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IN DEFENCE OF DISCRETE SPACE AND TIME
Jean Paul VAN BENDEGEM
1. Problems with Infinite Divisibility

It is a rather safe statement to claim that the standard paradoxes of Zeno,
e.g., the dichotomy, does not really pose any problem (any more). If we
have an interval [0,1] that is divided up into an infinite number of intervals,
[0,1/2[, [1/2,1/2+1/22[, ..., [1-1/27,1-1/2n+1[, ..., then we know (though not
so long ago) that the sum of all the intervals gives the neat result 1, as we
would (now) expect. As far as speed is concerned, no problem there as
well. For if we set the time interval equal to [0,1], then we have the same
subdivision and obviously in any interval the value of the speed is 1, as it
should be (now). So why do some philosophers, including the author of this
paper continue to worry about infinite divisibility of space and time and to
look for alternatives?

The basic answer is this: although it is a fact that in some cases infinite
divisibility does not pose a problem, this does not entail that it does so in all
cases. At this stage, what I should have to do, is to present an overview of
the literature on supertasks and the problems connected with them, but I
will restrict myself to two special cases that can be considered paradigmati-
call. The first example is Ross’ paradox, the second example is (what I
call) Faris’ paradox. Both examples presuppose a unit time interval, say one
minute, divided up into an enumerable series as shown above. I will label
them T, T3, ... such that T, = [1-1/27,1-1/27+1].

1.1. Ross’ Paradox

Suppose you have an urn and an enumerable number of labeled balls 1, 2,
..., 1, ... In the first interval T}, you put ball 1 to 10 in, and take ball 1 out.
In the second interval T3, 11 to 20 go in, and 2 goes out. In general in the n-

LA paper that can be considered both an excellent summary and a critical evaluation of
the state of the art concerning supertasks, is Earman & Norton [1996]. One tiny comment:
without going into the details, I do not agree with the view of both authors that the discus-
sion about supertasks is to be considered, save a few exceptions, over and finished.
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th interval T, the balls labeled 10.(n-1)+1 to 10.n go in, and ball n goes
out.

The question is quite simply this: what is the state of the urn after one
minute?

The rather surprising answer is: the urn has to be empty. And there is an
excellent and straightforward argument: suppose the urn is not empty. Then
there has to be a ball in it. This ball must have a label, say n. But in the n-th
interval 7, this ball was removed from the urn, so it cannot be in it. Hence
the urn is empty.

It must be clear that, from the mathematical point of view, there is no
problem. One might argue that results of this kind are no more (or just as)
surprising as, say, Hilbert's Hotel2 and similar phenomena, illustrating
thereby how strange the infinite is. But as a physical process, the matter is
not so straightforward. In my paper [1994a] I have tried to argue that any
physical execution - that is, within the limits of the appropriate physical
theories that can produce a description of such an execution - of Ross’
paradox is impossible. I have to add straightaway that I wrote that paper in
reply to Allis and Koetsier [1991] who held the opposite view. They replied
to my paper in their [1995] with some very good arguments to refute my
reasoning. Hence my careful choice of words: “not so straightforward”.
The argument is the following: in terms of physical actions, the only type
of action that takes place, is to move a ball from one location to another
(either in or out of the urn). Nothing else is happening. But how did the urn
end up empty? Not because there was a last ball in the urn and because that
was removed from the urn, for there isn’t one. But that is the only physical
action “available” that could have led to an empty urn.

I realize fully that this reasoning does not sound particularly convincing.

Hence I will present another supertask that, to my mind, makes the problem
clearer.

1.2. Faris’ Paradox (or the Faris sheet)

This paradox is based on a description given by J.A. Faris in his [1996], pp.
13-15. The version I am presenting here, is a simplification of the full

2 In a nutshell: Hilbert’s Hotel has a denumerable number of rooms which allows for the
possibility that, even if the hotel is full (i.e., for every n, there is someone in room n), more
and more guests can be accommodated by moving those present around. The most dramatic
case is that where a denumerable number of guests arrives. Every person already in the hotel
moves to room 2.n, if (s)he was staying in room n, thus all odd-numbered rooms are free!
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story3.

Before you lies a sheet of paper. You have a pencil and an eraser. The
supertask to perform is quite simple: in the n-th interval, write down the
numeral » on the sheet and erase it after that (in the same interval). .

The question is the same as in the previous case: what is on the sheet af-
ter one minute? And the answer is the same: nothing. Even the argument is
the same: if there were any number on the sheet, say n, then obviously it
was erased immediately after writing it down in the same interval.

Consider now the supertask in terms of physical processes. It is clear that
only two physical actions are taking place: writing down numerals and
erasing them. No other action is involved. At the end of the one minute, the
sheet is empty. As there have been numerals on it, the only physical action
that could have led to an empty paper is an erasure. But, as there is no last
numeral, there cannot have been a last numeral on the sheet, hence the
empty sheet after one minute is not the result of an erasure. According to
this analysis, the following set of statements is indeed inconsistent:

(a) two physical actions are possible
(b)  during the one minute interval, (a) applies,
(c) the situation at the end of the interval, is not the result of (a).

This extremely simple situation may help to clarify the strangeness of the
Ross’ paradox. Duplicating this argument, it says that the empty urn cannot
be the result of moving the balls around.

Actually, if one is not convinced by this argument, try this observation.
The well-known Thomson lamp - running through the intervals, the lamp is
alternately on and off - leads to an indeterminate state at the end of the one
minute interval. There is general agreement about that. Here is an easy way
to connect a Thomson lamp to a Faris sheet. In order to have the situation
as physically concrete as possible, suppose that the sheet lies on top of the
switch of the Thomson lamp. When a numeral is written on the sheet, the
lamp is on, when it is erased, the lamp is off. In semi-formal language, we
can write the connection as a couple that is of the form (write numeral n,
Thomson lamp on) or (W(n),T(1)) or that is of the form (erase numeral n,
Thomson lamp off) or (E(n),7(0)). This means that with every erasure cor-

3 The focus of Faris's work is not on supertasks as such, but as an element of an investi-
gation with the aim to arrive at an interpretation of Zeno’s paradoxes as it appears in the
original texts. It is worth mentioning however that Faris reaches a conclusion that is not the
conclusion I arrive at. Without going into the details, [ believe in fact that his selution is not
correct, illustrating once more that supertasks are the subject par excellence about which to
fully distrust your intuitions.
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responds an off-state of the Thomson lamp. Suppose finally that the end-
state of the Faris sheet is due to an erasure, then it must correspond to the
off-state of the lamp. This would determine the state of the Thomson lamp
at the end of the one minute interval. But it is undetermined. Thus the end
state of the sheet cannot be the result of an erasure.

In short, something has happened, some physical action has taken place,
whereof we have no idea what it is. For that matter, one might actually ar-
gue that at the end of the one minute interval, your name is on the sheet. As
there is no physical action that produced the empty sheet, likewise there
cannot be a physical action that prevents an arbitrary state from manifesting
itself.

The result of these considerations is not (unfortunately) that infinite
divisibility is a nonsensical concept, but (merely) that it is as problematic as
its counterpart, namely discreteness. However as far as the notion of
discreteness is concerned, it has always been assumed that that is really and
truly a problematic if not nonsensical concept. The remainder of this paper
is a plea to reject this assumption.

2. Two approaches to discreteness
2.1. The Pythagorean problem

The basic argument why a discrete interpretation of space and/or time does
not make sense has been formulated quite clearly by Hermann Weyl4. The
argument runs as follows. Assume, for simplicity, that the plane consists of
small squares. Suppose we have an origin, a vertical and horizontal axis.
Thus, each square has integer coordinates (i,j). It seems straightforward to
define the distance d between two points p(i,j) and q(i'j") as d(p(i,j), g(i'j")
=|i-i"|+|j-j | Consider now the three points p(0,0), ¢(3,0) and r(0,4).
In this right-angled triangle, Pythagoras fails miserably as d(g(3,0),p(0,0))
+ d(p(0,0),r(0,4)) = d(g(3,0),10,4)). The problem is that the distance func-
tion d is, on the one hand, the most “natural” choice possible in a discrete
geometry, but, on the other hand, it does not correspond with observable
geometrical objects and their properties, in particular, with a Euclidean

distance function dg (applicable when we are talking about human-scale
environment3).

4 Weyl [1949], p. 43: “If a square is built up of miniature tiles, then there are as many
tiles along the diagonal as there are along the sides; thus the diagonal should be equal in
length to the side”.
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Actually, the situation seems less dramatic than expected. After all, the
viewpoint that a discrete geometry has necessarily a unique and “natural”
distance function, needs to be argued for. As I will claim at a later stage in
this paper, there are good arguments against the “naturalness” of the func-
tion d, mentioned above. Thus there is a choice either to accept d or to re-
Ject d. In the latter case, other distance functions are admissible. Why not,
along the same lines as classical geometry, impose a distance function? Or,
if such is possible, why not have two (or more) distance functions? At the
micro-scale we have d, at the macro-scale we have dg. And, if such is pos-
sible, suppose that there is a nice connection between d and dg? Would that
not constitute a neat solution? As one might expect, this is the approach
favoured in this paper.

The remainder of this paragraph discusses two already existing solutions
and presents a new framework where both can be integrated.

2.2. First solution: width as a relevant concept

What follows is a brief summary of my proposal as presented in my [1987].
A possible way to solve the Hermann Weyl problem is to introduce the
width Np of a line in a discrete plane. Thus N represents a large (finite)
number, corresponding to the number of squares that form Np. Given a line
L, the width is always defined as perpendicular to that line. Now suppose
that the line has an orientation corresponding to an angle a between the line
and the x-axis. Then the width Np of that line, when projected on the x-axis
will be Np/cosa.

v

N'p

orientation of the squares
figure 1

5 Throughout this paper I will confront any discrete model of space and time with the
classical Euclidean model. This is, of course, a severe restriction, but once the Euclidean
connection is established, we have at least a starting point for further developments.
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Now comes the definition of a distance function. The distance d between
two points p and g is the number of squares in the rectangle formed by the
line from p to g and the width Np, divided by Np. The idea is that, although
in a discrete geometry, lines must necessarily have a width, this is not an
essential feature, so it can be divided out. Hence:

d(p,q) = [(Nr.Np)/cosd] (div Np).

Ny here corresponds to the number of layers parallel to the x-axis between
p and q.

As an illustration, consider the Weyl problem. We have a right-angled
triangle pgr such that for simplicity the right sides pg and gr are equal to
one another and are aligned with the axes of the grid. Suppose that the
number of squares in the right sides is Ny. Then

d(p,q) = d(q,r) = [NL.Np] (div Np) = NL..
However, the hypotenuse has an angle of 1/4. Hence coso = V2/2. Thus

d(p,r) =[(Np.Np)coso] (div Np)
= [N2.N..Np] (div Np)

= [N2.N,].
p P
Ne { N, “Z_ N = V2N,
N
\ I’
q J_ r
N,
figure 2

No calculations are needed to show that the Pythagorean theorem holds,
ie., d%(p,q) + d*(q,r) = d%(p,r). Finally, there is an easy explanation why
the Weyl problem occurs: it corresponds to the limiting case Np = 1.
Although the introduction of a width Np apparently solves the problem, it
is equally clear what the drawbacks are. Without Euclidean geometry in the
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background, there is really no way to get the construction going. Thus I did
not have, e.g., a definition of a line in terms of the discrete geometry, and,
above all, the projected width on the x-axis of a line L is calculated accord-
ing to a Euclidean distance function that is not explicitly mentioned. In
short, there is a mixture of two distance functions here that needs to be re-
solved.

2.3. Second solution: points with extensions

Peter Forrest in his [1995] presents a solution, that is quite definitely an
improvement over my approach. Let me first try to summarize his ideas. He
starts by introducing a family of discrete spaces Ej, ,,, where n corresponds
to the “classical” dimension of space and m is a scale factor, to be under-
stood as follows: m is a parameter to decide when two points are or are not
adjacent, which is the basic (and sole) concept of his geometry.

Thus in the case n = 2, points are labeled by couples of integers (i,j) and
two points (i,j) and (i'j) are adjacent if (a) they are distinct and (b) (i - i")?
+ (j - j2 < m2. Once adjacency has been stipulated, a distance function can
be easily derived: the distance between p and g, d(p,q), is the smallest
number of “links” in a chain of points connecting p and g such that each
one is adjacent to the previous one. Next there is no problem to show that a
straight line passing through two points is that chain of points that has the
shortest distance.

If the parameter m has a small value, then the resulting distance function
is not Euclidean. More specifically, if m = 1, then we have, once again, the
situation presented by Weyl. But if, say, m = 1030 (the figure proposed by
Forrest himself), then the situation changes. Then it is possible to show that
the distance function on the discrete space will approximate the Euclidean
distance function as close as one wants for sufficiently separated points.
Without presenting all the details, one can show that a Euclidean distance

function dg and the discrete distance function d are related by a scale
factor, i.e.,

dp(p,q)/d(p,q) = constant(m),

where the constant is determined by the value of m. No calculations are
needed once again, to show that the original distance function d satisfies the
Pythagorean theorem.

If one is looking for a weak point in this approach, then inevitably one
must end up with the basic notion of adjacency. What is the reason for
defining adjacency in Euclidean terms (apart from the fact of course that
Forrest is, as he clearly states, looking for discrete approximations to
Euclidean spaces)? For, after all, a condition such as (i-i)2 + (j-j)? <m?
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looks as Euclidean as can be. Of course, Forrest is absolutely right that,
once you have your notion of adjacency, all the other stuff follows in a
straightforward way. But why this particular notion of adjacency? I should
add here - and I will return to the topic in paragraph 3.6 - that Forrest calls
into question the whole idea of a specific representation of a discrete space,
e.g., as built up from tiny squares. Hence, trying to derive a distance func-
tion from properties of a specific representation is, according to Forrest,
quite literally besides the point.

2.4. Overcoming the difficulties

The idea of this paragraph is to present a discrete geometry from scratch,
making references to Euclidean notions as minimal as possible (preferably
not at all).

Let us start with the plane, built up with squares (or tiles). To make the
distinction clear, I will call the squares t-points. It is straightforward to de-
fine coordinates for the t-points. Choose an arbitrary tile as the origin, label
it (0,0) and label the others (i,j), where i and j are integers in the usual
fashion. The next thing we need are -lines. Actually, there are several pos-
sibilities (although the opposite might seem to be the case). I will use the
simplest one®.

Definition 1. Given two t-points p(i1ji) and g(i2,j2), then the t-line passing
through p and q is defined by the set of ¢-points r(i,j) that satisfy:

J-J1=UG2 - jlz - i)).Gi - i),
or i-iy=[(G2-iG2-j)).G-jDl

if defined. There are two special cases: (i) i = is, and (ii) j| = j». In case (i),
the equations reduce to i = i1, and in case (ii) to j = j;. From now on, I will
only deal with the general case, as the special cases do not generate any

6 One other possibility I had in mind is the following. This solution avoids the use of al-
gebraic equations altogether. First you define connectedness in the usual way. Given two t-
points p(iy.j, ) and q(i,j;), define the rectangle formed by (i} ), (i j2), (i24) and (1242)-

It consists of |(i - i + 1).(jp - j; + 1)| r-points. A t-line is defined as a connected series of
t-points such that (a) it contains the least number of t-points, (b) it divides the rectangle in
two parts Py and P, and (c) the number of t-points in P, is as close as possible to the
number of ¢-points in P,. The underlying idea is to have a discrete notion of a diagonal. Two
remarks: (i) this definition does not guarantee a unique solution, however it is not difficult to
show that any of them will do as they differ marginally (in terms of t-points), (ii) this
definition is not equivalent to the one discussed in this paper (as the definition in the paper
produces a unique solution).



IN DEFENCE OF DISCRETE SPACE AND TIME 135

specific problems. The square brackets indicate integer rounding off. The
“or” in the definition is important. I am not looking for values that satisfy
both equations, but at the same time I do not wish to exclude that some val-
ues do satisfy both equations. Thus, as an example, a ¢-line passing through
p(2,0) and ¢(4,3) will pass through the following -points: (2,0)***, (2,1)™,
(3,1)%, (3,2)**, (4,3)"™. The superscripts * and ** indicate that the value
satisfies the first equation, resp., the second equation.

Definition 2. If a t-line is defined by two #-points p(i1,j1) and g(i.ja), then
the ratio @ = (j3 - j1 M(i7 - iy), if defined, will be called the direction of the
line.

Note: I assume here that the rational numbers are available. This is hardly a
trivial remark and I will return to it in 3.5.

Definition 3. Two t-points p(i},j1) and g(iz,jp) are connected if
ib=ijtlandj;=j +1.

Definition 4. A t-line is connected if, given two t-points p; and p,,, there is a
series of t-points p1, py, ..., pi, ..., P, On the t-line, such that for every &, py
and pg,1 are connected.

Lemma: Given two t-points (ixji) and (ix41.jk+1) on a r-line, such that ® >
0. Then, if jg41 > jg, then iy = iy

Proof: Suppose that ji4| > ji, and i, < ix. Then
ik+1 - i1 <ig-i1.Then
O .(ige1 - i1) < © (i - i1). Then
[® (g1 - i < [@. (i - i1)]. Then
Jk+1 =J1 S jk - J1. Thus
Jk+1 < Jk. Contradiction, O

Note: the proof is quite similar for @ < 0. The special case ® = 0 needs no
comment.

Theorem 1: Every t-line is connected.

Proof: Let p(i1.j1) and pp(ip,j,) be given. First note that, according to the
definition of a r-line, there must be a sequence of t-points, such that ij = m
and iy = m+(n-1). Take two neighbouring t-points, say, p; and Pk+1, such
that iy - i = 1. Suppose that ji,) > ji + 1 (the case ji - 1 is similar). Then
there is at least one j such that j; < j < j4. But according to the lemma, this
means that iy < i <ijy) =iy + 1. Thus either i = iy or i = it . Repeat the ar-
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gument with ji, replaced by j. Eventually we must reach j; and thus we
get a connected series of #-points going from jg to ji41. (|

We now have the basic ingredients, r-points and #-lines, to get a geometry
going. But do note that, up to this point, no mention has been made of dis-
tances. Actually, in this proposal, I will simply avoid talking about a dis-
tance defined in terms of t-points and/or t-lines. Rather I want to arrive at a
definition of points and lines, that is, the macroscopic geometrical units that
will have to approximate Euclidean notions as close as possible. The core
of the problem is rotations. Consider a macroscopical geometrical object,
say a rectangle. If the rectangle is translated across the square grid, no prob-
lem arises. But, if it is rotated, the number of squares making up the trian-
gle does not remain the same. Thus, in terms of micro-distance, rotations
are funny things. It is therefore understandable that it seems unlikely to be
able to define rotations on the basis of micro-concepts. However!

Talk about rotations equals talk about angles. Now angles in a discrete
geometry are nasty business as well. But there is one exception: the right
angle. It is perfectly possible to define a right-angle in geometrical micro-
terms.

Definition 5. Suppose that a r-line L with equations
J-i1=[o@-i)],
or i-i1=[(l/®).(-j)l
is given. Then the r-line perpendicular to L in (i1 ;) is the rline defined by
the equations:
J-n=HVw).G-i)l,
or i-ij=[-(®).(G-j)l

Note: If asked why this particular definition “works”, it helps to see what

happens if one asks for the line perpendicular to the line perpendicular to L.
That happens to be L itself.

The last element we need is based on the following observation. Objects
that in Euclidean geometry can be described in two equivalent ways, say
Dy and D5, need not be identical in terms of t-points and r-lines. For what is
the problem? If we talk about rotations, then it would be a great help if we
could define a circle such that the result is a Euclidean circle. Of course, the
first definition that comes to mind, is: the set of #-points that are equally far
away from a fixed #-point. This requires a notion of distance and, whatever
you try, it will not do (see further). But there are other ways to characterize
circles, such that even in terms of t-points and t-lines, the result is a
Euclidean looking circle.
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Definition 6. Suppose a t-line segment is given with end-t-points, p(i{,j})
and g(i2,j2). A t-circle C is the set of all r-points, such that each ¢-point is
the intersection of a pair of ¢-lines L; and Ly, such that (i) L; and L, are
perpendicular, (ii) L goes through p, and (iii) L goes through g.

Note that in this definition no reference at all is made to Euclidean notions.

This is an entirely microscopic definition that produces a Euclidean-looking
circle.

Definition 7. Given a t-circle based on a t-line segment with end-t-points,
p(i1,j1) and g(iz,72). Then the t-point ¢ with coordinates ([(i1 + i2)/2], [(j1 +
Jj2)/2]) is the center of the circle.

I will abbreviate these numbers by (cy,c2).

Theorem 2. t-points p(i,j) on a t-circle with center (cj,c3) (roughly) satisfy
the equation (i -c1)2 + (j - ¢3)2 = constant.

Proof: 1 will look at a special case (without loss of generality), namely,
suppose we have a t-line segment with, on the one end, a t-point p(-K,0)
and, at the other end, ¢(K,0). The coordinates of the center are then (0,0).
When the theorem says “roughly”, that is because I will allow myself to
reason without the square brackets. Thus a line going through p(-K,0) will
satisfy (roughly) the equation j = w.(i + K), whereas the perpendicular go-
ing through ¢ will have as equation j = (-1/®).(i - K). The t-point of the
circle has to satisfy both equations, thus:
j=0.(i+K)

and j=(-1/w).(i - K).
From the first one follows @ =j/(i + K), substituted in the second one, this
gives:

J=CE+K)p.G-K)

or j2=-(i2-K?)

or i2+j2=K2, O
As to be expected, I will call K the radius of the t-circle.

From here on, there are several routes to continue. The idea is to define a
Euclidean distance function on the basis of t-circles. Because theorem 2 is a
“rough” proof, it is safe to define a point (not a t-point) as having a mini-
mum extension.

Definition 7. Suppose we fix a (large) natural number K. Then a point is the
region enclosed by a r-circle with radius K.
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Definition 8. The t-point p related to a point P is the t-point that is the cen-
ter of the ¢-circle that defines the point.

Note: To avoid confusion, I will use capital letters P, @, ... to indicate
points. Sometimes I will attach coordinates to them, thus P(i,j) means that
the t-point p related to P has coordinates (i,j).

Definition 9. Two points P and Q are connected if the corresponding t-cir-
cles either overlap or touch, i.e. have at least one ¢-point in common.

Definition 10. Given two points P and Q with related #-points p and g. The
line &£ (not a t-line) connecting P and Q is a set of pair-wise connected
points such that the -points related to them lie on the ¢-line going through
the z-points p and q.

Note: 1 use the notation & for a line to avoid confusion.

The implicit idea in what follows, is quite simply to define the Euclidean
distance between two points P and Q as the least number of connected
points between P and Q. I will treat a special case first: suppose we want to
know the distance between the point P(0,0) and Q(i,j). Consider then the t-
circle that has p(0,0) as its center and goes through g(i,j). Its equation is i2
+ j2 = M2, for some number M. Thus the radius is M and, as every point has
a radius K, it seems absolutely “natural” to define

In terms of a picture, to measure the distance, what you do is to see how
many circles of radius K can be fitted in on a radius of a circle of radius M.

Theorem 3. dg is a Euclidean distance function.

Proof. The proof is fairly trivial once one realizes that
dp(P(0,0).0(i./)) = MIK = (i2 + ) 2/K.
Up to the scale factor K, this is nothing but a Euclidean distance function.
a

Note that, as expected, distance is invariant under translation. Thus, if df is
the distance between two points P(i},j1) and Q(ip,j2), it is easy to check
that:

dp(P(i141),.Q(i2./2)) = d(P'(i + m,j1 + n),0'(iz + m,jp + n)),

where m and n are arbitrary integers.
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I will not spend too much effort to show how to integrate the two proposals
that have been discussed. It is obvious that if a line £ is made up of points
that have a radius K, then however the line is orientated compared to the
squares, it will have a constant width (perpendicular to the line) that is 2K.
Thus the idea of a constant width comes out naturally. As far as the solution
of Forrest is concerned, this solution presented here is pretty close to his
approach, but with the bonus that now there is a neat explanation for his
notion of adjacency in terms of t-points and ¢-lines.

Two remarks. Firstly, as has been remarked before, Forrest claims that
the advantage of his proposal is that exactly one simple primitive notion is
sufficient, namely adjacency, to construct a geometry - an advantage lack-
ing in my proposal - but as the outline above shows, the strong point of this
framework is that it neatly integrates both my and Forrest’s proposal.
Secondly, the solution presented above is clearly just one of a family of
solutions. It is, e.g., perfectly possible to continue to talk about ¢-points and
t-lines (as, indeed, Forrest does). There is no real need to introduce points
and lines. This is a rather comforting thought: the project does not stand or
fall with one unique solution.

All this being said and done, it is worthwhile to have a look at other ob-
jections that have been raised against a discrete approach. Most of these
problems will have easy answers, with one notable exception.

3. Further objections
3.1. The “natural” distance argument.

When discussing the Weyl argument, I wrote that the distance function
d(p(i,),q(i'y") = li - | + |j - j| is the most “natural”one possible. If it is
possible to find other distance functions, equally well defined in terms of
the squares (or #-points, in my terminology), should the conclusion then not
be that there is nothing really “natural” about it? With the proposal outlined
above, this task is rather trivial.

Think about the definition of a #-line connecting two t-points p(0,0) and
q(1,j), where for simplicity p is supposed to be the origin. If we define the
distance d from p to g as equal to the number of z-points between p and g,
then one notes the following:

(1)  in some cases, it is equal to the sum i + j, thus corresponding to the
“natural” distance,

(i) in some cases it is equal to the largest of i and J, max(i,j),

(i) for most values, it is something in between these two, thus
max(i,j) <d(p,q) <i+j.
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This is based on the following observation. The two equations that define a
t-line, namely
J-n=[wG-il
or i-iy=[(1/®).G-j1]
have the following property. For every value of i, there is a unique value of
J» so we have at least i possible solutions. The same holds for the second
equation, for every j, there is a unique value of i. So we have j possible so-
lutions. In some cases, for every i-solution, there is a corresponding j-solu-
tion, then we have that d(p,q) = i = j = max(i,j). Think about the case when
® = 1. Then we have the equations j = [{] or i = [j]; they reduce to the
same, namely, j = i. Hence the number of t-points between p and g is i = j,
i.e., max(i,j). But in most cases, there will be i-solutions without corre-
sponding j-solutions and vice versa. Example: take the #-line going through
(0,0) and (2,3). Then w = 3/2. The first equation, for i = 1, gives j = 1. So
(1,1) is on the line, but, for j = 1, the second equation says i = 0, so (0,1) is
on the line. So, there will be more solutions than max(i,j), but not necessar-
ily as much as i + j (as there are overlaps).
In addition, note that the following inequalities are always the case:
max(ij) € (2 +jHV2 < +j.
There is a nice picture to illustrate this. If we talk about circles in the stan-
dard way, then a circle is the set of all 7-points that are equally far away
frorr71 a fixed point. I leave it to the reader to reflect on the following pic-
ture’:

i+] 4—( (i + )72

max(i,j)

figure 3

If we consider max(i,j) and i + j as “natural”, is it not plausible to consider
the distance functions “in between” as natural as well. In that case, there is
nothing “unnatural” about the Euclidean distance function (that is, on the
level of #-points and #-lines).

7 In this sense, the square circle does exist!
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In short, I cannot be terribly impressed by the “natural” distance argu-
ment. If, however, the claim is that in discrete geometry the distance func-
tion should somehow be a function of the ¢-points, then it is clear that (i)

there are many possibilities, (ii) the proposal outlined here satisfies that cri-
terion.

3.2. The smallest is not the smallest

This is surely one of the best known counter-arguments. Faris ([1996], pp.
54-55) gives a beautiful example that tells it all: suppose a curved line con-
necting A and B. Suppose that the distance from A to B is the shortest dis-
tance possible. Now draw the chord that connects A and B. Surely the
length of the chord must be shorter than the length of the curve.

A

figure 4

This would indeed be the case if the Euclidean distance function is applica-
ble on all levels, i.e., both on the level of -points and points. But it doesn’t.
If we move down to the level of the t-points, it is very well possible that the
chord and the curve have the same length in terms of distance functions,
such as the max(i,j), discussed above. In a nutshell, in the proposal outlined
above, the following statement is perfectly acceptable: at the level of

points, you have the Pythagorean theorem, on the level of t-points, you do
not.

3.3. Problems with motion

Of all the problems a discrete viewpoint has to deal with, this is no doubt
the hardest problem to tackle. If space is discrete and if time is discrete
(although for some of the objections that follow this is not even required),
then movement, whatever it is, must be discrete as well. It obviously cannot
be continuous. But discrete motion raises all kinds of strange problems (I
will now talk about hodons (or of t-points) and chronons for the smallest
space and time units):
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(1)  There can be no motion at all, because of the following argument: “If
motion is the time derivative of position, then position must be dif-
ferentiable, hence continuous, function of time, and so there can be
no motion in a discrete space.”(Harrison, [1996], p. 279).

(i1)  If there is motion, then it has to be a “jerky” motion. In other words,
there is no genuine change. Worse, it seems that from chronon to
chronon, things are annihilated and recreated.

(iii) If there is motion, it is possible that objects can cross each other,
without aligning. In short, what we have here, is Zeno’s stadium
paradox, once more. As a side effect, this also means that two lines
that are not parallel, do not intersect, if the intersection point happens
to be the cross-over point.

As must be obvious, such problems must receive answers, for otherwise,
discrete geometry (together with discrete time) will not do as a basis for
differential and integral analysis and hence will not do as a basis for
physics, which after all, is one of the most important goals we have in
mind. Now (i) and (iii) are easy to refute, but (ii) is a deep philosophical
problem that is not easy to solve at all (and I do not pretend to have a solu-
tion, merely some plausibility arguments).

Ad (i): When we are talking about derivatives, we are talking about analyti-
cal concepts that are related to geometrical concepts. But then we are on the
level of Euclidean geometry, that is on the level of points and lines and not
on the level of t-points and r-lines. Hence this cannot be a counterargument
for motion in a discrete space. This being said, it is not trivial to match ge-
ometry and analysis in an easy and straightforward way (see 3.5).

Ad (ii): The “jerky” motion argument says that if hodon/chronon defines
the largest speed possible, then what is an object occupying one hodon
supposed to do if it is to travel at half that speed. The only scenario’s one
can imagine, are those wherein the point moves one hodon, does nothing
the next chronon, moves one hodon the next, and so on. Thus one gets a
jerky motion. Actually, that we have this kind of strange behaviour does
not really worry me. After all, we are talking here about the ultimate con-
stituents of this world, space and time. What expectations I am supposed to
have concerning the behaviour of space and time at that level? If I look at
our best (continuous) theories today, these too present me a strange picture
of the world as far as its ultimate elements is concerned. But, do note that at

the level of points and lines, once again, there will be no jerky motion to
observe8.
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The same applies to the creation and annihilation idea. I will not use the
weak, if not misleading argument that in quantum mechanics, creation and
annihilation operators are essential ingredients. Apart from the apparent
name likeness, not much else is to be found there. Rather I would defend
the followmg idea. Suppose for simplicity that we have a grid n by n. There
are n2 squares. Suppose at chronon 7 we have a certam distribution of points
over the grid. For the next chronon, there are 27 possibilities, for each
hodon can be occupied or not. We could imagine a universe where each of
these is a real possibility. But what we note is that not all possibilities oc-
cur. Some are excluded. And, in some cases, these exclusion rules are de-
tectable. A simple example may illustrate this process:

case 1:
P g P q
XX — X X
t t+1

case 2:
P 4 P q
XX - [X X
t t+1

figure 5

If one hodon per chronon is the maximum speed, then case 1 is possible —
p moved, one step to the left, g one step to the right — but case 2 is impossi-
ble. This is easy to check because, after all, the number of possibilities is
finite.

In short, what links the situation at one chronon with the situation at the
next chronon is a sort of embryonic form of natural law(s). Of course, one
might still just be unhappy with the idea of going out of and back into exis-
tence a billion billion times a second. But then again, according to our best
physical descriptions at the moment, I cannot even start to describe my own
body, let alone “myself” (if any difference), in quantum-mechamcal terms
at the level of quarks, electrons and all the other stuff that is “me”. So, to
claim that continuity solves the problem that discreteness is not able to
solve, is a rather empty statement.

8 Although I should add here that not everyone shares this opinion. Forrest's [1995] is ti-
tled “Is Space-Time Discrete or Continuous?” and the subtitle says “An Empirical
Question”. He, for one, believes firmly that the question can be settled empirically.
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Ad (iii): Let me, first of all, formulate the argument in all its simplicity.
Suppose we have three rows consisting of ¢-points or hodons:

Al Bl C1
A2 B2 c2
A3 B3 3

During one chronon row two moves one hodon to the left and row three
one hodon to the right. Thus we find:

Al B1 C1
A2 B2 c2
A3 B3 c3

If one now looks at row 2 and 3, one sees that they are two hodons apart.
Hence the question: at what moment did we have the following situation:

A2 B2 c2
A3 B3 3

The answer “half a chronon” contradicts the discreteness and the answer “at
no moment” seems bizarre, for at no moment did B2 align with A3 and C2
with B3. So, out goes the idea of a discrete solution, as most philosophers
and scientists are very willing to accept. This probably explains why the
problem is not so often discussed. Actually in the second edition [1995] of
Sainsbury’s classic on paradoxes, it is even missing.

Nevertheless, there are a number of philosophers who will stress that the
“at no moment” response is at least logically acceptable. Thus Salmon in
his [1980]: “This is strange perhaps, but again, it is hardly logically impos-
sible” (p. 65). Whitrow goes even further and claims that Zeno makes a
logical error one has asks for what has happened in between: “Indeed, Zeno
is in fact guilty of a logical error himself when he makes this appeal, for he
is tacitly invoking a postulate of continuity which is incompatible with the
hypotheses adopted at the beginning of the argument.” ([1980], p. 191).
However, logical possibility does not imply plausibility, let alone accept-
ability.

Note, once again, that we are talking at the level of hodons and chronons.
At the level of Euclidean geometry, these phenomena will not happen, as
points and lines have extensions and are capable of overlapping.
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In short, the overall answer to all these problems is that, on the level of the
t-points and t-lines, we indeed do have a rather strange world. It is a world
where things can cross without meeting, where things can go in and out of
existence, but, on the level of points and lines, everything looks Euclidean
(as close as possible). If a comparison can be made, what is happening here
is quite similar to Conway’s game of life (or any cellular automaton for that
matter). The rules on the level of the squares are elementary and concern
only local properties, but, once the thing starts moving, all kind of strange
creatures appear, with their own properties, that are not easily reducible to
the behaviour of the elementary parts. Finally, it also worth stressing that
the continuum view is about as good as the discrete view in terms of
strangeness. As Richard Gale puts it in his [1978], more precisely in the in-
troduction to Zeno’s paradoxes: “... there is no way in which we can picture
or intuit a continuous time. Any attempt to reduce it to common-sense no-
tions will result in absurdities.” (p. 394). Quite so.

3.4. Anisotropy problem

This problem states that a discrete space favours certain directions, hence is
anisotropic, whereas Euclidean space is isotropic. I follow here, up to the
last detail as it were, the analysis of Peter Forrest [1995]. The anisotropy is
a microgeometrical feature that disappears at the macrogeometrical level.
In the framework I propose here, this is quite clear: the transition from -
points and #-lines to points and lines requires the circle, the isotropic object
par excellence. One might even argue that the specific shape of the hodons
is actually more or less irrelevant. In fact, and here too I fully agree with
Forrest, a fuzzy or vague approach would be best (see 3.6).

3.5. Getting the numbers right

As stated before, a discrete geometry that is supposed to be mathematically
(and physically) interesting, should allow us to develop the concepts and
notions needed for differential and integral analysis. Surely, one of the most
important connections is that between geometry and the real numbers. But
here we find a deep problem. At the side of the discrete geometry, we do
find the integers, we add them, multiply them, divide them, take squares
and square roots, and so on, in short, what we get are (at best) the algebraic
numbers. No hope of ever arriving in this way at the rest of the reals
(actually, the continuum, classically speaking, of the transcendentals). So,
does this mean that most of the reals have to go? Even if one is brave and
prepared to answer yes, this is unfortunately not the end of the story.

In order to illustrate the problem that follows, let me just say a few words
about finding discrete theories or models for classical (possibly) infinite
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theories or models®. The procedure, roughly outlined, is that the domain of
the original classical model is cut up in a finite number of pieces Py, ..., Py,
and, given a statement A(xy, x3, ..., X,), its truth value is determined as fol-
lows (I use capital letters for the new truth values and small letters for the
classical values):

(1) True, if, for all i, if x; (classically) belongs to some P}, then for all
other choices of x; in Pj, A is true,

(i) False, if, for all i, if x; (classically) belongs to some Pj, then for all
other choices of x; in Pj, A is false,

(iii) Undecided, if for some choice A is true and for some choice A is
false.

As an example, take a classical real model for the plane, R2. Split R up in a
finite number of pieces, each of length e (in order to be as concrete as pos-
sible, say, 0,001). I will label a piece n.e (including the piece 0.e), just in
case it can be represented as {x|n.e < x < (n+1).e}. A piece of R? will be
represented by (n.e, m .e). It is easy to see that in R:

(1)  The statement *( Vx)(3y)(x # y)” is True. Suppose x belongs to a
piece n.e. Then it is sufficient to pick for y a piece that is different
from it. Because then, no matter what x we pick n.e < x < (n+1).e, x
will be different from y.

(i)  The statement “(V x)(Jy)(y = x/2)” is Undecided. This may sound
strange at first, but, applying the definitions leaves no other choice.
Suppose that x corresponds to a piece {x|n.e < x < (n+1).¢}, then it
follows that (n/2).e < x/2 < ((n+1)/2).e. According to whether n is
even or odd, x/2 will end up in a specific piece, say P. Thus one
would think the statement is true. But, it has to be true for every
choice in n.e and P, so, it is sufficient to pick a value of y, different
from x/2 (classically speaking), to have the statement false. Hence,
the statement is Undecided.

Thus, one has also to be prepared to accept that many statements, even re-
stricted to part(s) of the reals, will be Undecided. The conclusion seems to
be that we are left with a very weak theory. However, I want to leave room
for another conclusion (albeit without argumentative support): the division
of R into equal pieces is not the best choice there is. There is perhaps one

9 The full details can be found in my [1994b]. The basic technique has been developed by
Graham Priest in his [1991].
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small argument: in the construction outlined above, points (not z-points) are
not fixed objects, that is, any ¢-point can be the center of a point. It does not
make sense to carve up the plane into fixed regions that are to be inter-
preted as points. As a matter of fact, the whole thing seems to be much
more (discretely) fluid than expected. What we therefore must look for -
and I present it here as an open question - is a carving up of the reals that
can take this feature into account.

3.6. Getting vagueness in

Peter Forrest in his [1995] writes the following when discussing the prob-
lem of finding a representation of a discrete space:

“If we take it literally [i.e., the regular tile paradigm, my addition] it
would require the points to have extension. But that seems to imply that
part of a point is some distance from some other part of a point. But we
are defining distance in terms of a relation between points. We should
not therefore take the tile paradigm literally, but rather as just a way of
representing one possible discrete geometry using Euclidean space.
While I do not know the precise diagnosis of Pythagoras trouble, it
shows at least that the true discrete geometry cannot be represented
both so that points get represented by regularly shaped regions, and so
that adjacent points are represented by regions sharing a line bound-
ary.” (p.331)

The argument may sound familiar. If a hodon / of a discrete space is a truly
specified entity, say a square tile, then is it not unavoidable that all kinds of
questions can be asked: Does it have sides? Does it have a diagonal? Does
it have parts? Can two squares overlap? Now either one states that such
kinds of questions cannot be asked, or one makes sure that the answers are
undecided. Now this sounds remarkably like the way we think about
vagueness. To put it otherwise, what would happen if we were to treat the
predicate “being a hodon”, applied to regions of space, call it H, as a vague
predicate. That is, for regions X of space that are sufficiently large, we will
gladly state that “It is not the case that H(X)”. Or suppose we can divide a
region in two parts: X1 and X. Then again we will gladly state that “It is
not the case that H(X1) and it is not the case that H(X,).” But, eventually,
this process has to stop, though it seems indeed very strange to say that at
that or that exact level, no parts can be found and we have therefore
reached a hodon.

What I am claiming, is the following. Let us call the theory as presented
above, T(h), where h is the size of the hodon in that theory. We can now
imagine a set of such theories 7(h;), were h; # hy, for i # j and there are M
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and N such that M < h; < N, for all i. In short, we have a set of similar theo-
ries based on hodons of different sizes. Now apply the well-known super-
valuation technique as developed by van Fraassen (and quite similar to the
procedure outlined in 3.5). To find out whether a statement A is True, False
or Undecided, look at all the separate theories T(h;). If A is true in all of
them, then A is True; if A is false in all of them, then A is False; if A is true
in some of them and false in others, then A is Undecided. As an example, if
A is the statement “hodons have size a” (where a is a specific number), this
will be Undecided, if a corresponds to at least one of the #;. For in the the-
ory T(h;), this statement will be true, but in a theory I(h;), where the size of
hj is smaller than the size of h;, this will be false. Hence it is Undecided.

Summarizing, there is no intrinsic difficulty to have a discrete geometry
where the hodons are vague entities. From this perspective, in a particular
theory T(h), h need not be the “true” hodon.

4. Afterthoughts

I may have given the wrong impression at the beginning of this paper. I
made it seem as though there are only two viewpoints possible: either you
go for the continuum, or else you go discrete. This is, of course, absolutely
not the case. In fact, there have been some writings lately, that suggests
other approaches. I will not discuss these here, but restrict myself to one
comment. Some of these solutions make use of sophisticated techniques,
such as non-standard analysis and the like. A beautiful example is to be
found in Harrison [1996]. Basically and extremely simplified, one starts
with a model of the real numbers R. Then, non-standard numbers are added
(typically, infinitely large numbers ®) that lead to infinitesimals, by taking
the reciprocals, i.e., 1/®. On the one hand, it allows you to talk about the
continuum as made up of infinitesimals which seems rather pleasing as a
solution to Zeno’s paradoxes!0, But, on the other hand, one should not for-
get that these infinitesimals have strange properties. To mention but one:
they are smaller than any positive real number. It is rather typical for ap-
proaches of this kind, that quotation marks are often used: do not say finite,
but say “finite”. I therefore agree with Alper & Bridger in their [1997] that
this is improper use of language: “They use the word “finite” in its techni-
cal sense, but leave the impression that it retains its intuitive meaning.” (p.
152) To be precise, sets that are internally finite contains at least all the real
numbers.

An issue I have not dealt with in this paper - and that is treated in extenso
by Forrest in his [1995] - is the question of the reality of a discrete

10 5 very accessible presentation of this approach is to be found in McLaughlin [1994].
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geometry. Suppose that nature indeed is built up from elementary geomet-
rical units, such as squares or tiles in a plane. Two questions immediately
pop up: (1) is it possible to determine their size, (ii) do they carry any direct
physical meaning? Let me just say a few words about the second question. I
am tempted to say that all attempts to equate the tiles directly to some
physically meaningful concept are to be avoided. In 3.3 I already expressed
my doubts about the interpretation of the ratio hodon/chronon as a speed on
the basis of the argument that, when we talk physics, we talk about points
and lines, not about r-points and ¢-lines. But hodons and chronons are on
the level of t-points and r-lines. If this argument holds good, then it follows
necessarily that I must have even more doubts about equating the ratio
hodon/chronon with the velocity of light.

There is, in addition, a historical argument to support these doubts: when
one glances through the historical study of Kragh and Carazza [1994], one
sees that all such attempts have failed. Especially, the idea to equate the
speed of light with one hodon per chronon, seems to lead to all kinds of
difficulties.

A third remark is that the proposal outlined here, has an interesting intu-
itionistic feature about it. Given two points P and Q, then it is not the case
that either P = Q or P # Q, as it is possible that P and Q partially overlap.
This sounds awfully familiar to the intuitionists’ treatment of the reals,
where it is also not the case in general that for two real numbers r and »°
either r = r’ or r # . I am unable at the present moment to decide whether
this is more than a superficial similarity.

As a concluding remark, it is worth emphasizing that, even if basic flaws
are to be found in this proposal, it does show that a discrete approach is
both conceptually possible and mathematically non-trivial, which is, philo-
sophically speaking, more important. In the words of Salmon ([1980], p.
66): *..., in order to make good on the claim that space and time are gen-
uinely quantized, it would be necessary to provide an adequate geometry
based on these concepts. I am not suggesting that this is impossible, but it is
no routine mathematical exercise, ...”.
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