, A

L, xpexy 1y ey, , A I, xpwx; 0y &y,, A

(PT))

(NT)
O Uy, A Toxp Uy, A x50y, x,0y,,A

I', xRy, A
I',xI'z, xRy, A T, xRy, xRy, A

(ry)

I, xRy, A
I', xRz, xRy, A T, z1’y, xRy, A

(1%)

,xl'y, A

s
E o Aaly "0
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Tuxlpd —  (Trans)
Ixl'z, A, xl'y T, zl'y, A, x1'y
[,x'y, A
(Cut)
I, xxul’ywv, A, x1'y T, xxuQ’yxv, A, x1'y
r
— ({U)
I xl'y

In rule (P;), z€lIndTerm is arbitrary. In rule (N;), z;, eUreVar and z, €
CompVar. In rule (PV), u, ve IndTerm are arbitrary. In rule (NV u,,),
uy, vy, vy €UreVar and u,, uy, v,, v, €CompVar. In rules (1°,) and (1),
ze€lndVar is arbitrary. In rule (Trans), z € IndTerm is arbitrary. In rule
(Cut), u, ve IndTerm are arbitrary. Finally, in rule (U), xe UreVar and ye
IndTerm\ UreVar.

Definition 5.1 A formula 1, Rt, is called indecomposable if it satisfies either
of the following conditions.

1. ReRelVarURelConst,

2. R =S and SeRelVarRelConst,

3. Re{1,0}

Definition 5.2 A sequence of formulas I' is called indecomposable if all the
formulas in I" are indecomposable.

Definition 5.3 A sequence of formulas I is called fundamental if either of
the following is true.

1. T contains simultaneously the formulas #Rr, and t Rt,, for some
t,,t, €lndTerm and R € RelTerm.
2. T contains the formula ¢1°¢ for some t€ IndTerm.

Definition 5.4 Let Tbe a tree satisfying:

1. Each node contains a finite sequence of fork formulas.

2. If the sequences of fork formulas A, ..., A, are the immediate succes-
sors of the sequence of fork formulas I, then there exists an instance of
a rule from FLC of form

r
Ay Aoy

Then T is a proof tree
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A branch in a proof tree is called closed if it ends in a fundamental se-
quence.

Definition 5.5 A formula ¢, Rt, is provable in the calculus FLC iff there ex-
ists a proof tree T satisfying:

1. Tis finite,

2. Ry, is the root of T,

3. Each leaf of T contains a fundamental sequence.

5.2 Soundness and Completeness of the Calculus FLC
Theorem 5.6 The calculus FLC is sound w.r.t. FL.

Proof. The proof proceeds in two steps. First, we prove that for any rule the

upper sequence of the rule is valid if and only if all the lower sequences are

valid. This property of the rules will be referred to as their admissibility.

Once the first step is established, the second step is an induction on the

structure of the proof tree as follows:

1. If the tree has height 1 (i.e., the root is a fundamental sequence), then it
is trivially valid.

2. Assume that if the tree has height less or equal than n, then the fact that
all leaves contain fundamental sequences implies that the sequence in
the root is valid.

3. Let T be a tree with height n+1. If the transition from the root to the
nodes in the first level was obtained applying a rule R of the form

I
r, I,.r,’

let us call T;(1<i<k) the subtree of T with root T,. Since for all i the
height of T; is less or equal than n and all the leaves contain fundamen-
tal sequences, the root of each 7, must contain a valid sequence. Since
rules preserve validity in both directions, then the sequence I" must be
valid, as was to be proved.

Let us show as an example that the rule ( PV) is admissible. That the re-
maining rules are admissible is proved in a similar way.

Let us consider a sequence of fork formulas I',#,RVSt,, A from a lan-
guage L(Ry,..., R). Let M = ((U, R,,..., R, ), m) be a fork model, and let
v be a valuation over .

If M, vi= T, 1, RVSt,, A then the following three possibilities arise.

1. M, vi=,, y, withyel
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2. M, viE 6, withde A
3. M, vE 4 RVSL

If lor 2 are true, then it is immediate that the three sequences in the lower
part of the rule ( PV) are satisfied in the fork model N by the valuation v.
If 3 is true, then, since the fork formula 1, RVSt, is repeated in the three se-
quences in the lower part of the rule, then these sequences are also satisfied
in the fork model 2 by the valuation v.

On the other hand, if

M, vi=g 1 luww, A, L RVSt,,
M, viE T, 1 Ru, A, 1,RVSt,, and
WM, vi=g T, 48v, A, 4 RVSt,,

then the following four possibilities arise:

M, vi=p, vy with yeT,

M, viE, 8 with S e A,

M, vi=g, 4, RVSE,,

M, viEg,Vusv, M, vi= 0 Ru, and M, viE 1, Sv.

PRD—

If 1, 2 or 3 are true then clearly the sequence of fork formulas
[, 1 RVSt,, A is satisfied in the fork model It by the valuation v. If 4 is
true, then, by definition of fork (Defs. 3.1 and 3.2) IR, vi=,,1,RVSt, and
thus M, vi=, T, RVSL,, A

Definition 5.7 A proof tree T of a sequence of formulas I is called satu-
rated if, intuitively, all the applicable rules were applied in the open
branches. Formally speaking, a proof tree of I'is called saturated if for all
open branches B, the following conditions are satisfied.

1. If xR+Sye B, then both xRy e B and xSy € B by an application of
rule (P+).

2. If xR+Sye B, then either xRyeBorxSye B by an application of
rule (N+).

3. If xR-Sye B, then either xRy € B or xSy € B by an application of rule
(P). _

4. If xR-Sye B, then both xRye Band xSy e B by an application of
rule ( N-).

5. If x1=?y € B, then xRy € B, by an application of rule (N-).

6.  If xR;Sy e B, then for all t eIndTerm, either xRt € B or tSy € B by an
application of rule (P;)
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7. If xR;Sy € B, then for some z €IndVarboth xRz € B and zSy € B by
an application of rule (N;)..

8 If xEy € B, then yRx € B, by an application of rule ( P™).

9. If xRye B, then yRx € B by an application of rule ( N”).

10. If xxyl’usv e B, then either x1’'u € Bor ylI’ve B by an application of
rule (P1’).

11. If x«y0’uxv € B, then both x0’u € Band y0’v € B by an application of
rule (N 1°).

12 If xRy € B, then for all ze IndVar either x1’z€ B or zRy€e B by an ap-
plication of rule (1, ).

13.  If xRyeB, then for all zeIndVar either xRzeB or z1’ye B by an ap-
plication of rule (1°,).

14. If xI’y €B, then ylI’xeB by an application of rule Sym.

15. If xI'y €B, then for all zeIndTerm either x1’zeB or z1’yeB by an
application of rule (Trans).

16. If xI'y eB, then for all u, velndTerm either x«ul’ysveB or
x«uOy=v € B by an application of rule (Cut).

17. If xRV Sy € B, then for all u, ve IndTerm one of the formulas yl’usv,
xRu or xSv is in B by an application of rule (PV).

18. If xRVSye B, then there are u, velndVar such that the formulas
yO’uxv, x Ru and xSv are in B by an application of rule (NV).

19.  For all xe UreVar and yeIndTerm \ UreVar, x1'ye B by an applica-
tion of rule (U).

Definition 5.8 We define the order of R € RelTerm (denoted by o(R)) by the
conditions:
1. o(R) = 1 if ReRelConstURelVar {1},
2. oR=08)+1ifR=SorR=3S,
3. o(R)=max {o(8),0(D} +1ifR=85+T,R=5.T, R=5;T,
orR=S VT

Theorem 5.9 The calculus FLC is complete w.r.t. FL, i.e., if a formula tRt'
is valid in FL, then it is provable in FLC.

Proof. Assume fRt' is not provable in FLC. Then no proof tree exists that
provides a proof for tRt". In particular, no saturated tree with root tRt' pro-



256 MARCELO F. FRIAS & EWA ORLOWSKA

vides a proof. Therefore, if T is a saturated tree, there must exist an infinite
branch B in 7.

Let = be the binary relation on IndTerm defined by

x=y&al’yeB.
Let us prove that = is an equivalence relation.

Since for all Te IndTerm t1’t& B (otherwise B would contain a fundamen-
tal sequence), = is reflexive.

If #, t, eIndTerm satisfy # =1, (or equivalently #,1°t, ¢ B), then ¢, =1,.
Otherwise, if 7,11, €B, then, by application of the rule (Sym) #,1't, €B,
which is a contradiction.

If =1, and 1, =1, (t)1’t, €B and 1,1’ t, & B), let us show that ¢, =1t,. If
L # 1, then ¢,1’ t; € B. Thus, by one application of the rule (Trans) either
n1't, €Bor 1,1’ t; € B, which is a contradiction.

Let % be the FullPFA with underlying domain {Ixl : x € IndTerm} and
pairing function » defined by Ixl « Iyl = Ix « yl. If Ix;| = Ix,l and Iyl = ly,l
then must be Ix; » y|| = Ix, » y,l. Otherwise, if lx; * y,| # lx, = y,, then x,
» ¥11'x; « y, €B. Applying rule (P1’) either x,1’x, €B or y,1'y, €B, which
is a contradiction.

Let us check that « is injective. If If;] « Iz, = I£5] * It,l then, by definition

of *, |t] * tzl = |t3 * t4|. Thus, f Iz].’t:; * Iy e¢B. If Itll * lt3| then tll’t3 €B.
Applying the rule (Cur) either t; « £,1’t; « t,eBort, « t, 0't; = t,€B.
Since t; » 11’13 » t,€B, thent, « 1, 0't; « t,€B. Applying rule (N1')
yields that #,0’t; € B, thus B would be a closed branch, which contradicts
our assumptions. We then conclude that It = |z;l. In a similar way we prove
that 1.[2' = !f4|.
Notice that Urely = {Ixl : x € UreVar}, because if I = I1,| = |t,| then Ixl = It
* . Then, x1°t, * 1, ¢ B. By applying rule (U) we arrive to a contradiction.
Thus, & € PFAU.

Let us define, for € RelVar U RelConst,

(I8, Il em(R) < t,Rt, ¢ B

Let us check that m is well defined. Let us see that whenever ¢, = r; and 1,
= 1y, if {It)l, It,1) em(R) then (|, le,l) em(R) Since {It,l, It,I) em(R), t,R
L €B. If (|53, It,) €m(R) , then 1, R t, € B. Applying rule (1°,) implies that
either ;1°t, €B or ;Rt,€B. If ;1’1 € B, applying rule (Sym) implies that
t1’t;€B. Since 1,1’t;¢ B, then ¢, R t,€B. Applying rule (1°,) implies that
either #; R t,€B or t,1',€B If 1,1'1,€B, one application of rule (Sym)
would imply that 1, 11, € B, which is not the case. Thus, 7,R t,€B which
also leads to a contradiction. We have then shown that (Iz;, Ir,l) em(R) .

Therefore the structure ((%[ m(R,),...,m(R, )), m) is a fork model pro-
vided RelConst = {R,, ..., R} and m(1") is the identity on A.
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Let v be the valuation defined by v(x) = Ixl, for xe IndVar. Let us show
by induction that v(#) = l#l for all 1€ IndTerm. By definition it is true for
variables. If t =1, 1, V() = V(t; xt;) = V(1)) * V(1) = |1ty = 11, 1.

Let us define

S={ae ForkFor:?, vi=p, o and o € B).

Notice that since tRf is valid, U, vi=;, (Rt and thus S# & . Then, since

the set S is well-ordered by o, by Zorn’s lemma S has a minimum element
o.

Notice that & cannot have the shape t,1°t,, because since ' €S, then

A, vi=g 11, Then must be Ityl = It,], which implies #,1°t,¢B, a contra-
diction.

Notice also that & cannot have any of the following shapes: 1, Ti’tz, 1 Rt,,
n 1-?1‘2, IlR+St2, 4 mtz, th' SI2, n ﬂtz,th_;Stg or R_VStz because in
any of this cases a formula &' appears in S satisfying o(@") < o(a'), contra-
dicting the minimality of .

If o = 1,R;St,, by definition of the saturated tree there exists a level in B
where we have a derivation with shape

l_‘|l . al ; l—‘zl
T RaT, a1y, a50:.10,: o

(P;)

and z satisfies 2, vi=,, 1Rz and 2, vi=,, zSt,. Therefore there exists
o'eS with o(a") < o(a).

If o = 1;RVSt, by definition of the saturated tree there exists a level in B
where we have a derivation with shape

r]' s al , l—\zl
L', ,luev, Ty, T, 4Ru, T, 0 T4, a

(PV),

and u and v satisfy A, vi=p, 1 lusv, A, vi=, Ry, and A, viE, 1, Sv.
Therefore there exists o' €S with o(&") < o(0t).

From the previous comments, it follows that o' must be indecomposable.

If & =1,0t, for some QeRelVar URelConst, and t,, t, € IndTerm, then,
since A, vi=,, &, (1)), 11,1y em(Q), but this is so if and only if (by definition
of m), 1,01, & B, which leads to a contradiction.

Ifo =14 Qt2 for some Q € RelVarURelConst, and t,, t, € IndTerm, then,

since A, vi=g o, (In, I6lyem(Q), or equivalently r,Qr, € B. Since Lo,
€B too, B is closed, which is a contradiction.
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If o =1t,0't; for some ¢, t, eIndTerm, then, since U, vi=, o, (Il
|£,1) €m(0”), and thus It,| #It,l. This implies that ¢,1°¢, €B and also that B is
closed which is a contradiction. m

5.3 Examples of Proofs in the Calculus FLC

As an exercise let us show that some valid properties of fork algebras are
provable in the calculus FLC. As a general practice we will sometimes omit
some formulas when passing from a level to the level below, provided the
formulas are not required to obtain the fundamental sequences. This will
not affect the soundness of the calculus, and will simplify reading the
proofs. L

Let us prove that (RVS);(TVQ)” < R;T-S; Q. In order to start the deriva-
tion, we need first to convert the formula into an equation of the form 7= 1.
Notice that in general, R< S < R+ S5=1. Then,

x(RVSY,(TVQ) +R;T-5;Qy (P+)
x(RVS);(T'VQ)"y,xR;T~S;Qy (N3)
XRVSy, 21 (TVQ)'y, xR T-5;Qy  xRVSzy,2,(TVQ) 'y, xR; T+ S; Qy

Z, z,

pln the sequence X, z,e€UreVar, while in X,, z,€CompVar. Let us
analyze each sequence.

If we apply the rule (NV) on sequence X,, then we obtain the following
four sequences
L z, 0’y xv,, xi_Eu,, xgvi,z,(TVQ)“y, xR, T-S; Qy, with u, v, e UreVar,
2.2,0'uyxv,, xRuy, x8v,, 2, (TVQ) y, xR; T - S; Oy, with u, € UreVar and
v, € CompVar,
3. 2,0'u3avs, X Ruy, x8v4, 2,(TVQY y, xR: T - §; Oy, with u, € CompVar
and v, € UreVar,

4. 7,0 uwv,, xI_E‘u4, x§v4, 2 (TVQ)'y, xR; T.5; Qy, with u,, v, € CompVar.

Any of the four branches is closed by applying once in each branch the rule
(U), adding the fork formula z,1'u,*v,,1<i<4.

Regarding branch X,, applying rule (NV) we obtain (as with Z,) the
following four sequences
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1. 2,0'u»v,, xRu;, xSv,, ,(TVQ)'y, xR; T - S; Oy, with u,, v, € UreVar,

2.2, 0'uywv,, xRu,, xSv,5, 2,(TVQ)’y, xR; T-S; Qy, with u, € UreVar and
v, € CompVar,

3. 2,0'us4vy, XRuy, x8v5, 2,(TVO)y, xR, T-S; Oy, with u, € CompVar
and v, € UreVar,
4. 2,0'u,+v,, xRu,, xSv,, 2,(TVQ) 'y, xR; T - S; Qy, with u,, v, € CompVar.

We then proceed in the same way with the four branches, as follows.

290'u;»v;, xRu;, xSv;, 25 (TVQ) y, xR, T-§; Qy (N”)

25 0'u;wv;, xRu;, xSv;, yYIVQzy, xR, T~ S; Qy (I'b)
2 0'upv;, xRuy, xSv;, YTV Quiav;, YTV Oz, xR, T+ S, 0y 25 0'upavy, uymv; 'z,
T %,

Regarding branch XZ,, we have

2 Qupwvy, upev; 1'zy  (Sym)
2,2 O’M,-*Vl' 5 .‘{,2 l’ui*v,-

The last sequence is clearly fundamental, and thus the branch is closed.
Regarding branch Z,, we proceed as follows.

2y Qugwv;, xﬁu,-, x§v,—, yIVQu»v;, yTVQz;, xR; T.S; Qy (NV)
x‘l?u,». x?v,-,u,-*viO’rj*sj,yTrj, y@sj, xR, TS, Qy (P)

xRu;, usv; 0'rjes;, y?‘rj , xR;E: xSv;, u;sv; 0'rjxs;, y@sj L x5:Qy
s, z

6.1, j

Since none of the sequences X, . or X, . are closed, we will derive a
closed tree for each sequence. For the sequences X, . we have:

xﬁq,u,-tv,-(]’rjtsj,yl‘_"rj,xR;f'y (N1}
x_éu,-,u,-O’rj,vj()’sj,yTrj,xR;Ty (P
u,-O’rj.yTrj.u,'fy (P)

u,-O’rj, yTrj.yTu,- (1'p)

xRu;, xRu;  yTu;, yTu; uiOr, ul'r;

Finally, for the sequences X, . we have:
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xgv,-,uitv,-(]’rj*sj.y@sj,xS;Qy (N1)

xgvf-,u;O’rj,v,-O’sj,yasj,xS;Qy (P
v;0’s, y0s, v,-Qy (P7)
v;0's, y0s, yQv; (I'p)

x8v;, x8v;  yOv;, yOv; vi0's;, v s

Let us prove now the other inclusion,

namely, that
R;T-S;Q<(RVS)Y,(TVQ)".

xRT - 8,0 + (RVS)(TVQ)'y (P+)
xRT - 50y, x(RVS)(TVQ)'y (N-)

xﬁy, x?@y,x(RVS);(TVQ)'y (N)
xRuy, 1y -]Fy, x8;0y, x(RVS),(TVQ)'y xRu,, uz?"y. xS0y, x(RVS);(TVQ)"y
8, &,

In the sequence © , u, eUreVar and u, e CompVar, We will proceed the
derivation with © ,» since the same steps can be applied indistinctly to 92.

xRuy, uy Ty, x8;Qy, x(RVS);(TVQ)"y (N3)
xRuy,u Ty, xSv;, v, Oy, x(RVS)(TVQ)'y xRuy,u Ty, xSvy, v, @y, x(RVS){TVQ)"y
0, (S}

4
In sequences ©, and ©, v, eUreVar and v, e CompVar, We will proceed
the derivation with © - aithough the same steps apply to sequence e,
xRuy,u) -T:'y, x8v, v ay. x(RVS)(TVQ)'y (N)

xRu . yTuy, xSvy, vl—éy,x(RVS):(TVQ)“y (N)

xRuy, yTuy, xSv,, yOvy, x(RVS),(TVQ)"y (P
xRuy, xSv;, x(RVS)u, wvp yTuy, yOv, uyev;(TVQ)y
65 @6

Since both sequences © , and ©_ are not fundamental, we will proceed
with the derivation. For séquence s we have:

X}_&ll, XEVI,IRVSHItVl (PV)

up v gy xﬁul,xRu] xS'vl,xSv,

The last sequences are all fundamental.
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Finally, for sequence © o e have:

yTu,, yOv,, u*v,(TVQ)"y (P°)
yTu,, yOv,, YTV Qu, *v, (PV)
TRAN ALY )’Tul’yﬂﬂ yQv,, yQv,

6. A Relational Proof System for Intuitionistic Logic

In this section we prove interpretability of intuitionistic logic in the fork
logic FL and extend the proof system FLC to a relational proof system for
intuitionistic logic.

6.1 Intuitionistic Logic
Syntax and semantics of the intuitionistic logic (/nf) is as follows.

Definition 6.1 The alphabet of Int is given by:

1. an infinite countable set of propositional variables denoted by PropVar,
2. the set of propositional connectives {—, v, A, =}, and

3. the set of auxiliary symbols {“(", *,”, “)"}.

Definition 6.2 The set of intuitionistic formulas (denoted by IntFor) is the
smallest set satisfying

1. PropVarcIntFor,

2. If a,BelntFor, then {(—a), (v @), (axAp),(x— B)} < IntFor.

Definition 6.3 An intuitionistic model is a triple (W, R, m) such that

1. W@

2. Rc WxW is areflexive and transitive relation,

3. m: PropVar — P(W) satisfies the heredity condition given by:
If wRw' and w € m(p), then w' € m(p).

Definition 6.4 Let I = (W, R, m) be an intuitionistic model. A formula ¢ is

satisfied in a world we W (denoted by J3,wk=,, & if the following condi-
tions are satisfied:

1. a=p,ePropVar:
I, wk,,p; iff wem(p,)

2. a=-4:
3w, —Biff (YW e W) (wRW = 3, w'k,, ).
3. a=f8vy:

S,weBvyiff I, we,, B or I, w7
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4. a=BAvy:
S,wEpBAyiff 3, wE=p,B and I, we=p, Y.

5. a=B-vy: ‘
S, w8 — yiff (Yw e W) (wRw' and 3, w'=,, B implies
3, wE,, 7).

Definition 6.5 A formula « is true in an intuitionistic model I = (W, R, m)
(denoted by J k=, ) if, forall we W, J,wk, a.

Definition 6.6 A formula is Int-valid if it is valid in all intuitionistic models.
6.2 Interpretability'of Intuitionistic Logic in Fork Logic

In this subsection we will present a mapping T; : IntFor — RelTerm that
will allow to interpret the logic Int in the logic FL.

Definition 6.7 Let us have a fork language with one constant symbol R in-
terpreted as an accessibility relation from intuitionistic models. Let us de-

fine the recursive mappin}g T, : IntFor — RelTerm as follows:
1. T(p) =R, with p;, € PropVar and R; € RelVar.

T, (=)= R;T,(a).
T)(anB)=T/(a)-T;(B).
T (avB) =T, (a)+T,(B).

T, (o= B)=R)(T,(a)-T,(B)).

LU

Since the accessibility relation in intuitionistic models satisfies conditions
of reflexivity, transitivity and heredity, we will define abstract relational
counterparts of these conditions, as follows:

(Cl): TI',<R, (reflexivity)
(C2): R;R<R, (transitivity)
(C3): (R;-R)R =1, (heredity)
(C4): R; <yl forall (R; has urelements in its domain)
(C5):  R;;1=R forall (R, is right-ideal)
(C6): R< Ll (R is defined in the set of urelements)

Theorem 6.8 Let 3 = (W, R, m) be an intuitionistic model. Then there ex-
ists a fork model F = ({(U, R ), m') constructed from 3 satisfying condi-
tions (C1)-(C6) such that for all we W and for all ¢ €IntFor

S, w0 © wedom (m (T,(@))).
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Proof Define U as the FullPFAU with set of urelements W, let R = R, and
for each R;eRelVar define m'(R;)={(x,y):x € m(p,)}. Conditions (C1)-
(C6) hold because of the way R' and R, are defined.

The remaining part of the proof proceeds by induction on the structure of
the formula ¢.
@ =p,; €PropVar:
S,we,p  iff wem(p,)
iff w e dom (m' (R.))
iff w € dom (' (T,(p,))).

Q==
J,whk,,—a iff (YW eW)(wRw' = 3, W'k, 0)
iff (Vw'e W) (wRw' = w' ¢ dom (m' (T,(@))))
iff (Aw' € W) (wRw' A w' € dom (m' (T, ()

iff (Aw' € W) (WR w' A w' € dom (m' (T;(v))))
iff w e dom (R ;m (T; (o))

iff w e dom (m' (R ;(T;()))
iff w e dom (m' (T, (—a))).

p=avp:
Saweavpoiff 3, we,a or I, we, B
iff w e dom (m' (T, (@))) or w € dom (m' (T,(3)))
iff w € dom (m' (T, () + m'(T,(8)))
iff w e dom (m' (T, (v B))).

p=anp
J,weaap iff S, wE, @ and I, w=, B
iff w e dom (m' (T, (@))) and w e dom (m' (T,(B)))
iff w e dom (m' (T, (@) - m' (T,(B)))
iff w e dom (m' (T, (@ A B))).

p=a—-p
3wk, a—p
iff (VW' e W) (WRw A, W=, B= S, wEp,Y)
iff (Aw'e W) (WRW A, W=, BA S, W', Y)
iff (Aw' € W) (wRw' Aw' € dom (m' (T (B))) A w' & dom (m' (T (Y))))
iff (Aw' € A) (WR w' aw' € dom (m' (T7(B))) A w' & dom (m' (T;(Y))))
iff w e dom (R ;(m' (Ty(a))- m' (T; (B))))
iff w e dom (m' (R ;(T;(at)- T; (B))))
iff w e dom (m' (T (0t — B))).
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Theorem 6.9 Let § = ((U, R), m) be a fork model satisfying conditions
(C1)-(C6). Then there exists an intuitionistic model 3 = (W, R ,m') con-
structed from 3% such that for all we W and for all ¢ € IntFor

wedom (m(T,(9))) & J,wk,,0.

Proof. Let us define W = Urely, R' = R, and for all p; € PropVar define
m' (p;)=dom (m(R;)). Notice that by conditions (C1)-(C6) R' is a reflex-
ive and transitive relation on W, and the heredity condition is satisfied by
m'. The remaining part of the proof proceeds by induction on the structure
of the formula ¢@.

@=p;:
wedom (m(T,(p;)))
iff we dom (m(R,))
iff wem' (p;)
iff 3, we=,,p..

Q=0
w e dom (m(T;(—0)))

iff w e dom (m(R';T;(0)))
iff w e dom (Rym(T(w)))
iff (Aw' € A) (WRW' Aw' € dom (m(T;(®0))))
iff (Aw' € W) (wRw' Aw' € dom (m(T;(t))))
iff (Vw'e W) (WwRw' = w' ¢ dom (m(T;(w))))
iff (Vw'e W) (wRw' = T, 'k, 0
iff 3, wk= -0

p=avp:
w e dom (m(T,(a v B)))
iff w e dom (m(T (o) +T;(B)))
iff w e dom (m(T (o) +m(T;(B)))
iff w e dom (m(T;(a.))) or w € dom (m(T;(B)))
iff 3, wi=,m(x or S, Wf=]mB
iff 3§, w00 v .
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p=anf:
wedom (m(T,(a A fB)))
iff w e dom (m(T; (o) T;(B)))
iff w e dom (m(Ty(a))-m(T;(B)))
iff w e dom (m(T(c))) and w € dom (m(T;(B)))
iff 3, w00 and 3, we= B
iff S, W|=[ma A B

p=a—p:
w € dom (m(T,;(a — B)))

iff w e dom (m(R;(T;(a)-T1(B))))

iff w e dom (R;(m(T (o)) m(T;(B))))

iff (Aw' € W) (wRw' AW € dom (m(Ty(a))) Aw' & dom (m(T;(B)))
iff (Vw'e W) (wRw' Aw' € dom (m(T;(a))) = w' € dom (m(T;(B)))
iff (Vw' e W)(WR w' A, w'E 0= 3, w'E,B)

iff 3, w00 — B.

Let us denote by §t the class of those fork models ({2, R), m) where 2 and
m satisfy conditions (C1)-(C6). In the remaining parts of the paper we will
denote by FL' the fork logic induced by the class of fork models

R in the following way

FrxTy & VI € f(ME=, xTy).
Theorem 6.10 Let y € Intfor. Then, given x € UreVar and ye CompVar,

FEmW iff =g xT,(y)y.

Proof. Let us prove the contrapositive. If ¥,y then there exists an intu-
itionistic model I = (W, R, m) and w € W such that J, wk, v . Then, by
Thm. 6.8 there exists a fork model § = ((U,R ), m') such that
w & dom(m' (T,(y))). Let v be a valuation satisfying v(x)=w, then 3,
Vo xT,(y)y, and thus ¥ xT,(y)y.

If ¥ xT,(y)y, then there exists a fork model § = ((U, R), m) satisfy-
ing (C1)-(C6) and a valuation v such that {v(x), v(y)) & m(T,(w)). Thus,
V(x) & dom(m(T,(y))). By Thm. 6.9 there exists an intuitionistic model
= (A, R ,m') such that J, v(x)¥,, v, and thus ¥, v. n
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6.3 A Fork Logic Based Calculus for Intuitionistic Logic

In this subsection we will present a calculus for intuitionistic logic based on
the calculus FLC. The calculus will be obtained by adding specific rules
and modifying the notion of fundamental sequence in the calculus FLC.

Throughout this subsection we assume we are working with a fork lan-
guage L(R) with only one constant symbol as in Def. 6.7.

Definition 6.11 A sequence of fork formulas I' is Int-fundamental if any of
the following conditions is true:

1. T is fundamental according to Def. 5.3, or

2. the fork formula xRx eI for some x € UreVar.

Condition 2 reflects the property that the intuitionistic accessibility relation
R is reflexive on the set of urelements.

We define the intuitionistic calculus /n-FLC by adding the following
specific rules to those of FLC.

I', xRy, A (TranR)

I', xRz, xRy, A T, zRy, xRy, A
I, xRy, A (H)

I, zRx, xRy, A T, zR;y, xRy, A

I, xR;y,A (RI)

I, xRy, xR;z, A
' (RUr) '  (VarUr)

I, xRy T, xR;y

In rules (TranR), (H) and (RI), z€ UreVar is arbitrary. In rule (RUr) either x
or y belong to IndTerm \ UreVar, and in rule (VarUr), xelndTerm \
UreVar. The admissibility of rule (TranR) is equivalent to the transitivity of
the relation R. The admissibility of rule (H) is equivalent to the heredity
condition. The admissibility of rule (R/) is equivalent to relational variables
being interpreted as right-ideal relations. The admissibility of rule (RUr) is
equivalent to R being defined only on urelements. Finally, the admissibility
of rule (VarUr) is equivalent to variables having urelements in their do-
main.

Notice that the last comments imply the soundness of the calculus Int-
FLC.
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Theorem 6.12 The calculus Int-FLC is sound w.r.t. the logic FL', i.e., given
tQt'e ForkFor

= - s ctQF = E 08

Definition 6.13 A proof tree T of a sequence of formulas I is Int-saturated

if in all open branches B, the following conditions are satisfied.

1. Conditions (1) through (19) from Def. 5.7,

2. If xRyeB then for each z& IndTerm either xRze B or zRye B by an ap-
plication of rule (TranR).

3. If xRyyeB (R; €RelVar), then for each zeIndTerm either zZRxeB or
zR;y €B by an application of rule (H).

4. IfIf xRyeB (R; € RelVar), then for all z& IndTerm xRze B by an appli-
cation of rule (R1).

5. For all x, yeIndTerm such that x€ IndTerm \ UreVar or y € IndTerm \
UreVar, xRy € B by an application of rule (RUr).

6. For all xelndTerm \ UreVar and yeIndTerm, xRy€B by an applica-
tion of rule (VarUr).

Theorem 6.14 The calculus Int-FLC is complete w.r.t. the logic FL' i.e.,
given tQt'e ForkFor

FpptOf =, 5 101

Proof. The proof will follow the lines of the proof of Thm. 5.9, and there-
fore the reader will be directed there for some parts of the proof.

Assume #Qr' is not provable in Int-FLC. Then no proof tree exists that
provides a proof for tQ¢'. In particular, no Inz-saturated tree with root 1Qf’
provides a proof. Therefore, if T is an Int-saturated tree, there must exist an
infinite branch B in T.

Let = be the binary relation on IndTerm defined by

x=syexl'yeB.
The proof that = is an equivalence relation is the same as in Thm. 5.9.

Let 91 be the FullPFAU with set of urelements {|x|: x € UreVar} and
pairing function * defined by |x|*|y|=|x*y|. Proving that * is well defined
and injective is done as in Thm. 5.9.

Let us define, for R € RelVar U{R},

(|[1|, ltzl) em(R) = nRt e B.

That m is well-defined is proved as in Thm. 5.9.
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The relation R is reflexive, for if there exists xe UreVar such that
(||, | x> € m(R), then xRx € B. Then B would be a closed branch which is a
contradiction. ‘

The relation R is transitive, for if there are x,, x,, x3 € UreVar such that
(|, | € m(R), (|x, |, |x5]) € m(R) and (|x,|,|xs|) € m(R), then x,Rx, & B,
x,Rx, € B and x Rx, € B. Then, applying rule (TranR) either x,Rx, € B or
x,Rx, € B which is a contradiction.

The heredity condition holds, for if there are x,, x,e€UreVar and
teIndTerm such that (x|, |f]) e m(R;) (R; € RelVar), {|x}, |2} € m(R) and
(|x,|, [t]) & m(R,), then x,Rit & B, x,Rx, & B and x,Rt € B. Applying rule (H)
either x, Rt € B or x,Rx, € B, which is a contradiction.

In a similar way we show that relational variables are interpreted as right-
ideal relations.

Rg UreVar xUreVar, for if there is telndTerm \ UreVar such that
|t|e dom (R) or |f| € ran (R), then applying rule (RUr) we arrive to a con-
tradiction.

For all R, eRelVar, dom (R;) cUreVar, for if there are telndTerm \
UreVar and ' € IndTerm such that (|i],|'|) € m(R;) then tR;t' ¢ B. Applying
rule (VarUr) we arrive to a contradiction.

Therefore the structure ((?(, m(R)), m) is a fork model that satisfies (C1)-
(C6). The rest of the proof is analogous to the respective part of the proof
of Thm. 5.9. |

From Thm. 6.14 the corollary below immediately follows.

Corollary 6.15 Given a formula ¢ €IntFor xeUreVar and ye CompVar,
we have

Fn® S - rrexT1(9)y.

Proof From Thm. 6.10, for any formula ¢ €lntFor xeUreVar and
yeCompVar,

Em® e EgxT,(@)y. (2)
From Thms. 6.12 and 6.14, we then obtain

EreXT(Q)y &y _rrexTi(9)y. (3)
Joining (2) and (3), we then obtain

Fint® S - rLexT(@)y. [
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Example In order to see how the calculus works let us consider a proof of
the intuitionistic tautology ———o — —a. According to Coro. 6.15, it suf-
fices to prove that —; _p -xT;(———0 — —)y. In order to keep an eco-
nomic notation we will not apply the mapping 7, entirely from the begin-
ning, but by parts according to our needs. To do so we will use a rule called

(T).

xT, (ﬁ—u—ﬂl - —|(1.)y (T’)

xR; (Ti(———0)- Ty (—))y (N3)
36)‘_&1 » 3 T] (*-a—r—|0.'.) . T[(—\(X.)): @Zg, 22 T[ (—1—ﬁ(1) ’ TI (—-(I))J’
Avl A’Z

In sequences A, and A,, z; € UreVar and z, € CompVar.
Regarding sequence A ,, we have

xRz, 2, T, (~——a)-T,(—a)y (RUr)

XTR‘ZZ. 2, T, (———a)-T,(-a)y, xRz,

The last sequence is fundamental, and thus the branch is closed.
Regarding sequence A, we have

xRz, 2 Tj(———0)- Ty (=00)y (N)

xRz, 7 Ty (=——0)y, y Ty(—a)y  (N-)

xRz, 3 Ty (———)y, y Ty (=)y  (T))

xRz, 21 BT (——)y, ;T (~0)y  (N-)

xRz, 71 R T (——)y, 71T (~e)y  (T))

xRz, 3 RiT (=~ )y, y R T (@)y  (N3)
xRz, R T (——0)y, 2 Ry, 1 T (@)y xRay, 71 R Ty (——at)y, 2Ry, T ()y

A, Ay,

In sequences A; and Ay, t, € UreVar and t, € CompVar.
Regarding sequence A ; we have:

xRzy, 2 R T (——)y, 2 Ry, , Ti(o0)y  (P;)
xRz, Ry, 2 Ry Tp(0)y xRz, T (——0)y, 2y Ry, 0 Ty (@)y
A Ag
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Since the fork formulas z,Rt, and z, R, occur in A s, this branch is closed.
Regarding sequence A¢ we have

XI_{Zl.f]T[(ﬁﬁa)y, 4 E!l,fl T](U.)y (T!)
xl_?zl,tl RiT; (=), 7 }_311,% T;(a)y (N3)
xXRey 2 Ry, Ty (=@, 2 Ry, 4 Ty (@)y  xRey, 1y Rvy, vy T (—)y, 2y Ry y Ty (@)
e Ag

In sequences A; and Ay, v,€ UreVar and v, € CompVar.
Regarding sequence A ; we have:

xRy, Rv, v Ty (—0)y, 2y Ry, 4y T (@y (T})

xl_izl,r]l_?vl,vlR;T](ot)y,zli_ixl,rlmy (N—)

xRey, 1y Ry, R T (@)y, 2y Ry, 1y Ty (@)y (P
xﬁzl,rli_?vl,lev],zll_Qq,r]my ;T?zl,rli_?vl,vlT,(u)y,zli—izl,rlm)f

Ag At

Since the fork formula v, Rv, accurs in A, this branch is closed.
Regarding sequence A |, we have:

XEzl 1 f—?vl, T (a)y, z) E]; 1 T(o)y (H)
XRZI i RV] ,IIRV] 3 vlT,(ot)y, 21 RI], n TI(U.))j IRZ] 2 h RU],I]T,(U.))F, VIT]((I))’, 4| RI], n T[(Oi))i
Ap Ay

Since the fork formulas #, Rv, and #,Rv, occur in A ,,, the branch is closed.
In a similar way, since the fork formulas #T,(a)y and t,T,(«)y occur in
A |, also this branch is closed.

Regarding sequence Ag, we have:

xRz, ty Ry, vy T (=0)y, 2, Rty, , T(@)y (RUF)
XRZ] il RUQ, ) T;(—«x)y. 41 RI] »h T](ﬂ)y, llRV2
>

13

Since the fork formulas #, Rv, and #, Rv, occur in A 3, the branch is closed.
Finally, regarding sequence A , we have:

IEZ[ ¥ ZIR;TJ (—|—|0'.)y, K4 Eg_, [5) TI(O'.))’ (RUr)
xﬁzl , ZIR;TJ (—==a)y, | Ta’z, iy T{((I)y, 4| sz
Al4
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Since z, Rt, and z,Rt, occur in A ,, the branch is closed.

7. A Relational Proof System for Minimal Intuitionistic Logic

Minimal intuitionistic logic J has been introduced by Johansson in 1936
[18]. It differs from the intuitionistic logic in that the axiom
—a — (o — P) is deleted. In [4], Fitting introduced a Kripke-style seman-
tics for the logic J. A Kripke model for J is a system M =(W, R, O, m)
where W is a nonempty set, R is a reflexive and transitive relation on W,
Qc W is a R-closed subset of W, that is, if weQ and {w,w') €R, then
w' € 0, and m is a meaning function which is defined as for the Kripke se-
mantics of the intuitionistic logic Int with the exception of the evaluation of
negations:

M, wk= j—oiff for all w', if (w, w') € R, then M, w'F ;o or w' € Q.

O is to be thought of as the set of those states of information which are in-
consistent. The notion of truth of a formula in a model and validity are the
same as for Int. It is known that a formula & is valid in J iff « is true in
every finite model of J with antisymmetric relation R.

Interpretability of J in fork logic FL is established by a translation 7 of
formulas of J into relational terms. It coincides with translation T;except
for the translation of negated formulas:

Tj(—0)=R; (T (at)- Q)

where R and Q are relational constants interpreted as the accessibility rela-
tion from models of J and the right ideal relation that is a counterpart of the
set Q from these models.

The relational proof system for J (that we will denote by J-FLC) consists
of all the rules of the proof system of the fork logic, the specific rules for
Int and the following specific rules:
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I, xQy, A (01)
I, 20y, A, xQy T, zRx, A, xQy

I, x0y, A (Q2)
T, xQz, A, xQy

r (@3

[, xQy

In rule (Q1) zeUreVar, in rule (Q2) zelndTerm, and in rule (Q3),
x€IndTerm\ UreVar and ye IndTerm.

Rule (Q1) is admissible iff Q is R-closed, rule (Q2) is admissible iff Q is
a right-ideal relation, and rule (Q3) is admissible iff Q has only urelements
in its domain.

Notice that the abstract fork-algebraic equations

€D :Q=0;1,
(C®):  (R-Qx0=1,
(C9)]: g=<yl,

state that Q is an R-closed, right-ideal relation whose domain is made of
urelements.

Let ¥(R, Q) be a fork language with two constant symbols. Let & be the
class of those fork models ({2, R, @), m) for the language 2(R, Q) satisfy-
ing conditions (C1) - (C9). Then & induces a fork logic FL" as follows:

Fr-xTy & VIR € R(M=L, xTy).

From the admissibility of the specific rules (Q1) - (Q3) we obtain the fol-
lowing theorem on the soundness of the calculus J-FLC.

Theorem 7.1 The calculus J-FLC is sound w.r.t. the logic FL", i.e.,
|_J_ FLCxTy = |=FL"XT}'.

Definition 7.2 A proof tree T of a sequence of formulas I' is J-saturated if
in all open branches B, the following conditions are satisfied.

1. Tis Int-saturated,

2. If xQyeB then for all ze UreVar either zQy € B or zRx € B applying rule
(21),
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3. If xQyeB then for all z€ IndTerm xQz e B applying rule (Q2),
4. For all xeIndTerm \ UreVar and yelIndTerm, xQye€ B applying rule
(Q3). '

Theorem 1.3 The calculus J-Int is complete w.r.t. the logic FL", i.e.

13

':FL" xSy = |_J_ FLCxSy.

Proof. The proof will follow the lines of the proof of Thm. 5.9, and there-
fore the reader will be directed there for some parts of the proof.

Assume t5t’e ForkFor is valid in FL" but is not provable in J-FLC. Then
no proof tree exists that provides a proof for ¢S¢'. In particular, no J-satu-
rated tree with root £St’ provides a proof. Therefore, if T is a J-saturated
tree, there must exist an infinite branch B in T.

Let = be the binary relation on /ndTerm defined by

x=yexl'yeB.

The proof that = is an equivalence relation is the same as in Thm. 5.9.

Let % be the FullPFAU with set of urelements {|x|:x € UreVar} and
pairing function * defined by |x|*|y| =|x*y|. Proving that * is well defined
and injective is done as in Thm. 5.9.

Let us define, for R € RelVar U{R, Q},

(s

bem(R)e Rty ¢B.

That m is well-defined is proved as in Thm. 5.9.

That R is reflexive, transitive and that the heredity condition holds are all
proved as in Thm. 5.9.

Assume that (|wl, |w']) € m(R), {|w], |x|) € m(Q) and (|w'|, |x|) & m(Q). Then
wRw'eB, wOxeB, and w'QxeB. Applying rule (Q1) we immediately ar-
rive to a contradiction, and thus Q is R-closed.

Assume(|x],|y]) € m(Q), but (|x|, |t]) € m(Q) for some TeIndTerm. Then,
xQteB. Since the tree T is J saturated, applying rule (Q2) we arrive to a
contradiction, and thus Q is right-ideal.

In a similar way we show that relational variables are interpreted as right-
ideal relations.

If there are xeIndTerm \ UreVar and y€indTerm such that()x||y) e
m(R), then xRy ¢ B. Applying rule (93), xRye B, which is a contradiction.

Therefore the structure ({2, m(R), m(Q)), m) is a fork model that satis-
fies (C1)-(C9).
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Let v be the valuation defined by v(x)=|x|, for xe IndVar. In Thm. 5.9
it is shown by induction that v(¢) = t| for all 7€ IndTerm.
The remaining part of the proof is as in Thm. 5.9 |

In order to be able to reason in the calculus J-FLC for proving minimal in-
tuitionistic properties we still need to show the interpretability of the logic J
in the logic FL".

Theorem 7.4 Let = (W, R, O, m) be a minimal intuitionistic model. Then
there exists a fork model § = ((, R, Q'), m') constructed from

satisfying conditions (C1)-(C9) such that for all weW and for all
@ elntFor

3, w0 < w e dom(m' (T,;(9))).

Proof Define 2 as the FullPFAU with set of urlements W, let R' = R, let
O'={(x,y):xeQ}, and for each R, eRelVar define m' (R)={(x,y):x¢€
m(p;)}. Conditions (C1) - (C9) hold because of the way R', Q' and m' are
defined.

The remaining part of the proof proceeds by induction on the structure of
the formula ¢ and equals the proof of Thm. 6.8 except for the case of the
negation.

S,W|=J—10.

iff (Vw'e W) (wRw' = J, w'F ;o v w' e Q)

iff (Vw'e W) (wRw' = w' ¢ dom (m' (T;(a)))vw edom (Q'))
iff (Bw' € W) (wRw' Aw' € dom (m' (T (1)) A w' € dom (Q'))
iff (Aw' € A) (WR w' Aw' € dom (m' (T ;(0))) A w' & dom (Q'))
iff w e dom (R ;(m' (T (0)- Q)

iff w e dom (m' (R (T;(0)-0)))

iff w e dom (m' (T j(—))).

Theorem 1.5 Let § = ((U, R, @), m) be a fork model satisfying condi-
tions (C1) - (C9). Then there exists a minimal intuitionistic model I = (W,

R', Q', m") constructed from § such that for all we Urely and for all ¢
elntFor

w e dom(m(T,())) & I, wE=, 0.



A PROOF SYSTEM FOR FORK ALGEBRAS 275

Proof. Let us define W = Urely ,R' = R, Q' = dom (Q) and for all p;
€ PropVar define m'(p;) = dom (m(R)). Notice that by conditions (C1) -
(C9) R is a reflexive and transitive relation on W, the heredity condition is
satisfied by m' and (' is an R-closed right-ideal relation. The remaining part
of the proof proceeds by induction on the structure of the formula ¢ and
equals the proof of Thm. 6.9 except for the case of the negation.

wedom (m(T J(—wL

iff w € dom (m(R;(T;(cx)- 0)))

iff w e dom (R;(m(T;(av))- Q)

iff (Aw' € A) (WwRwW' Aw' € dom (m(T j(a))) A w' &€ dom (Q))
iff (Aw' € W)(wRw' aw' € dom (m(T ;(at))) A w' & dom (Q))
iff (Vw' e W) (wRw' = w' & dom (m(T;())) v w' € O)

iff (Vw'e W)(wRw' = J, w'H¥ ;o vw € Q)

iff S, W|=_]—|U..

Theorem 7.6 Let y €lntFor. Then, given xe UreVar and ye IndVar,
=y & FgaT; (y)y.

Proof. Let us prove the contrapositive. If ¥ ;y, then there exists a minimal
intuitionistic model § = (W, R, O, m) and w € W such that , wky . Then,
by Thm. 7.4 there exists a fork model § = ((2, R, @), m’) such that
wedom(m' (T,(y))). Let v be a valuation satisfying v(x)=w, then 3,
vV P xT(y)y and thus B . xT,(y)y.

If ¥ . xT,(y)y, then there exists a fork model & = ( (U, R, @), m) sat-
isfying (C1) - (C9) and a valuation v such that (v(x), v(y)) € m(T;(y)).
Thus, v(x)edom(m(T,(y))). By Thm. 7.5 there exists a minimal intu-
itionistic model 3= (A R, @', m') such that J, v(x)#,y and thus &, y.

From Thm. 7.3 the corollary below immediately follows.

Corollary 1.7 Given a formula ¢ €lntFor, xe UreVar and y e CompVar, we
have

F,0 &b pexT (@)y.

Proof. From Thm. 7.6, for any formula ¢ € IntFor,
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Ej0 =g xT (). 4
From Thms. 7.1 and 7.3, we then obtain

FrLxT @)y &b prexT (). 5
Joining (4) and (5), we then obtain

E,0 o pexT(@)y.

8. Relational Reasoning in Intermediate Logics

Intermediate logics are the logics whose valid formulas include all the for-
mulas that are valid in intuitionistic logic but not necessarily all the tau-
tologies of classical logic. In that sense these logics are between intutionis-
tic and classical logic. For many intermediate logics a Kripke semantics is
known. Below we give examples of conditions that the accessibility rela-
tion is supposed to satisfy in Kripke models of some intermediate logics.

(I1) IxVy(xRy)

(I12) Vx3y(xRy AVz(yRz = y =2))

(I3) VxVy3z(zRx A zZRy A Vt(tRx A tRy — tRZ))

(14) VxVyVz(xRy A xRz — yRz v zRy v V1(yRt = zRt))
(I5) VxVyVz(xRy A xRz — 3t(yRt A zRt))

(I6) IxVy(y # x = xRy) A VxVzVi(xRz A xRt — —zR?)

The translation from formulas of intermediate logics into relational terms is
the same as for formulas of intuitionistic logic. There are three methods of

developing relational means of reasoning for intermediate logics within the
framework of fork logic.

Method 1 We define a specific rule or a fundamental sequence for every
condition on the accessibility relation in the underlying Kripke models of a
given logic. The relational proof system for the logic consists in all the
rules and fundamental sequences from the prof system of fork logic to-
gether with those new specific rules and/or fundamental sequences. For ex-
ample, the rule corresponding to condition (I4) is the following:
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D
I', yRz, zZRy, zRt, A (R4)
[, xRy,®, A T,xRz, &, A T, yRi, D, A
where x is a variable.

Proposition 8.1 Rule (R4) is admissible in fork logic iff in every fork model
the relation R satisfies condition (14).

Proof =) Observe that condition (/4) is equivalent to the following:

VxVyVzVt(zRy A xRz A yRt = yRz v zRy v zRt).

Assume that rule (R4) is admissible and suppose that in some fork model
condition (I4) is not satisfied. Hence, for some valuation v in this model
we have (V(x), v(y))€ R, (Vv(x), V(z)) € R,{v(y), V(1)) € R, (V()), V(2))
€ R, (v(z), v(y)) € R, and (v(z), v(1)) & R. Consider an instance of rule
(R4) with I'=xRy, xRz, yRr and with A empty. Then all the lower
sequences of the rule are valid, so the upper sequence must be valid as well.
But in the above model none of the formulas of the upper sequence is true
under valuation v, a contradiction.

<=) It is clear that this implication also holds. ]

Method 2 We use the following deduction theorem for fork algebras with
urelements.

Theorem 8.2 Let ¥, ..., Y, and vy be fork algebra terms. Then

(n=L...7,. =lFppy=1FEp Ly .. 71+ y=1
Proof. =) If

(r=L...% =l pryy =1
then, since SPFAUC PFAU,

n=L..7=1lFpuyy=1

Let A € SPFAU and m:RelConst—A be arbitrary. If Ay, =1,...,7, =1,
then by hypothesis A=y =1. Then

A=19.yl+y=1
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If A%y, =1,..., 7, =1, then ¥,-..-y, #0.. Then, since U is simple (and
thus satisfies (1) from Def. 3.9, A1 y;-...-y,;1=1. Thus, A=1; YooY ,;
I1+y=1 Then, Fgppayl;Y¥1-..¥n:1+Y =1 By Thm. 3.10, we then have

Ferav Vi Yl+y=1

<) Notice that if ¥, =1,..., ¥, =1 then ¥,-...-y, =0. Thus,

Ly....¥,:1=0.
Thus, if Fpeyy 17y Y51+ Y =1, mustbe =pp,, ¥ =1. ]
Let L(T") be an intuitionistic logic, where I"={y,,..., 7,} is a finite set of

first-order sentences imposing conditions on the accessibility relation.
Let & be the class of those fork models satisfying the set of equations

{T,(y)=LyeTl} and let FL. be the fork logic induced by the class of
fork models §¢ o

Theorem 8.3 Let I = (W, R,m) be a model for the intuitionistic logic
L(T'). Then there exists a fork model ¥ = ((U, R ), m') for the fork logic
FLy constructed from 3 such that for all we W and for all ¢ €IntFor

S, wE L@ © w e dom(m' (T1(@))).

Proof. Define U as the FullPFAU with set of urelements W, let R' = R, and
for each R;e RelVar define m'(R;) ={(x, y):x € m(p,)}. The equations in the
set {Ty(y)=1:y eI} hold because of the way R" and R, are defined.

The remaining part of the proof proceeds by induction on the structure of
the formula @, and is as in Thm. 6.8. |

Theorem 8.4 Let ¥ = ((U, R), m) be a model for the fork logic FL.. Then
there exists an intuitionistic model 3 = (W, R', m') for the logic L(T") con-
structed from § such that for all we W and for all ¢ €IntFor

wedom(m(T,(9))) <3, WELn-

Proof. Let us define W = Urely, R' = R, and for all p; € PropVar define
m'(p) = dom(m(R)). Notice that the validity of the set of equations
{T,(y)=1y €T} in ¥ implies the validity of the sentences I" in 3. The
remaining part of the proof proceeds by induction on the structure of the
formula ¢ as in Thm. 6.9. |
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Theorem 8.5 Let y €lIntFor. Then, given xe UreVar and ye CompVar,
FioV SEpaoxT (V)y.

Proof. Let us prove the contrapositive. If ¥, y, then there exists an intu-
itionistic model I = (W, R, m) for L(I") and we W such that ¥, wk,, v .
Then, by Thm. 8.3 there exists a fork model § = ((, R ), m') such that
w&dom(m' (T;(y))) Let v be a valuation satisfying v(x) = w, then §,
Vg, XT,(y)y, and thus ¥ xT,(y)y.

If g, xT, (y)y, then there exists a fork model ¥ = ((U, R), m) satisfying
the set of equations {T,(y)=1:yeI'} and a valuation v such that
(v(x), v(y)) e m(T,(v)). Thus, v(x) € dom(m(T,(y))). By Thm. 8.4
there exists an intuitionistic model ¥ = (A,R,m') such that 3,
V(x)# W, and thus &, oy, |

Definition 8.6 We define the calculus Int — FLC. by the condition

= te- . ¥QY S XL Ty (11 Ty (7,); 1+ Qy

Theorem 8.7 The calculus Int — FLC. is sound and complete w.r.t. the fork

logic FL..

Proof.

|_lm‘—FLC1- )CQy (= i_IRI—FLCxl; T()(')fl ) g T()('}'k ); 1+ Qy (by Def. 86)
= '=FL' x1; T()(Tl ). T()( Yr )1+ Qy (by Thm. 6.14)

<=>|=9x1; T()(Yl )T()()’k),l-l-Qy (by Def. FL')
e{Ty(y)=1:yelg0=1 (by Thm. 8.2)
kg 2=1 (by Def.8 )
4=>F=FLI_IQ)I (b}’ Def. FLF)
|

To prove validity of a formula of an intermediate logic that admits a Kripke
semantics with a finite set I" of constraints on the accessibility relation, we
should show that for every Kripke model, if all the constraints from I" are
true in the model, then the formula in question is true in this model. We
translate the constraints from I" and the given formula into relational terms
and, applying the deduction theorem, we verify validity of the respective
term in fork logic. In order to do this we use the proof system Int— FLC.
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Method 3 We translate constraints from I' and the formula in question into
relational terms and we verify whether from the terms obtained from the
members of I" the term obtained from the formula is derivable. In order to
do this we apply the equational means of reasoning within the theory of
fork algebras as in [13].

9. An Intuitionistic Logic for Hardware Verification

An intuitionistic logic referred to as a propositional lax logic (PLL) has
been recently proposed as a tool for a formal verification of computer
hardware (Fairtlough and Mendler [3], Mendler [24, 25]). We show how
such a logic can be handled in a relational framework. The logic is obtained
from the propositional intuitionistic logic by augmenting its language with
a unary propositional connective O that models delay propagation of sig-
nals. Signals are conceived as Boolean valued functions, the Boolean val-
ues being denoted by 1 and 0. With input and output signals of combinato-
rial gates we associate propositional variables. Then if & is such a variable,
then truth of @ in a model is interpreted as “ @ is stable at 17, truth of —a
means “ & is stable at 0”, truth of O & means* ¢ is going to stabilize to 1,
and truth of O —a means “« is going to stabilize to 0”. Formally, by a
model for PLL we mean a system of the form M = (W, R, S, m) where
(W, R, m) is an intuitionistic model and S is a binary relation in W that is
reflexive and transitive, and S R. The satisfiability of formulas of the
form O « is defined as follows:

Mw=Oo e
for all y e W, if xRy then there is z € W such that ySz and M, z=a.

Operator O is a modal-like operator that shares some features of both ne-
cessity and possibility.
The specific axioms that characterize O are as follows:
l. a-0¢,
2. O0Oa—-O0aw,
3. (a—=pB)—>(OCa—0OpB).

Intuitionistic modal logics have been extensively investigated by Vakarelov
[36, 37]. Interpretability of PLL in fork logic is established by a translation
Ty, that coincides with the translation T, on the formulas without operator
O and is extended to formulas of the form O « in the following way:

TpLL (Oa)=R;S; Tpy (),
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where R and § are relational constants interpreted as the accessibility rela-
tions from models of PLL.

The relational proof system for PLL consists of the rules and fundamental
sequences for Int-FLC, reflexivity and transitivity rules for the relation S
and the following rule that reflects the condition S < R:

I', xRy, A (SR)
I, xSy, A, xRy

10. Conclusions

In this paper we presented a Rasiowa-Sikorski style proof system FLC for
the logic FL (fork logic) of relations that is based on fork algebras. We
proved soundness and completeness of FLC. In the spirit of our work on
relational formalisation of nonclassical logics ([13, 28, 30]) we developed a
methodology of constructing relational logics and relational proof systems
for intuitionistic logic, minimal intuitionistic logic, and some superintu-
itionistic logics. For each logic L from this class of logics we defined the
respective relational logic L-FL and we proved interpretability of L in L-
FL. Each of the logics L-FL was accompanied by a proof system L-FLC
obtained as an extension of the proof system FLC.

University de Rio de Janeiro, Brazil.
e-mail: mfrias @inf.puc-rio.br.
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