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THE LOGIC OF PERMISSION AND OBLIGATION IN THE
FRAMEWORK OF ALX.3:
HOW TO AVOID THE PARADOXES OF DEONTIC LOGICS.

Zhisheng HUANG and Michael MASUCH

Abstract

Standard deontic logic features fairly serious socalled “paradoxes”
(technically: counterintuitive validities). Much energy in deontic logic
has been spent on avoiding these “paradoxes”. We suggest a reformu-
lation of deontic logic in terms of a multi-agent logic, ALX.3, where a
“super-agent” (think of a legislature) lays down the law of the land and
other agents have to follow its rules. In particular, obligations are re-
formulated in terms of “preferences” of the superagent. We can show
that our approach avoids the classical “paradoxes” of deontic logic,
thanks to the properties of the preference operator of ALX.3.

1. Introduction

Deontic logic is a branch of modal logic for reasoning about social norms
by means of modal operators denoting states of obligation (written as ),
permission (written as P), and prohibition (written as F, from “forbidden”).
Deontic logic has many potential application in areas such as law, computer
science, and sociology, but the standard versions of deontic logic suffer
from serious “paradoxes” —pardoxes not in a technical sense but in the
sense of counterintuitive validities— that have kept deontic logic from liv-
ing up to its full potential. Here are some examples of such validities:

* Ross’ Paradox: O¢ — O(¢ v ).
This validity would justify propositions such as: “if one is obliged to
mail the letter, one is obliged to either mail the letter or burn it”.

* Penitent’s Paradox: F¢ — F(¢ A y).
This validity would justify propositions such as: “if it is forbidden to
commit a crime, then it is also forbidden to commit a crime and do
penitence for it”.
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¢ Good Samaritan Paradox: ¢ - v = 0¢ - Oy
This validity implies, for example, that the fact that a good
Samaritian helps a victim if the victim has been robbed, together
with the obligation to help vitims after a robbery, implies the
obligation to rob the victim in the first place.

The underlying reason for these paradoxes is technical: at least one of the
modal operators is introduced as a primitive modality in the context of a
normal modal logic (roughly speaking: a logic with Kripke-style semantics
and no absurd worlds). The Good Samaritian paradox is a consequence of
the monotonicity of normal modal logics, while Ross’s paradox is just a
special case of this monotonicity with the appropriate substitutions made.
Penitent’s paradox, is, in fact, the dual version of Ross’s paradox with the
obligation operator replaced by the prohibition operator.

Not only deontic logics suffer from the side effects of normality; similar
problems arise in epistemic logics, where the epistemic operators are also
acting as normal modalities (logical omniscience is a typical side-effect of
normality in epistemic logics).

Various attempts have been made to circumvent the paradoxes.
Anderson, for example [1], defines the the prohibition operator with the
help of a propositional constant V as follows:

FoSO(6— V)

where the meaning of the constant V is “liable to sanction or punishment”,
and the box-operator assumes the standard meaning of alethic modal logic:
a state ¢ is forbidden if and only if the state ¢ necessarily implies
sanctioning the agent. As it turned out however, Anderson’s approach
missed its goal [10]. The Good Samaritan Paradox does not go away, and
neither do Ross’ and Penitent’s paradoxes—being special cases of the for-
mer one.

Inspired by Anderson’s reduction to alethic modal logic, J.-J. Meyer pro-
poses another solution in [9]. There, Meyer uses propositional dynamic
logic, still employing Anderson’s special violation atom V. One of the
consequences of the use of dynamic logic is the distinction between propo-
sitions and actions. In Meyer’s approach, the deoontic operators are defined
through dynamic expressions as follows: Fo é[a]v, Pag—‘Fa and
Oa < F(—a). As pointed out in [10], Ross’ paradox remains in Meyer’s
reformulation.

Inspired by Anderson’s idea of reformulating deontic logics, we propose
an approach that uses the preference operator instead of the logical implica-
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tion or dynamic actions. In other words, we try to define the F-operator in
terms of the preference operator in a multi-agent logic. We assume that
there exists a superagent, next to other agents, who lays down the law of
the land. Informally, a state is forbidden for an agent i if and only if the
superagent assumes a preference against that state. We find that the
preference operator in ALX is suitable to fulfill such a task [5, 7.

There are three version of ALX logics. The first version is a propositional
action logic for agents with bounded rationality. The second version adds a
first-order description language, while the third version introduces multiple
agents.

The paper is organized as follows: in section 2, we briefly review the
preference operator in ALX and its semantics, discuss the formal properties
of preferences, and define goodness and badness operators in terms of the
preference operator. Then, in the section 3, we reformulate the deontic logic
in terms of the new operators, discuss the formal properties of this new
logic and show how those “paradoxes” can be avoided. Section 4 has
concluding remarks and discusses future directions.

2. ALX logics and its Preference Operator
2.1. ALX Logics

In [5, 7], we propose a modal action logic that combines ideas from H.A.
Simon’s bounded rationality, S. Kripke’s possible world semantics, G. H.
von Wright’s preference logic, Pratt’s dynamic logic, Stalnaker’s minimal
change, and more recent approaches to update semantics. ALX (the x's ac-
tion logic) is sound, complete, and decidable, making it the first complete
logic for two-place preference operators. ALX avoids important drawbacks
of other action logics, especially the counterintuitive necessitation rule for
goals (every theorem must be a goal) and the equally counterintuitive clo-
sure of goals under logical implication.

In this paper, we use ALX’s preference operator to reformulate deontic
logic. In particular, we use the preference operator of ALX.3. ALX.3 is
discussed in detail in [8]. A short overview is given in the appendix. In the
following, we employ a simplified version of ALX.3.

2.2. Preferences

Preferences provide the basis for rational action in ALX. Following von
Wright [12], a preference statement is understood as a statement about situ-
ations. For example, the statements that “I prefer oranges to apples” is in-
terpreted as the fact that “I prefer the states in which I have an orange to the
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states in which I have an apple.” Following von Wright again, we assume
that an agent who claims to prefer oranges to apples should prefer a situa-
tion where he has an orange but no apple to a situation where he has an
apple but no orange, call it the conjunction expansion principle. Prefe-
rences are expressed via two-place modal operators; if the agent prefers the
proposition ¢ to the proposition ¥, we write ¢P,y .

Normally, the meaning of a preference statement is context dependent,
even when this is not made explicit. An agent may claim to prefer an apple
to an orange — and actually mean it — but he may prefer an orange to an
apple later — perhaps because then he already had an apple. To capture this
context dependency, we borrow the notion of minimal change from
Stalnaker’s approach to conditionals [11]. The idea is to apply the conjunc-
tion expansion principle only to situations that are minimally different from
the agent’s present situation — just as different as they really need to be in
order to make the propositions true about which preferences are expressed.
We introduce a binary function, c¢w, to the semantics that determines a set
of “closest” states relative to a given state, such that the new states fulfill
some specified conditions, but resemble the old state as much as possible in
all other respects. For situations (sets of states), we apply cw to each ele-
ment of the situation separately.

Let W be the set of all possible worlds in a semantic model M.
Semantically, a closest world function cw is a function Wx®P(W)—
P (W), which assigns a set of possible worlds to each world. In other
words, cw(w,|¢]},)=[¥]}, means that [y]; is the set of the
closest- ¢ -world to the world w, where [@]}, as usual is a set of world in
which ¢ holds, i.e. [9]}, ={(weW: M, w, vE= ¢}.

The semantic component of the preference in the model is a function >:
AGENT — P(P(W)x P(W)), which assigns a comparison relation for
preferences to each agent.

Moreover, in the models, > must satisfy the following conditions

(NORM):

(D #; X), (X +; D), where >,=> (i) for each agent i e AGENT
(TRAN):

ew(w, XN Y) =, cw(w, Y N X) and ew(w, Y N Z) >, w(w, ZNY)
= cw(w, XNZ) = cw(w, ZNX), where X=W-X

(NORM) and (TRAN) constrain the semantic preference relation. (NORM)
is required in support of the logical axiom (N) (normality), which, in turn,
protects the preference logic against counterintuitive consequences. (TRAN)
guarantees the soundness of the logical axiom (TR) which, in turn, assures
transitivity for preferences.
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The meaning function of the preference relation is:
M, w, viE P yiff cw(w, [@ A =yly) = cw(w, [ A —9]%,).
The interpretation of ¢P,y assures the conjunction expansion principle.
2.3. Formal Properties of Preferences

The preference operator has the following axioms and inference rules:

Axioms

(CEP) P,y & (9 A—Y)P (= A ¥)
(N) —(1P;¢), —(¢P, L)

(TR) (P y) A(YP 1) > (9P )

Inference Rules
(MP) o &Fp—> y=tHy
(SUBP) Ho ¢ )&Hy & y')=HIP,y) o (0'Py)

(CEP) states the conjunction expansion principle. (N) establishes
“normality” and (TR) transitivity. As noted before, (TR) would go if its se-
mantic equivalent, (TRAN), goes, so we could have non-transitive prefer-
ences. (CEP) and (N) together imply the irreflexivity and contraposition
(CP) of the P operator[7]. We have the modus ponens (MP) for obvious
reasons. Furthermore, logically equivalent propositions are substitutable in
preference formulae (SUBP). Note that we do not have monotonicity for
preferences. Because of this, we are able to avoid the counterintuitive de-
ductive closure of goals that mars other action logics.

Furthermore, preferences in this semantics have pleasant logical proper-
ties. In particular, the preference operator can avoid the following counter-
intuitive properties:

* Necessitation rule for preferences:
F¢=F¢P,yvand= ¢ =F yP,¢

The first half of this property is exemplified by the statement “if it is
necessary that the sun rises in the morning, then the state of the sun’s
rising in the morning is always preferred to any other state”. This is
definitely counterintuitive. It is also easy to find a counterexample
for the second half of this property.
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* Closure for preference:
F(¢ - y)=F(P¢'> yP¢’) and
F@->v)=F(@'Po—¢'Py)
This property means that if I prefer tea to coffee, then I prefer tea or

one million dollars to coffee, since having tea always implies having
tea or one million dollars.

* Conjunction extension:
EoPy > (9A¢" )P yand= yPp - yP (9 A @)

This property has a consequence that if I prefer tea to coffee, then I
prefer tea and poison to coffee.

Disjunction extension
=oPy > (¢v ¢ P, yandi= yP,¢ - yP (¢ v ¢')

This property is a simplized case of the closure for preferences. We
can use the same counter-example for this property.

To repeat: ALX avoids these properties.

2.4. Good and Bad States

Following von Wright, we define a “good” state ¢ as a state that agent i
prefers to its negation, and conversely for a bad state:

def def
Good;(¢) =(¢P—¢) Bad,(9)<=(—¢P¢)
Proposition 1 (More properties of goodness and badness)

(a) ¢P,w A Good,y — Good, .
(b) ¢P,y A Bad;¢p — Bad,y .
(c) Good;¢p <> Bad—y .

(d) Good;¢ — —Bad.¢.

(e) Bad,¢ — Bad—¢.
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Proof:
(a)
FOP, w A Good, y
= FOP,y A yP Yy
=P,y AP~y (TR)
=FOPYAYP—p  (CP)
=P —¢ (TR)
= +Good,¢

The proof for (b) is similar to the proof of (a). (c)-(e) are straightforward
from the definitions. O

The notion of goodness and badness are crucial notions used to define the
deontic operators in this paper. Since these two operators are defined in
terms of the preference operator, they also avoid the counterintuitive prop-
erties of preferences.

3. Deontic logic in the framework of ALX.3
3.1. Defining the operations of prohibition, obligation, and permission

ALX.3 is a multi-agent action logic. We can assume that there exists a su-
per-agent, written sg, next to other agents. This super-agent need not be a
dictator. It could be something like legislature. It lays down the law of land
according to its preferences. Therefore, we can define the prohibition F
operator (“forbidding”) as follows:

def
F,¢ & Bad, Good,¢
Furthermore, we define the obligation and permission operators in the

standard way, namely,

def

Of¢ @F,(_!¢ ),
def
P,p = —0,(—9).
Adding the above two definitions to ALX.3, we obtain deontic ALX, called

DALX. Since ALX.3 is sound and complete [7], adding more definitions
actually does not change any formal properties of the original logic. As a
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consequence, DALX is sound and complete as well. Furthermore, DALX
keeps a lot of nice validities of ordinary deontic logics.

The following are theorems of the deontic ALX:

(a) Consistency of prohibition
F‘-l‘p - ﬂF,—l(b .

(b) Consistency of obligation
0£¢ - —|0‘—|¢ .

(c) Connection between prohibited and permitted states
P9 —>-F.

(d) Obligation implies permission
0,p>P¢.

Proof: 0,0 =F—-¢p=>-F¢p=>P,¢ O

(e) Prohibited states are not permitted
Fr’¢ > —|P,¢ 5

(f) No contradictory obligation
—IO,(¢ A -|¢)

(g) Permission property

Proof: —P¢ = F,p=>—F—p=P—¢ O

(h) Substitution rule for prohibited states
F¢ o y)=>FF. oo Fy).

(i) Substitution rule for obligation
E(¢ © v)=>F0,0 & 0,y).

(j) Substitution rule for permission
F(¢ o yv)=EP ¢ o Py).
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3.2. Avoiding the Paradoxes

This new deontic logic does not-only preserve a lot of nice validities of
ordinary deontic logics. More importantly, we can avoid the paradoxes. Just
observe the connection between those paradoxes and the counterintuitive
properties:

* Ross’s paradox is an example of the disjunction extension property.

* Penitent’s paradox is an example of the conjunction extension prop-

erty.

* The Good Samaritan paradox is an example of the closure under logi-
cal implication.

Since all three deontic operations in DALX are defined in terms of
preferences, those paradoxes are avoided.

Proposition 2 The deontic logic ALX logic DALX can avoid (i) Ross's
paradox, (ii) Penitent’s paradox, and (iii) Good Samaritan paradox.

Proof: For more technical details of the proof, see the Appendix 2. [
How does DALX do with respect to the other paradoxes of deontic logic?
Actually, one can see that most of them can be reduced the above three
typical paradoxes.
* Derived Obligation 1: 0¢ — O(y — ¢).
The derived obligation 1 is logically equivalent to the expression
0¢ — O(—y v ¢) Since the formula y in this expression is arbi-
trary, the derived obligation amounts to Ross’ Paradox.

* Derived Obligation 2: O—¢ — O(¢ — v)

Similarly, this paradox can be reduced to the expression
0—-¢ — O(—¢ v v). Again, this is actually Ross’ Paradox.

* Chisholm’s Paradox: O@AO(¢ = W)A(=p = O—y)A—p)=
false
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Here are Chisholm’s contrary-to-duty imperatives: (i) it ought to be
that someone goes to the assistance of his neighbours, (ii) it ought to
be that if he does go he tell them he is coming, (iii) if he does not go
then he ought not to tell them he is coming, and (iv) he does not go.
However, in ordinary deontic logics, the above four statements to-
gether imply a contradiction. The reasoning is as follows: From
(—¢ = O—y)A—¢, we have O-y, which is valid in any logic.
Then, by K-axiom O¢ AO(¢ — ), we have Oy . (the K-axiom is
valid in any standard Kripke semantics). Fortunately, there is no
K-axiom for the preference in ALX.3. Therefore, DALX can avoid
Chisholm’s Paradox.

3.3. Comparison

Anderson’s reformulation cannot avoid most paradoxes, since this approach
uses the logical implication to define the deontic operators. The monotonic-
ity rule is valid in his logic. However, the monotonicity rule is exactly the
Good Samaritan Paradox. Ross’ Paradox and Penitent Paradox are just
special cases of the Good Samaritan Paradox. Furthermore, Derived
Obligations are just special cases of Ross Paradox. Therefore, Anderson’s
approach cannot avoid Derived Obligations. Since the K-axiom is valid in
Anderson’s deontic logic, this approach cannot avoid Chisholm’s Paradox
as well.

Meyer’s approach uses dynamic actions instead of the logical implication
to define the deontic operators. This approach can get rid of most of the
nasty paradoxes, including Chisholm’s Paradox. Furthermore, some of
these paradoxes are not even expressible in his language any more, such as
the Derived Obligation O—¢ — O(¢ — ). However, Ross’ Paradox re-
mains in Meyer’s approach, since his approach uses dynamic actions, and
in any standard dynamic logic the axiom [a]¢ — [ax U 8]¢ is always valid.
Furthermore, although Fa — F(aAf) is not expressible any more,
Fa — F(a&p) is still one of the theorems of this logic, where “&” means
a parallel composition. Therefore, Penitent Paradox remains, too.

4. Concluding Remarks

We have proposed a deontic logic, DALX, in terms of ALX without in-
troducing any new primitive operator. The main idea of DALX is that we
assume a super-agent and define the deontic operators for an ordinary agent
i in terms of the superagent’s and the agent’s preferences. Thanks to the

properties of the preference operator in ALX, DALX avoids the paradoxes
of ordinary deontic logics.
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Although the approach depends on the existence of super-agent, we need
not make any metaphysical committments. Also the super-agent need not
be a dictator. As a matter of fact, the assumption is purely conventional.
The super-agent may have different interpretations, super-agent may be
legislature, or anything else may have the right to establish norms for other
agents.

5. Appendix 1: Formal Syntax and Semantics of ALX.3

5.1. Formal Syntax

ALX.3 has a sorted first-order description language. There are predicate
letters, regular variables, variables reserved for agent and actions respec-
tively, plus the corresponding constant letters:

(1) For each natural number n(21), a countable set of n-place predicate
letters, PRE, , written as p;, p; ...

(2.1) A countable set of regular variables, RVAR, written as x, x;, y, 2, ...
(2.2) A countable set of action variables, AVAR, written as a, Wi b; v
(2.3) A countable set of agent variables, AGVAR, written as i, i, j, ...
(3.1) A countable set of regular constants, RCON, written as c, il ou

(3.2) A countable set of actions constants, ACON, written as
GC, ACy; ALy v+

(3.3) A countable set of agent constants, AGCON, written as
ag, ag,, ag,, ...

Furthermore, we have the usual booleans, an existential quantifier, a unary
operator for beliefs, binary operators for preferences and causality, a dy-
namic operator type for actions, and operators that establish a sequence of,
or indeterminate choice between, actions. Finally, there are comma and
brackets:

(4) The symbols —(negation), A(conjunction), B(belief), 3 (existential
quantifier), P(preference), ~>(conditional), ;(sequence), U(choice), {,), (,
and ).
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Definition 1 (Variable) Define the set of variables VAR as follows:
VAR=RVARUAVAR UAGVAR.

Definition 2 (Constant) Define the set of constants CON as follows:
CON=RCONUACONUAGCON.

Definition 3 (Term) Define the set of terms TERM as follows:
TERM=VARUCON.

Definition 4 (Action Term) Define the set of action terms ATERM as fol-
lows:

ATERM=AVAR UACON.

Definition 5 (Agent Term) Define the set of agent terms AGTERM as fol-
lows:
AGTERM=AGVARUAGCON.

We use 4,1, ..., to denote terms, g, a,, ..., to denote action terms, i, j,..., to
denote agent terms, if that does not cause any ambiguity.

An atomic first-order formula is defined as usual:

Definition 6 (ATOM) Define the set of atomic formulas ATOM as follows:
ATOM =, {p(t),t;, ....1,): pe PRE,, 1,,1,, ...,t, € TERM)}

Primitive actions carry an agent index. Compound actions need not carry an
agent index; this allows for the sequencing of actions carried out by differ-
ent agents:

Definition 7 (ACTION) Define the set of action expressions ACTION recur-
sively as follows:

* acATERM, icAGTERM= a,e ACTION.

* a,be ACTION = (a; b),(awb)e ACTION .

The definition of formulas is standard:

Definition 8 (FORMULA) Define the set of formulae FML recursively as
Jfollows:

* ATOM c FML.

* peFML= —¢pe FML.

* ¢, yeFML= (¢ Ay)e FML.

* ¢ € FML, x € VAR = (3x¢) € FML.

* ¢ FML,a e ACTION = ((a)¢) € FML.
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* ¢, ye FML= (¢~>y)e FML.
* ¢, weFML, ic AGTERM = (¢P;y) e FML.
* g FML, ie AGTERM ='B;¢ € FML.

5.2. Semantics

Definition 9 (ALX.3 Model) Call
M =(0, PA AGENT,W,cw, -, R, B, I)

an ALX.3 model, if

* O is a set of objects,

* PA is a set of primitive actions,

* AGENT is a set of agents,

* Wis a set of possible worlds,

o ew: WX P(W)— P(W) is a closest world function,
> AGENT — P(P(W)x P(W)) is a function that assigns a com-
parison relation for preferences to each agent,
RN: AGENT x PA — P(‘W x W) is a function that assigns an acces-
sibility relation to each agent and each primitive action,
B: AGENT — P(W xW') is a function that assigns an accessibility
relation for the belief operation to each agent,
I is a pair (IP, Ic),
where I, 1s a predicate interpretation function that assigns to each
n-place predicate letter p € PRE, and each world we W a set of n
tuples (u;,...,u,), where each of the u,..,u, is in
D=0yu PAU AGENT, called a domain, and /. is a constant inter-
pretation function that assigns to each regular constants ¢ € RCON
an object d e O, assigns to each action constant ace ACON a
primitive action a, € PA, and assigns to each agent constant
8€ AGCON an agent a, € AGENT .

and if cw, >, *B satisfy the following conditions respectively:

(CS):  ceww, X)X,

(CS2):: weX=cww, X)={w).

(CS3): eww, X)=D=cww,Y)NX=0.

(CS4):  cew(w,X)cYandew(w, ¥Y)C X = ew(w, X)=cw(w, Y).
(CSS):  eww, X)NY# D= cew(w, XNY) < ew(w, X).
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For each agent i e AGENT

(NORM). (D #; X), (X #,D), where > =>(i)

(TRAN):  cw(w, XNY)», ew(w, Y nX) and cw(w,YNZ) >,
eww, ZNY) = ew(w, XN Z) = cw(w, Z N X),
where X=W-X

(SEBY): VYwIw' ((w, w')eB,), where B, =B(i)

(TRB):  (w,w')eB, and (W', w'}eB,=(w,w'"')e B,
(CS#) constrain the closest world function. Note that we do not require
uniqueness for closest world. (NORM) and (TRAN) constrain the semantic
preference relation. (VORM) is required to support the logical axiom (N)
(normality), which, in turn, protects the preference logic against counterin-
tuitive consequences. Its direct effect is to rule out the occurrence of L in
preference statements. By conjunction expansion principle, (NORM) actu-
ally implies (IRE): —(¢P;¢),! that requires irreflexivity, since we are
working with a *“strong” preference. (TRAN) guarantees the soundness of
the logical axiom (TR) which, in turn, assures transitivity for preferences.
(SEB) establishes the seriality of the beliefs and prevents agents from be-
lieving L, while (TRB) assures positive introspection. If (TRB) would go,
the logical axiom (4B) would go as well, so we could have a version of
ALX without positive introspection. (SEB) and (TRB) make the relation B
serial and transitive. They are standard requirements for the semantics of
beliefs.

Definition 10 (Valuation of Variables) A valuation of variables v in the do-
main D of an ALX.3 model M is a mapping that assigns to each variable
x € VARv(x) € OBJECT, v(a) € PA, and v(i) € AGENT for any x € RVAR,
a€ AVAR, and i e AGVAR.

Definition 11 (Valuation of terms) For an ALX.3 model M= (0O, PA,
AGENT, W, cw, =, R, B, I) and a valuation of variables v, a valuation of
terms v, is a function that assigns to each term t€ TERM an element in
the domain D, which is defined as follows:

teCON= v (t)=1.(1)

teVAR= v, (t)=v(1)

Lsince ¢P,¢ = (¢ A —9)P, (9 A —p) = LP L = False.
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Definition 12 (Accessibility Relations for Actions) We define an accessibil-
ity relation R in a model M= (O, PA, AGENT, W, cw, =, i, B, 1) and a
valuation v for each action a' € ACTION as follows.
*ae€ ATERM, i e AGTERM = R4 =R(v,(a), v,(i)),
*a,be ACTION = R(aib) = Ra o Rb = {(w, w') eWxW:(Aw, e W)
(Reww, and Réw,w'" )},
* a,be ACTION = R(@wb) = Ra U Rb,

Definition 13 (Meaning function) Let FML be as above and let M= (O, PA,
AGENT, W, cw, >, N, B, I) be an ALX.3 model Let furthermore v be a
valuation of variables in the domain D. Then the meaning function
[14: FML — P(°W) is defined as follows:

[pCty, ..o 1,05 = {w € Wilv, (1), v, (8,), ... v, (t,)) € Ip(p, w)) where p € PRE, .
913 = WAl
[¢ A vy, =191 N Lvly,-
[3x¢l3 = {w € W:(3d € D)(w e [¢];"'”)).
[{a) oIy, = (w e W:(3w' € W)(Raww' and w' € [¢]]},)).
[o~yly; = (we W:ew(w, [¢];) vl ).
(9P, vy, = {we Wiew(w,[¢ A—yd},) =0 W, [w A=¢l3)).
B,y = {we W:(Yw ){w,w' )eB Wiy = W E E2 )

Definition 14 (The logic ALX.3) Let FML be as above, let Mod be the class
of all ALX.3 models, and let []}, be as above, defined for every model
MeMod. We call the logic (FML, Mod, [ ],) ALX.3 logic.

= is defined as usual:

Let M= (O, PA, AGENT, W, cw, =, ), B 1).

ME ¢g(Vv eVp)(Vwe W)M,w,vI ¢).
ME Fg(‘v’y eD)(MFy).

Mod(T") g{M € Mod: M T}

I'E=¢ g Mod(T') c Mod({¢}).

Definition 15 (ALX.3 inference system) Let ALX3S be the following set of
axioms and rules of inference.
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(BA):
(Al):
(A2):
(A3):
(A4):
(AU):
(ID):
(MPC):
(CC):
(MOD):
(CSO):
(CV):
(CS):

(CEP):
(N):
(TR):

(PC):

(KB):
(DB):
(4B):

(BFB):

(MP):
(G)
(NECA):
(NECB):
(MONA)
(MONC):
(SUBA):
(SUBC):
(SUBP):
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all tautologies of the first order logic

{a)L

(a)ovy)

(a;b)¢

(aub)o

[alVx¢

Y-y

(y~>¢)

(y=>9) A(y—¢')
(=y~y)
[(y~9) A(¢~>y)]
[(y—>¢) A =(y~>—)]
(yAg)

Py
=(L1P;9), ~(¢P.L).
(OPy) A (yP,x)

(P, y)

B¢ AB,(¢ - y)
—B,L.

B¢
VxB,¢

Ho&—¢—> v

—¢

¢

¢

FH{a)p &H—¢ > v
Ho~y&—y-oy
H(@—¢)

1.

& (@) v(ay.
o (a)b)g.
©(a)p v (b)¢.
& Vx[ale.

= (y—9¢)
(Y=o ag).

= (¢~y)

= [(y—x) < (0~2)]
= [(yAx)~>9¢]

- (y—=9).

S (PAY)P (=0 A y).
—> (9P, 7).

- B,y.
—-BB;¢.
© B,Vx¢.

=y

= Vx¢.

=—[al¢.

=HB,¢.

= (a)y.

== ¢~y

= (a)¢) & (a)¢').

F@=0)&—(yoy) =@~y o@ ~y)
@@= &=(y->y) =Py o (9 Py).
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Most axioms are straightforward. As usual, we have the tautologies (BA).
Since ALX.3 is a normal modal logic, the absurdum is not true anywhere,
so it is not accessible (A1). The action modalities behave as usual, so they
distribute over disjunction both ways (A2) (they also distribute over con-
Jjunction in one direction, but the corresponding axiom is redundant). (A3)
characterizes the sequencing operator ‘;" and (A4) does the same for the in-
determinate choice of actions. (AU) establishes the Barcan formula for uni-
versal action modalities. We have the Barcan formula because the underly-
ing domain D is the same in all possible worlds.

The next seven axioms characterize the intensional conditional.
Informally speaking, they specify syntactically the meaning of “ceteris
paribus” in ALX.3. They are fairly standard, and, with the exception of
(CC), they already provide a characterization of Lewis’ system VC, which,
in turn, is an adaptation of Stalnaker’s conditional logic for non-unique
closest worlds. (ID) establishes the triviality that y is true in all closest
worlds; (MPC) relates the intensional and the material conditional in the
obvious way: so if ¢ would hold given y then, if y actually does hold,
¢ must also hold. Conjunction distributes over the causality operator in
one way (CC). (MOD) rules out the eventuality of closest absurd worlds;
(CSO) gives an identity condition for closest worlds, (CV) establishes a
cautious monotony for the intensional conditional, and (CS) relates the con-
junction to the intensional conditional. Replacing (CS) by

(g~>y)v(¢~>-y)

would return Stalnaker’s original systems, as the new axiom would require
the uniqueness of the closest possible world.

The next four axioms characterize the preference relation. (CEP) states
the conjunction expansion principle. (IRE) confirms the irreflexivity of the
P, operator. (N) establishes “normality” and (TR)
transitivity. As noted before, (TR) would go if its semantic equivalent,
(TRAN), goes, so we could have non-transitive preferences. The axiom
(PC) says that if an agent i prefers ¢ to y, then both ¢ A—y and W A —¢
are possible.

The last four axioms characterize the belief operator. As pointed out
above, our belief operator is designed to represent subjective knowledge.
(KB) is standard in epistemic logic, but it is often criticised, since it re-
quires logical omniscience with respect to the material conditional. On the
other hand, one would expect rational agents to draw correct logical infer-
ences, when necessary, so not having (KB) might be worse. (DB) rules out
the belief in absurdities, (4B) establishes positive self-introspection for be-
liefs, and (BFB) is the Barcan formula for beliefs. These four axioms give a
standard characterization of subjective knowledge. Together with the infer-
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ence rules (MP) and (NECB), they turn the belief operation into a weak S4
system.

The remaining expressions characterize ALX.3’s inference rules.

We have modus ponens and generalization for obvious reasons. By the
same token, we have the necessitation rule for the universal action modal-
ity: if indeed, ¢ is true in all worlds, then all activities will lead to
¢ -worlds; by the same token, we have the necessitation rule for beliefs.
(MONA) connects the meaning of the action modality with the meaning of
the material conditional. We have right monotonicity for the intensional
conditional but not left monotonicity, Furthermore, logically equivalent
propositions are substitutable in action- conditional- and preference formu-
lae (SUBA), (SUBC), (SUBP). Note that we are not having monotonicity
for preferences. Because of this, we are able to avoid the counterintuitive
deductive closure of goals that marrs other action logics.

6 Appendix 2: Some Proofs

Proposition 3 The deontic ALX.3 logic can avoid (i) Ross’s paradox, (i)
Penitent’s paradox, and (iii) Good Samaritan paradox.

Proof: (i) In order to prove that the deontic logic in ALX.3 can avoid
Ross’s paradoxes, we have to show that O, A —O,(¢ v ) is satisfiable.

0,0 A—0,(¢ v y) is satisfiable

< F—¢A-F—(¢vy) is satisfiable (Definition of O,)
& F—¢ A=F;(—¢ A—y) is satisfiable (Meta reasoning)
& Bad Good,—¢ A Bad, Good,(—¢ A—y)

is satisfiable (Definition of F,)
= —|(G00di—|¢)Ps (GOOd‘-'ﬂ¢) A

~((—Good, (=g A —y))P,,Good, (= A=)

is satisfiable (Definition of BAD)

In the following, we will construct a model M such that there exists a world
which

M,w,vE —.(Good,.—uu)Psg (Good,—p) A
—((Good,(—p A —‘q))PSgGoodi (=pA—q)).

The model is constructed as follows:
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M =(0, PA AGENT, W, cw, >, R,%B,I),
where

0=

PA=0O

AGENT={sg, ag},

W ={wo, wy, wy, w3},

cw is defined by the minimal difference between two worlds,
> (s8) = {{{wy, w, }, {wo D};

> (ag) = {({W: }! {WD ])}’

R=0,

B =0,

1,(p,wo) = {ag)},

1,(p,w)) ={{ag)},

I,(q, wy) ={{ag)},

I,(q,w,)={(ag)}.

Let v be a variable evaluation v(i)=ag.

So, we have [—p(i)P,; p())]}; = [~(—p())P; p(i)]}s = {w,, w,, w5 }. Further-
more, [(—p(i) A ~g())P,~(—p(i) A —q(i))]}; =D = [L]:,.

Therefore, cw(wy, [—(—=p())P,p(i)]},) = {w,, w,}. By the truth condition,
we have

M, wy, vE =(Good,—p(i))P, (Good,—p(i)).
Furthermore, by the normality, we have

M, wy, vi= —~((~Good, (—p(i) A —q(i)))P ,Good, (—p(i) A —q(i))).
So,

—(Good,—p(i))P,,(Good,—p(i)) A ~((—Good, (—p(i) A —q(i)))
P, ,Good, (—p(i) A —q(i)))

is satisfiable. That completes the proof for (i).

For (ii) and (iii), we follow the same type of the proof. We do not go into
the details here. O
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