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CANONICAL MODELS FOR TEMPORAL DEONTIC LOGIC
Patrice BAILHACHE
1. Introduction

In previous works I presented a temporal deontic system, called R5-D5!,
semantically built on a branching structure, mixing continuous lines which
represent the possible non perfect evolutions of the world, and broken lines
the possible perfect ones?. These evolutions corresponded to alternative
histories of the world we can now call paths. Among them, one represented
the real history of our world. When two paths, ¢, B, are branched at a
certain instant, ¢, that is, when both paths have the same history up to ¢, we
say that one is accessible to the other with respect to  ; i.e. we have then
the ternary relation Rt (R TXWXW, T =a set of instants or times 3,
W = a set of paths). When a path, 3, is branched at a certain instant, 7, to
another, &, and J3 is perfect from the time ¢, we say that B is permissible
to « with respect to ¢, that is, is a perfect alternative of & from z. This cir-
cumstance is formalized by the relation Sraff (S < TXWXW) 4.

Besides classical propositional connectors, there are three modal opera-
tors in R5-D35, temporal, alethic and deontic:

R, A =it is realized at the instant  that A.
UJA =it is necessary that A.
OA =it is obligatory that A.

The evaluation of a proposition should be made at a certain instant, the
meta-symbol k=, saying that “it is true in the world « at the instant ¢

I The original name was RS5-DS5. I abbreviate it here for the sake of simplicity.

2 See the figure in [Bailhache 1993] p. 161.

3 1 will not specify here structural properties of this set, except that there exists a linear
binary relation, <, on it, the intuitive content of which is that £'<t just in case ' is earlier than
t (t' <t standing for not r<t").

4 R5-DS is largely similar to one that was conceived by [Aqvist & Hoepelman 1981]. In
this paper my relation Rref is denoted « = B, while the deontic relation St is not
introduced as primitve. See [Bailhache 1993].
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that...” Obviously an evaluation without a time would be meaningless
since a proposition can be true at a certain instant and false at another.
The modal operators are conform to the three next rules:

o RAIffE=, A S
o, OA iff for every B such that Traf, = A
Fq, OA iff for every B such that Stof3, A

As proved in [Bailhache 1983], the branching feature of the structure is se-
mantically assumed by the following properties®:

R is a ramified equivalence relation:
— reflexivity: Vo Rraa”

— symmetry: Vo VB(Rtaf = RtBa)

— transitivity: Vo VB Vy[(Rtaf & RtBy)= Rray|

— ramification: Vi Vr Va V[(f <t & Rtaf)= Rt af]
S is serial, secondary-reflexive and secondary-ramified:

— seriality: Vi Vo 38 S taf

— secondary-reflexivity: Vi Vo V(S roff = S:3)8

— secondary-ramification:

ViVe Vo VB Vy|(f<t& St af & StPy)= St Py|°

In addition, there are three properties common to R and S:
— SR-implication: Vr Vo Vf (S taff = Rraff)

5 Since there is no ambiguity, we will never mention the reference to a model, writting
only =_ instead of F=%,,).

6 For an intuitive justification of these properties see [Bailhache 1991], p. 72, 80-81. Most
of them are obvious; for example, reflexivity of R only says that, given a certain instant t, a
path has the same history of himself, symmetry that if a path has the same history as an-
other, then the latter has the same history as the former, too; and so on. Note that
RS-transitivity has been forgotten in page 80.

7 Quantifiers are metalinguistic.

8 Cf. [Chellas 1980], p. 92.

9 The property trivially holds for ' = 1, so ¢’ <t suffices.
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— RS-transitivity: Vt Vo VB Vy[(Rtaf & StBy) = S ray]
— RS-post-implication:
ViV Ve VB VY[(r <t &St af & Rify)= St Py|10

To these semantic properties corresponds a system that can be axiomatized
in the following manner. Each of the three operators, R,, O, O, taken sepa-
rately, complies with each of the systems, F., S5 and KDUS, respectively
(R is a system for temporal logic close to Rescher & Urquhart’s)!!.
Concerning O, however, there is no need for the proper “50”-axiom of
KDUS, ~0A — 0-0A, to be laid down, since it can be proved on the basis
of S5 and KD!2. Thus, we have first the three subsets of axioms and rules:

Kt R(A—>B)—=(RA— RB)
Dt RA&-R-A13
Rtt' R.RA©RA

RNt A/RAM

KO 0O(A- B)-(0A-0OB)
TO OA-A

RNO A/0A

KO O(A— B)— (0OA— OB)
DO OA - -0-A

UO  0(0A— A)

RNO A/OA

10 This time the property does not hold for ¢’ = 1.
11 KDUS is the system KD (= K + the D-axiom) plus the U-axiom and the 5-axiom.

12 The proof rests on the axioms 0O and (004 below. See [Bailhache 1983], p. 766.
The stronger theorem —OA — [0-0A can even be proved.

13 See [Chellas 1980], p. 93. From a general point of view, the present notation of axioms
and rules follows Chellas’ one.

14 The notation A / B means that if A is a thesis then B is a thesis, too. As known, other
writings are — A — — B, A my previous works appeared also the rule RNt RAIA
(¢ not free in A) which plays a role in [Rescher & Urquhart 1971]. I am not sure now that it
is necessary, at least if no specification is made about the set of instants.
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Some axioms should be added to characterize features common to two or
three operators together.

R, and [I: '

O ROA & RORA

) t<t=R[ORA— RORA
R, and O-

Orl ROA & RORA

0r2 ' <t=> R.O(R,ORA— RORA)'S
Cand O:

Qo JA— 0A

o4 0A - [JOA
R,and O:

e f<t= R,OR(0A—[JA)!6

Soundness and completeness have been proved earlier, the latter property
by using a style of proofs like Hughes & Cresswell’s 1968 textbook.
Unfortunately, this method led to very complicated calculations compelling
us to consider numerous systems increasingly rich (T, S4, S5, RT, R4, R5,
T-DT, S4-D4, S5-D5, RT-DT, R4-D4, R5-D5)!7. There is another way,
however, to manage the problem, namely, by looking for canonical models
adequate to the given axiomatics. The method, which exploits well-known
Henkin’s technique of maximal consistent sets of formulae, is implemented
in Chellas’ Modal Logic for different systems, only with one modality.
Thus our task now is double. First, considering each modality separately,
we have to produce canonical models for &, S5, KDU (in fact the problem
is already solved for S5 and KDU). Then, mixing the three modalities, R,,
0 and O, general canonical models should be constructed, which
correspond to the remaining mixed axioms, [(Jt1,...JOt. As in Chellas’
book, not only a canonical model is required, but also the proper canonical
model, to prove the existence of canonical models!8.

15 The formula is a trivial thesis for 1’ = ¢ (cf. the footnote about the secondary-ramifica-
tion).

16 The formula is false for 1" = t (cf. the footnote about the RS-post-implication).

17 [Bailhache 1983], Annexe I, pp. 711-772. In this book, R4, RS, S4-D4, §5-D5, R4-D4
were respectively named RS4, RS5, S4-DS4, S5-DS5, RS4-DS4.

18 [Chellas 1980}, p. 173.
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2. Chellas’ models

2.1. Standard models

Standard models are semantic structures for normal systems. By definition,
a system of modal logic is normal if and only if it contains Df$ and is
closed under the rule RK!19:

RK  (AA..A4,)—> AI(OAA...ADA,) - OA

Another way to define normal systems is to use the axiom K and the rule
RN 20:

K (A — B) - (0A — [IB)
RN AlJA

Chellas also considers systems which do not contain RK (or K and RN) and
are called classical. It will not be necessary to consider them since, in the
present paper, K and RN hold for the three modalities at issue (cf. Kt, RNt,
KO, RN, KO, RNO).

For reasons of simplicity we shall not introduce the related modalities of
possibility, permission and not realization at t that not?!. This does not
mean that such modalities are not definable, but on the contrary that they
raise no particular difficulty at all. So, in the definition of a standard model,
we can neglect Df ©.

M= <W,R, P>is a standard model if and only if22:
(1) Wisaset {a, $,...}.
(2) R is a binary relation on W (i.e. R WXW).
(3) P is a mapping from natural numbers to subsets of W (i.e.

P,cW, for each natural number n, formally:
P:N— P(W)).

19 [Chellas 1980], p. 114. In this definition, of course, the modality [l should be under-
stood as a general one which may stand for alethic, temporal, deontic,... concepts.

20 Ibid., p. 115.
21 The axiom DDt shows that this modality does not differ from R, .
22 Ibid., p. 68.
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Conditions (1) and (2) are well-known. Condition (3) can be understood as
a description of the worlds with respect to the truth of atomic propositions,
i.e. the atomic proposition F, is true at a world o in a model MM if o
belongs to P, 23, in symbols:

n

EP, iff aepP, 2
o

The model is supplemented by a definition that gives us the way of evaluat-
ing a modal sentence:

FOA iff forevery S such that aRﬁ,I?A.
21

2.2. Soundness

A system is sound with respect to a semantic interpretation if every theo-
rem is valid. Since validity is truth is every world, the property can be
written:

if —AthenE=A

It is readily proved for normal systems. It suffices to show that each axiom
is valid and rules of deduction preserve validity.

2.3. Completeness

Conversely, a system is complete with respect to a semantic interpretation
if every valid formula is a theorem, formally:

ifEAthen—A

Obviously the simple proof of soundness is not applicable for complete-
ness. The method of canonical modes, although not very simple, does the
job with a maximal elegance.

Deiz’isnition of a canonical standard model, I = <W, R, P>, for a system
z <

23 Ibid., p. 5 and 35.

n
24 In the sequel, I simply write = instead of = when no confusion may arise (cf. foot-
note 5).

25 Ibid., p. 171.
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(1) W= {I':Max,T'}
(2) Forevery a [JA € o iff forevery B suchthat aRB, Aef
(3) P,=|P,|;.neN.

where

Max;I" means that I is a set of sentences that is X-maximal, i.e. is
Z -consistent and has only Z-inconsistent proper extensions, that is, T’
is consistent and contains as many sentences as it can without becoming
inconsistent26,

The symbols | |, denote a set such that

|Al; ={Max;T:AeT}ie Te|A iffAcT
|Al;, is the proof set of A. This denomination is justified by the fact that,
I" being X-maximal, A €I is equivalentto I I? A.

The main property of a canonical model is that every formula is true at a
world if and only if the formula belongs to this world (remember that a
world of a canonical model is a set of formulae), in symbols:

= Aiff Aea (MPCN)
o

This property, of course, has to be proved for each particular class of
canonical models. Then since ¢ is X-maximal A € @ is equivalent to
o l? A, as just explained. Thus, when all the worlds, «, are considered,

A then—A

so that completeness (and soundness) is established.

The proof of MPCN is by induction on the complexity of A. For example,
assuming the proof is done for the classical propositional calculus, if a
modality, (], is added, only the case of a formula A =B should be con-
sidered, where B is a formula complying with MPCN27,

Notice that the existence of a canonical model is not yet proved. To this
end, a particular canonical model must be exhibited, which is realized by

26 Ibid., p. 53.

27 For propositional calculus see [Chellas 1980], p. 61, exercise 2.53; for the addition of
O ibid., p. 172-173.
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constructing the proper canonical model, defined by conditions (1)-(3) of a
canonical standard model and:

aRBiff {A:0Aea}c B

But it remains to prove that this quasi definition of R is compatible with the
condition (2) of a canonical standard model, i.e. that

Forevery o, JAe « iff forevery B such that {A:0Ae a}cB,
Aepf.

The equivalence is trivial only in the left-to-right direction. The reverse
implication requires using of the rule RK (or the axiom K and the rule RN),
which explains why the so defined proper canonical model is available only
for normal systems (i.e. those which necessarily contain RK)28.

Finally, an important feature of a proof of completeness with canonical
models is how systems stronger than K are shown to be complete. When an
axiom is added to the smallest normal system, K, one has to prove that this
addition corresponds to some semantic property. For example,

D DA-—-4
corresponds to the seriality of R:
For every « there is at least one 8 such that R .

More precisely, to prove that seriality implies D is to show that system KD
(= the system K + the axiom D) is sound with respect to the class of models
where R is serial. Conversely, to prove that D implies the seriality of R is to
show that KD is complete with respect to the same class of models29. Thus,
since R5-D5 can be conceived as an extension3? of the union of the three
subsystems, [, S5, KDU, when one has proved that these subsystems and
their corresponding submodels are adequate, it will remain to establish that

28 Chellas does not insist enough on this fact. The proof (p. 174) rests on theorem
4.30 (1), p. 158, which is shown thanks to RK.

29 See [Chellas 1980}, p. 175ff. For the U-axiom, see p. 92, 140, 193ft.

30 An extension because there are supplementary axioms characteristic of two or three
mixed modalities among R, , (I and O.
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each extending axiom implies (and is implied by) a corresponding semantic
property. '

3. Searching for canonical models for R5-D5

I shall now progressively define the structure of a canonical model for
R5-D5 and, thus, give its formal definition only at the end of the paper.

3.1. Worlds
The previous semantics, in Hughes & Cresswell’s style, was constructed
out of worlds that were paths on which two relations existed with respect to
time, Rtaff and Stof. If we want to transfer this conception to canonical
models, a difficulty arises. As known, in such models, worlds are maximal
consistent sets of formulae, i.e. sets without any pair of formulae A and -A.
But this is quite possible in a world &, since A may be true at some instant
t and false at some other ¢'. Thus the sole solution of this dilemma is to de-
fine worlds of a canonical model not as paths, but as states of paths at a
certain instant, that is, to replace a by ¢,. Evaluation in o at ¢t will be
trivially replaced by evaluation in @, in symbols =, , by i

Moreover, each of the three modalities, R, , [J, O, should be interpreted
by means of a specific binary relation between states of paths. Let us
choose T, for R, R for [J, S for O 31. It is noteworthy that the relation 7
should be indexed by ¢ as the operator R, himself. In fact, there are as so
many operators R, as instants 32,

3.2. Canonical submodels for temporal logic R

Let us call u, v, w,... the members of W where formulae should be evalu-
ated. The condition of evaluation of R, should be similar to that of (] in
standard models:

F,RAIffVv st uTy,FE A (Vstandard)

and, as known, it should amount to:

31R and S are now binary relations between states of paths, no longer the ternary rela-
tions Rtaff and Sraf at the begining of Introduction.

32 gee footnote 1.
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g, RAIff =, A (VR,)

which means that it is true in o at ¢’ that it is realized at ¢ that A iff it is true
in o at t that A. The problem is to prove, only using the axioms and rules
for R, that condition (Vstandard) can be reduced to (VR,).

As mentioned above, system F. contains three axioms, K¢, D/t, Rrt’ and
one rule, RNt. Since Kt and RNt are the elements required for R to be a
normal system, they have no effect on the semantic structure.

D!t is adequate with the functionality of T, that is, with its seriality and
semi-functionality33. For D't can be viewed as the conjunction of

Dt RA—>-—-R-A
and
Dt —-R—-A—>RA

The former is adequate with seriality34, which says that for every element
of W there is at least one accessible element, i.e.

VuldvuT,y

The latter is adequate with semi-functionality, which means that for every
element of W there is at most one accessible element, i.e.

Vuvw(uT,v&uT,w):v=w

Thus D!t imposes that there is exactly one accessible element, which is
functionality. Thus, instead of u T,v, we are entitled to write

v=9(ut)

where ¢ is a function of « and ¢.
Let us examine now what is the consequence of R#'. This axiom is an

equivalence:
Rtt' R.RA-RA

So we have to evaluate each equivalent proposition and see under what
condition both evaluations yield the same result. For the left one:

33 [Chellas 1980}, p. 167.
34 bid., p. 175.



CANONICAL MODELS FOR TEMPORAL DEONTIC LOGIC 13

F.RRAIffVvstuT,v, = RA

where the universal quantifier can be dropped since functionality implies
that there is only one v:

FRRAIff uT,v&E RA (N
Again, the last term can be analyzed in the same way:

ERAIMff vIw&E A (2)
Similarly, for the proposition on the right :

FRAIMf uTx&F A 3)

These two ways of evaluating will be equivalent if and only if x=w.

Now let us employ the symbol o, to name the function ¢(u, t), attaching
the letter & to the element u, so that ¢(u,r') will be @, , but ¢(v, ) will be
B,. In virtue of T, v in (1) and u T,x in (3)

v=a, and x =,
Taking into account w = x, the relation vT,w in (2) can be written
o, =¢(a,,1)

which shows us that the function ¢ preserves the part & and only changes
the index. Thus one is allowed to interpret & as a path and the relation T,
as determining the instant ¢ on this path. Therefore, in (2), v is o, and w is
@, under this interpretation. Finally (2) becomes

o, RAIfE =, A (VR,)

which is the expected result.

This part of the proof is the most original one and cannot be simplified.
Only when this stage has been reached, one is untitled to speak about states
of paths and make evaluation in them.

3.3. Introducing (]

Elements of W being states of path, the condition of evaluation of (] must
be formulated

o, OAff VB, st o,RB, .=, A
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Intuitively, the alethic modality changes path but not time (what is neces-
sary at some time is what is true on every accessible world at this time).
Thus, according to the already known semantic structure of R5-D5 (in
Hughes & Cresswell’s style), we have now to prove that the evaluation of
[0 amounts to:

o OAiff VB, st a,Rp,, Fp A
where R is a ramified equivalence relation (see Introduction). The em-
ployed axioms and rules are K[J, 7U], 5CJ, RN (for (] only) and (J¢1, (12
(for R, and [J together). The first four ones are characteristic of system S5.
Chellas’ proof can be taken up again to demonstrate that R must be an
equivalence relation. So it remains to consider [J¢1 and [J:2.
The former is

ROA© RORA

and we have to check that the evaluation of each equivalent member of it
leads us to the same result. For the left-hand side35:

Fo ROAf =, OAIff VB, st o, RB,, g A
For the right-hand one:
Fo, RORA iff =, R Aff VB, st a,RB,, g RAIffE, A

These two ways of evaluating will be equivalent if and only if ¢ =1, which
implies that the evaluation of [ has the expected form

Fo, DAV, st a,RB,, =5 A
This result has a heavy import. It permits us to replace the former style rela-
tion Rtof(Rc TXWXW) by the new one a,RB,(R< WXW), the set W
being now constituted with states of paths instead of paths.

Let us examine finally the import of [J¢2:

r'<st=RORA-RORA

35 For convenience, we note certain instants by numbers, 1, 2,...
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We have to search for on what semantic condition the antecedent implies
the consequent, assuming ¢ <t. Evaluating the former gives us

l=alR,.|:JR,A iff I=ar,DR,A iff VB, st o, RB, .= 5, R A iff I=HJA
and the latter
i=a!R,DR,A iff l=arDR,A iff VB, st a,Rf,, i=ﬁ‘ R A iff t=ﬂ‘A

Now we have seen, in the Introduction, how the property of ramification
was formulated in [Bailhache 1983]:

ViVi Vo VB[(¢ <t & RtaB)= Rt af]

In the present context Rtaf8 must be replaced by a,Rp,, so that ramifica-
tion (RAM) will be false if there is a path ¥ such that

@, Ry, and not &, Ry,

Assuming not-RAM, if we suppose ., A, the former evaluation may be
true since y & {[3: a,.Rﬁ,.} while the latter is false since ye {ﬁ: a,RB,}.
Thus [J¢2 implies RAM, Q.E.D.36

3.4. Introducing O
The deontic operator will be evaluated according to the following condition
which involves a relation, S, of permissibility

=4, OA iff VB, st S, .=, A

The case is similar to that of alethic modality, so that this condition must be
reduced to one in which the time does not change:

o, OAff VB, st ,SB,. =5 A

Moreover, our previous study in Hughes & Cresswell’s style permits us to
know that S possesses three properties, seriality, secondary-reflexivity, sec-
ondary-ramification, and that there are three additional properties common
to R and S, SR-implication, RS-transitivity, RS-post-implication (see
Introduction). The corresponding axiomatic elements are KO, DO, UO,

36 In the present case as in the sequel, converse implications are readily proved, which
establishes systems to be not only complete but also sound, i.e. adequate.
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RNO and, for mixed modalities, Otl, Ot2, (JO, (JO4, (JOt. As already
mentioned, the first four ones are adequate with the system KDU; proof can
be found in [Chellas 1980]. Thus we have to consider the remaining five
axioms.

The first is
ROA & RORA
quite similar to [Jt1, but with O instead of [J. The consequence will be
similar, too, namely, ¢' =t in the condition of evaluation. Thus we
reach the expected form

=y, OAIff VB, 5t 0,SP,. =5 A
and, as in the alethic case, the relation Staf8 can be replaced by «,Sp,.

The second
t <t= R,O(R.ORA— RORA)
offers some similarity with (Jr2 (¢ <t= R,[JRA— RORA). It is too
different, however, not to be studied separately. Assuming that t' < ¢,
we can start its evaluation

=4, R.O(R.OR A — ROR,A)
i.e.
= O(R,.OR,A — RORA)
This evaluation is equivalent to
VB, ste, SB,, =g R.ORA— RORA
Thus, under the condition V3, st a, S B,
Fg, R, OR A must imply g RORA
The former amounts to
=5 ORAlLe Vy, st Sy, =, RAork=, A
and the latter
FsORAle. V6, stB,S34,, EsRAorkE; A
As in the case of ramification, the secondary-ramification (S-RAM) of
S, formulated in [Bailhache 1983] by
ViVE Vavpvy|(f <t &St aB & S1By)= St y]
should be re-written with @,Sp, instead of Strf3. This property will be
false if there is a path € such that

oy Sﬁr' ’ ﬁr S & and not ﬁr' S &
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Assuming not-S-RAM, if we suppose i, A, the former evaluation may
be true since e¢{y:fB, Sy,}, while the latter is false since
ee{6:B, S 8,}. Thus S-RAM is a consequence of 012, Q.E.D37.

The third axiom is

0o 0OA-04A
Again we have to search for on what semantic condition the antecedent
implies the consequent, i.e. when

=g, A, thatis VB, st oy R, =4 A
implies

o, 0A, thatis VB, st o S By, Fy A
Obviously, this inference is bound to the property of SR-implication
presented above:

ViVavB(e, SB, = a, RB,)
It is falsified if there is a path ¥ such that

o, S y,andnot @, Ry,
Assuming not-SR-implication, if we suppose #, A, the former evalua-
tion may be true since ye{ﬁ: a, R B, ;, while the latter is false since
YeifoS ﬁl}. Thus SR-implication is a consequence of (JO. Q.E.D.
To abbreviate the proof, it will be sufficient to say that, for the infer-
ence between evaluations to be saved, it is necessary that every 8 such

that «, S B, is among the ¥’s such that o, RY,, which is just
SR-implication.

The fourth axiom,

004 0OA— [JOA,

leads to a very similar proof. The evaluation of antecedent
=q,04, thatis VB st a; S By, 5 A

must imply that of consequent
=g, [JOA, thatis V3, st oy R By, =5 OA
or VB, sta, RB,, Vy,stB, Sy, Pl

Adopting the abbreviated style of proof just used for the previous ax-

iom, the inference requires that every y, such that o, R, & B8, S 7, is
among the §,’s such that ¢, S §,, therefore:

VIVaVpYy|(a, R, & B, Sy,)= 0, S 7]

37 As for ramification of R, the converse inference is readily proved, which permits to es-
tablish soundness relatively to Or2. The same remark holds for the remaining axioms.
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This property precisely is the RS-transitivity. Q.E.D.

Finally it remains to examine the case of
00t  ¢<t= R,0R(0A— [A)
Again assuming 1 <t, we have to evaluate R,OR,(0A — [JA):
=4, R OR,(0A — [A)
i
=4, OR,(0A - [JA)
which is equivalent to
VB, sta, S B, =y R(OA— OA)
ie. E 8, OA—[A
Thus under the prescribed condition (Vf3, st &, S f8;)
FgOA, i.e.Vy, st Sy, =, A
must imply
=04, i.e. V6, st B, RS, =5 A
For this inference to be true it is necessary that every &, such that
B, R &, are among the ¥,’s such that 3, S ¥,, therefore:
ViV Vavy[(f <t & o, SB, & B, RY,)=B, S v,
This property is the RS-post-implication. Q.E.D.

4. Conclusion

This last result ends the proof of completeness of R5-D35. Since soundness
is easily proved, this establishes the biunivocity between semantics and ax-
iomatics, in other words the adequation. Axioms and rules, namely, those
of (R}, S5, KDU, and the mixed ones, [Jt1, [J¢2, O¢1, 02, (JO, (104,
[JOx, are in the following correspondence with the above described seman-
tic properties:
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Kt of {R} standardness of the model
D!t of {R]} functionality of T,
Rtt' of {R} uniqueness of path for evaluation of R,
RNt of {R} standardness of the model
K[ of S5 standardness of the model
T[] of S5 reflexivity of R
501 of S5 transitivity & symmetry of R
RN[] of S5 standardness of the model
KO of KDU standardness of the model
DO of KDU seriality of §
U0 of KDU secondary-reflexivity of S
RNQ of KDU standardness of the model
el t'=tinVp, sta, RB.
2 ramification of R
Ol '=tin VB, sta, S B.
[0]7 secondary-ramification of S
Jo SR-implication
(104 RS-transitivity
Ot RS-post-implication

Finally, we are now in a position to give a formal definition of a canonical
standard model for R5-D5 38 in Chellas’ style. Such a model is a 6-tuple
<W,T,<,R, S, P>
with
(1) W={I": Maxys_,;T}
@) T=Ar; it i}
(3) <c TXT.
(4) For every «, JAeaq, iff for every B, such that o, RS,
A€p, (a, Rp, is an alternative formulation for Rraf).

38 To remain strictly in Chellas’ style, I will not use the notion of a Jframe, which is, as
known, that of a model minus the assignment of truth values (or valuation) function.
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(5) For every a,,0Aeaq,iff for every B, such that «, Sp,
A€, (a, S, is an alternative formulation for Staf3).
©) P,=|P, neN.
where

R5-D5’

— (1), (4), (5) and (6) are as in the general definition of a canonical
standard model39.
— T is a set of instants (times).
— < is a binary linear relation on 7, t<{ meaning that ¢ is ante-
rior to t'.
In addition, formulae where the R -operator appears are evaluated
according to the condition:
Forevery a,,RAcq, iff Acq,.

Département de Philosophie, Rue de la Censive du Tertre
B.P. 81227, F-44312 Nantes Cedex 3, France
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