Logique & Analyse 147-148 (1994), 379-406

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION
SEQUENCES INCLUDING THE NEGATION AS FAILURE RULE

John S. JEAVONS and John N. CROSSLEY

Introduction

In Jeavons and Crossley [5] we introduced a logic based model for the pro-
cedural aspect of resolution based logic programming. A formal system L,
was introduced and we specified an injective mapping from the set of all
finite SLD-derivations into the set of L, theorems. The system L, lacked
the usual structural rules of weakening, contraction and exchange. The sys-
tem was chosen to represent the essentially sequential nature of an
SLD-derivation. A single resolution step from a goal G, to its immediate
successor goal G, is considered to comprise three sub-steps:

(i) application of the computation rule to select an atom from G,
(i) resolution with the head of a selected program clause, H,
(iii) ordering of the atoms in the resultant goal G, .

In the declarative semantics we have that the sentence G, (representing the
goal G,) is a logical consequence of the sentences G,, H, (representing
the goal G, and the clause H,, respectively). The computation rule and
ordering of the atoms play no réle here as the PROLOG comma is
interpreted as the (commutative, idempotent) connective &. By contrast, in
our approach which models the sequential aspect of SLD-derivations, the
computation rule and ordering of the atoms now assume a semantic
significance and the resolution step above is represented by a provable
sequent

Go, COMP], Hl’ Rl =l Gl

where = I is the separator of the antecedent and succedent (see below for
the distinction between = F and) COMP, is a sentence corresponding to
the application of the computation rule and R, is a sentence corresponding
to the arrangement of atoms in the resultant goal. The comma here cannot
be interpreted as & but instead is interpreted as a new connective e, so that
Ae B is read as A followed by B.

380 JOHN S. JEAVONS AND JOHN N. CROSSLEY

The non-standard separator = I was introduced for the following reason.
In conventional logic an expression A, ..., A, F B may either denote a for-
mal sequent, or may stand for the assertion that there is a derivation of B
from the non-logical axioms A, ..., A, The two notions are equivalent in
logic equipped with the usual structural rules, but not in our system. Thus
we choose to write A, ..., A,= I B for a formal sequent with the sequence
A,,..., A, as antecedent, and we write {A,,..., A,} I B for the assertion
that we can derive the sequent = + B from the set of axioms
{=F A, ...,=F A,} where each axiom may occur any number of times as a
leaf node in the derivation tree.

In this paper we extend the analysis in [5] to SLDNF-derivations (see
Lloyd [18]). If the computation rule selects a negative ground literal ~ P
from a goal then an attempt is made to construct a finitely failed SLDNF-
tree with root node « P. If the construction succeeds, the sub-goal ~ P
succeeds, and if the construction fails finitely by obtaining a success branch
for P, then the goal « ~ P fails. This attempted construction of a finitely
failed tree is thus regarded as a test carried out in the course of an SLD-
derivation. In order to extend our system to model this construction we first
enrich our logic to a modal logic which allows us to re-instate the aban-
doned structural rules for the case of formulae of the form !A where ! is a
new modal connective. We are then able to associate a modal formula to a
given (finite) SLDNF-tree, and thus we can represent negation as failure in
our enriched logic.

In section 1.1 we define our new logical system and in section 1.2 we
give a semantics for the logic. In section 2 we consider the representation
of negation as failure in our system and specify an injective mapping from
the set of all finite SLDNF-derivations into the set of theorems in our sys-
tem, thereby extending the analysis in [5] to SLDNF-derivations.

1.1 The formal system L,
We take as our basic alphabet the following symbols:

(i) acountable set of variables x, y, ... ;
(ii)) function symbols f, g, --- ;

(iii) predicate symbols P, Q, -.. ;

(iv) propositional constants 1, T,0,1;

(v) binary connectives ¢,0,>',&, P ;

(vi) unary modal connectives !, ? ;

(vil) quantifiers V, 3 ;

(viii) punctuation symbols (,).

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 381

Terms and formulae are defined in the standard manner. The axioms and
rules are presented below, where upper case Greek letters stand for se-

quences of formulae. ! A stands for a finite sequence of formulae of the
form A, 14;, -+, 14,.

Axioms

(i) A =1 A (for any formula A)

(i) A, 1, X =FA (for any finite sequences A, £ and any formula A)
(i) =+1

@iv) 0=} :

(v) T =F T (for any finite sequence T').

INA&B A=+C

Rules
F'=FA A AZ=+RB
(cut)
AT,Z=+B
1-w) I'A=+B 0-w) I'=+
I1L,LA=+B : '=r0
(D_L)I"=}-A A B E=+C (>-R) I''A,=FB
AASDBT,E=+C I'=FADB
(D,_L)I"=I—A ABX=+C (>-R) A '=+B
AT, ADB XZ=FC I'=FtAD'B
(o-L) I A BXZ=+C (.—R)I'=I~A A=}B
I''AeB X=+C I’ A=FAeB
LA A=FC
—L r)
(&)I",A&B,A=I-C
I'=tA T'=+B
(& -R)
I'=+A&B
IB A=+C
(&, -L)

382 JOHN S. JEAVONS AND JOHN N. CROSSLEY

'=rA
B -R) ——
a)le-AEBB
IAA=+C T,B A=}
@®-L) ¢
I, A®B,A=+C
I'=+B
®,-R) ——
(©:)I‘:I—AEBB
— ' i
(!_L)F,A,A FC (!_R).r FA
ILJAA=FC IC=F!A
-1 T, A,!A=F+7B (?_R)r +B
IT,?24,'A=F+7B '=+7B
(t-w) I'A=+B ?-w) =+
IIA,A=FB I'=r74
(1-ex) I'LVA,A=FC
' I',JA,A'=+C

where the sequence I'', ! A, A'is obtained from I', ! A, A by exchanging !
A with any formulain I'or A.

[IA'A, A=FC
(1-¢)
A A=FC
-1 I, A(t), A=+B V-R) T'=FA(y)
T, VxA(x), A=+ B I'=F VxA(x)
a-L I, A(y). A=+B 3-B =t A(r)
I, 3xA(x), A=+ B I'=F IxA(x)

As usual, for the rules (V- R) and (3— L) we require that the eigenvari-
able y does not occur free in the conclusion.

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 383

Remark 1.

The absence of an exchange rule allows two implications > and o' The
comma in the antecedent represents the connective e and the constant 1 is
neutral for this connective in the sense that we have I' =F A is provable if,
and only if, I'=FAe1 is provable, and also I'=F A is provable if, and
only if, I'=F1e A is provable. Similarly the constant T is neutral for the
connective &, and the constant L is neutral for the connective €. We also
have that I" =+ 0 is provable if, and only if, ' =F is provable.

Logics lacking some (or all) structural rules have been considered in
Lambek [7], Komori [6], Ono [10], and Girard’s [3] linear logic is now a
well-known logic lacking both the contraction and weakening rules.
Recently non-commutative versions of linear logic have been considered;
see for example Abrusci [1], Yetter [12]. Our system is taken from Ono
[11], where a number of substructural logics are considered. The modal
connective ! enables us to relate the notions of A+ B and A=} B as shown
by the following lemma.

Lemma. If A, -, A, are Ly, sentences then {A,, -, A, } F B holds if, and
only if, the sequent ! A, ---,!A, = F B is provable.

Proof. Suppose that {A,, ---, A, } F B holds. Then we have a derivation tree
Twith root node = I B such that all leaf nodes of J are either members of
{=F Aizi=1,---, m} or are logical axiom sequents. We establish that if
A=FC is any sequent which occurs in J then the sequent ! A}, -+, 1A,
A=+ C is a provable sequent of L;,. Consider first any leaf node of 7, if
the leaf node is a logical axiom A =} C then by application of the (! - w)
rule we can construct a proof of the sequent ! A, ---,!4,,, A=+ C; on the
other hand if the leaf node of J is = F A4; then we can construct a proof of
'A, -+, 1A, = F A by taking the logical axiom A; =F A; and applying the
rules (! - L) and (! - w). Consider now any two-premiss inference in J,

L=tA M=+B
A=+C

and assume that both ! A}, -+, !4, Z=FA and ! 4,,---,!A,, [I=FB are
provable. Then we can construct a proof of ! A, ---,14,,, A=} C by apply-
ing the inference rule to yield two copies of the sequence ! A;, -+, IA,, in the
antecedent of the conclusion, and then application of (! - ex) and (! - ¢) may
be employed to give the proof of the sequent ! A4, -+, !A,,, A=+ C. For a

one-premiss rule we have no difficulty in duplication; if the inference in J
is

384 JOHN S. JEAVONS AND JOHN N. CROSSLEY

then the corresponding inference

Ay, -, A, =k A
1Ay, -+, Ay, A=FC

is correct since the added formulae are all modal so that (! - R) and (? - L)
can still be applied, and since the A; are closed we can still apply the quan-
tifier rules.

Thus we conclude that if A=+ C occurs in J then ! A,, -+, !4, A=+C
is provable and hence ! A, -, !4, = F B is provable if {Al, Ay} F B
holds.

Now for the converse, suppose that ! A}, -+, !4,, = F B is provable. If we
introduce the non-logical axiom = + A; we can apply the rule (! - R) and
then apply cuts to eliminate the formulae in the antecedent of ! A;, --+, 'A,, =
FB to yield a derivation of = +B from the non-logical axioms
{=FAzi=1,--, m}.

Corollary. {A, -+, A,}+ B holds if, and only if, the sequent
'(Aj& - &A,) = F B is provable.

Proof. This follows from the lemma by observing that the sequents
(A& &A,) = FlAje-ol4, and 14, -, 1A= F (A& &A,) are both
provable, so that !A e---e!4 and !(A,& ---&Am) are logically equivalent
formulae.

Remark 2. Negation in L;,

We define —A as standing for A> 1. A weaker negation ~ A may be de-
fined by A> 0, and —A = + ~ A is provable, but not the other way around.
Similarly there is a retrograde negation, A ©'1. Neither of these forms of
negation seems to be suitable for modelling negation as failure in our logic
because of the following. In logic programming the failure of a sub-goal «
B from goal « A, B, C results in the failure of the goal. This is sound with
respect to classical logic since —B > —(A&B&C) is a theorem. However,
in our system with the PROLOG comma interpreted as the connective e,
the formula —B> —(AeBe () is not a theorem. On the other hand, the
formula ! =B !—~(AeBe () is a theorem and we therefore choose a trans-
lation from PROLOG clauses to formulae in L,, in which a clause
P« Q, ~ R, S translates to the universal closure of (Qe!—ReS)> P.

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 385

1.2 Semantics

We first give an algebraic semantics, then a Kripke-style semantics. We
follow the development in Ono [11].

1.2.1 Algebraic semantics

We define a unital quantale as a structure B= (B, V,®,1) where (B, \/)
is a complete lattice and (B, &, 1) 1s a monoid in which & distributes on
both sides over arbitrary \/, that is,

b®\/c; =\/(b®c;), \/ ;i ®b=\/(c;®b)

i

hold for arbitrary elements b, c; of B.

Abrusci [1] and Yetter [12] have investigated the semantics of non-com-
mutative linear logic using quantales. In [1] a special type of quantale
called a non-commutative classical phase space is introduced to provide a
semantics for non-commutative linear logic (i.e. linear logic with the ex-
change rule deleted). In [12] another special type of quantale is introduced
to give a semantics for cyclic non-commutative linear logic (i.e. linear logic
in which the exchange rule is restricted to a cyclic exchange).

Given a unital quantale B we define the binary operations — and —'on B
by

x> y=\/{zz8x<y}
x—>'y=\/{z2®@z<y}

We write avb for \/{a, b}, and similarly anb for/\{a, b}. Also the
symbol 0 will stand for a fixed designated element of B. A modal unital
quantale is a structure By, =(B,\/, ®,1,0,7,!) in which the unital quantale
is enriched by the unary operations ?, ! which satisfy the conditions (i) --
(x) below.

(1) laga

(i) N=1

(ii)) Yanb)=1a®!'b
(iv) la<!la

v) '1a®@b=>b@!a

(vi) Na—>b)<%a—%

386 JOHN S. JEAVONS AND JOHN N. CROSSLEY

(vil) a<?a
(viil) ??a<%
(ix) 0<%
(x) ?20=0

where a, b are arbitrary elements of B.

Lemma 1.In every modal unital quantale, if elements a, b, ¢ satisfy
1a® b < ¢, then !ax ?h < 2¢ also holds.

Proof. By definition of —, if 1a®b <7, then !a < (b — ?c). Conditions
(i)-(iii) enable us to show that ! is order preserving so we have
la<!(b—), and then condition (vi) enables us to conclude that
Na <(?% — ?7¢). Now !!a = !a and ??c = ?¢ follow from (i), (iv), (vii) and
(viii), so we have !a<(?h — ?¢) and this in turn gives the desired result,
1a®M%b <.

The following lemma in Ono 11 gives a condition for extending a unital
quantale to a modal unital quantale.

Lemma 2. Let B=(B,\/, ®, 1) be a unital quantale and let R, S be subsets
of B satisfying the conditions:

(1) R is closed under ®

(2) r@r=r,foreveryr e R

(3) r®b=bQ@r,foreveryr € Randeveryb € B
(4) 1 is the greatest element of R

(5) 0Ois the least element of S

(6) If re R,se S, thenr 5> s € S.

Then if we define the unary operations on B by

b=\/{reRr<b}
% =\{seS:b<s}

forevery b € B, then By =(B,\/,®,1,0,?,!) is a modal unital quantale.
A structure for our logic consists of a pair (B, U) where B,, is a modal
unital quantale and U is a pre-interpretation for our language, that is, U
consists of a non-empty set equipped with functions fU for each function
symbol of our language. We denote by L;,(U) the language formed from
Ly by adjoining a new set of constants {C,:u € U} to name each element

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 387

of U. An assignment F of (By, U),is a mapping from the set of all closed
atomic formulae of L;,(U) into B which satisfies

F(L) = /\B =the leastelement of B
F(T) = \/B =the greatest element of B
F1) =1

FO0O)y = 0

The assignment F is extended to all closed formulae by defining

F(AeB) = F(A)®F(B)
F(A>B) = F(A)— F(B)
F(AS' B) = F(A)-'F(B)
F(A®B) = F(A)v F(B)
F(A&B) = F(A)AF(B)

F(VxA(x)) = Ao F(A[x/¢,))
F(IxARX)) = Ve F(A[x/c,])
F(1A) = IF(A)
F(?4) = ?F(A)

We say that a formula A is true under the assignment F if 1< F A), where
A is the universal closure of A. A formula A is valid if A is true under all
assignments in all structures (B, U). We say that a sequent A, -, A, =
kB is valid if the formula (A, ®---eA,) > B is valid. For the case n = 0 we
take 1 © B, and if the succedent is empty we take A, o---¢ A, D 0.

Soundness and Completeness

In order to establish soundness of L;, with respect to validity in modal
unital structures, we verify that all axioms are valid and that the rules of
inference preserve validity. We treat the case of the rule (? - L) and leave
the remaining cases as exercises. Suppose then that the sequent
IT’, A, !A=F7B is valid. We have to verjfy that the sequent T, ?A, A =+?B
is also valid. Let 1%, ---!%,, A, !8,, ---18,, =F?B be any closed instance of
the sequent !'T’, A,!A=+7B obtained by a uniform replacement of free
variables by the new constants used to name elements of U. Suppose
further that under an assignment F. we have F ('Pl)= ¢, for i=1--, n, and
F 5_j= dj,forj=1, mand F|A)=gq, F(B) =b. Since the formula
f7e: 0!y, 0 Ael5 e.-015, OB is true, we have (Iq®---Q!c,
®a®!d, ®---®!d, —)2 1 and this is equivalent to

388 JOHN S. JEAVONS AND JOHN N. CROSSLEY
16,®-®le, ®a®!d, ®---®1d, <%

Now (using condition (iii) in the definition of the modal operations) this
last condition is equivalent to

Ncincranc,)®a®Nd Ady A Ad,) <,
and then (using condition (v)) we can write this as
NeincancuAdiAdyA-d,)Ra< b

Finally, from Lemma 1, the relation ! ¢ ® a < ?b implies ! e ®?a < ?b and
this suffices to establish that the sequent

!’j}l’ ---!}A’n, ‘?A, !31, . ..!8'" = *_r’é
is also true. Hence the rule (? - L) preserves validity.

To establish completeness with respect to modal unital quantales we must
exhibit a structure (By, U) and an assignment F with the property that if
Ay, -+, A, = B is not provable then the formula (A, e---eA,)> B is not
true under the assignment. We first need to define the notion of a closure
operation ¢ on a unital quantale. If (B, \/, ®, 1) is a unital quantale and €
is a unary operation on B we say € is a closure operation if it satisfies the
conditions

(1) b <C(h)

(2) b <b, implies €(b)< C(b,)
(3) € (C(h))<C(h)

@) C(b)®C(b,)<C(h®b,).

forall by, b, € B. An element b is C-closed if €(b)=b.
Any closure operation € on a unital quantale satisfies the properties

© (\/ (S(bl)]:@: (\,/bj)
© ({\ @I(bl))=/,.\@(b|)

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 389
C(C(h)®E(b,))=C(®b,)

If €(B) denotes the set of €-closed elements of B, and if we define the op-
eration &g on €(B) by b®; b, =C(5®b,), and also define
Ve b =€ (\/ b;), then the structure (E(B), \/¢, ®¢,E(1)) is a unital
quantale (see Niefield and Rosenthal [9]).

Another construction we employ is the following.

Let (M, *,1) be a monoid and denote by P(M) the power set of M. For
X,Yc M define the binary operation . on P(M) by X-Y=
{x*y:xeX,yeY}. Then (P(M),U, - {1}) forms a unital quantale.

We now begin our construction of the structure (B, U) required to es-
tablish the completeness property. Without loss of generality we assume
that our language contains at least one constant symbol and one function
symbol. We take as our universe U the Herbrand universe generated by the
constant symbols and function symbols of Lj,. Thus the expanded lan-
guage L, (U) contains an infinite number of new constants to name the el-
ements of the Herbrand universe. We now define the Lindenbaum algebra
LA of the logic L;,(U). Define an equivalence relation on the set of closed
formulae of Ly, (U) by A = B if, and only if, both A=+ Band B = A are
provable. We denote by [A] the equivalence class containing A, and we let
¥ = {[A] : A is a closed formula of L, (U)}. We can impose a lattice struc-
ture on V" by defining [A]v[B]=[A® B] and [A]A[B]=[A&B], the great-
est element of the lattice is [T]and the least element is [L], and [C] < [D]
if, and only if, C =+ D is provable. Furthermore, " is equipped with a
monoid structure by defining [A] * [B] = [A e B], for which [1] is the neu-
tral element. The operation * distributes on both sides over finite joins. We
further equip V" with two operations —, —' by defining [A] — [B] =[A D
B], and [A] —' [B] =[A >'B]. It is readily verified that we have [C] < [A]
— [B] if, and only if, [C] * [A] < [B], and similarly [C] £ [A] —' [B] if,
and only if, [A] * [C] < [B]. The structure LA = (V, —, -
v, A, %, [1],[0],, T, L) is an example of an algebra called a full Lambek al-
gebra in Ono [11]. The lattice structure of LA is not a complete lattice.

Now if we consider just the monoidal structure LA™ = (', *, [1]) then
by the preceding remarks the structure (P(“V), U - {[1]}) is a unital quan-
tale. We now specify a closure operation € on this quantale via the
Dedekind-MacNeille completion of the lattice structure of LA (see [4]). For
any XV define €(X) to be the set of lower bounds of the set of upper
bounds of the set X, so that x € €(X) if, and only if, foreveryy € V' if z <

y holds for all z € X, then x < y. We must verify that € is a closure opera-
tion on the quantale (P(¥), U, , {[1]}2 , the partial order in this quantale be-
ing set inclusion. Conditions (1) - (3) for a closure operation are easily
verified and we shall only establish condition (4). We have to establish that

390 JOHN S. JEAVONS AND JOHN N. CROSSLEY

if X, Y € P(V) then €(X)-C(Y)cE(X-Y) Let ze €(X)-C(Y) so that
z=x*y for some x € €(X), ye §(Y). If w is any upper bound of (X-Y),
we have to establish that x * y < w. Suppose then x’ * y" < w holds for all
x' € X, y' € Y, then by the definition of the operation — in LA we have x'
<y — wholds for all x' € X, so that x < y' — w holds for all y' € Y. But
x £y — w holds if, and only if, x * y’ < w. and this condition is equiva-
lenttoy <x =>'w.Butify) £ x ->'wholds forall y' € Ytheny < x —'
w holds and this is equivalent to x * y < w, as required.

Having established that € is indeed a closure operation on
(P(‘V LU, {[l]}) we now consider the unital quantale (@(P("If)), U
s» €{[1]}). To enrich this to a modal unital quantale we use Lemma 2
above. Define the subsets R, S of €(P(')) by

R={G({['A]}) : Ais aclosed formula of Ly (U)})
S = {C({[?A]}) : A is a closed formula of Ly, (U)}

Conditions (1) and (2) of Lemma 2 are satisfied since

C({[1AT}) « C({1B}) = GS({[!(A& B)]})

and

C({raTh) « C({1aTh) = C({1Al})
Conditions (4), (5) are satisfied since [!A] < [1], [0] < [?A] holds for all
closed formulae A.

Condition (6) is satisfied because [!A > ?B]=[?(!A > ?B)]. Finally, to
verify condition (2), we have to show that for any X € @(P()) ,

X @:({['A]}) = @({['A]}) ¢ X

holds for any closed formula A. Now if X = §(Y) then

C(¥) ¢ C({1AT}) = C(C(r)-({AT})
=E(r-{A]})

But since [!Ae B]=[Be!A] holds for any closed formula B, we have
Y-{[!A]} ={[!A]}-Y, and this suffices to establish condition (2).

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 391

Our modal operations on &(P(*')) are then defined by

X =U{Y e R:Y c X}
w=N{YeS:Xc Y}

for any X e €(P(¥)).

This completes the construction of our modal unital quantale. The map-
ping h : LA — G(P(V)) defined by h([A]) = €{[A]} preserves all existing
meets and joins in LA. Now take the assignment F given by F(A)=h([A]),
for all closed atomic formulae A. It is readily verified that we have for the
extension F, F(AD B)=F(A)— F(B), F(A>'B) F(A)—'F(B), F(A®B)
= F(A)Ug F(B), F(A&B) = F(A)n F(B), F(A)=F(A), F(7A) = 7F(A),
F(AeB)=F(A)-; F(B), for each closed formula 4, B.

Now suppose that the sequent A,,:-, A, =+ B is not provable, and write
(A, -+, A, =t B) for the universal closure of the formula A e---e A, D B.
We show that (A, -+, A, =F B} is not true in our assignment. Suppose to
the contrary that

1< F((A, -+, A, =F B))

where 1, = (S({[l]}) = h[1].

Since F((4,, -+, A, =F B))=h{[{Ay, -+, A, =F B)]) and h is injective, we
have that [1]< ((A,, -+, A, =+ B)) holds in LA, but this in turn implies that
1=+ (A, -, A, =F B) is provable, and this yields our contradiction, be-
cause 1 = F(A,, -+, A, =F B) is provable if, and only if, A, ---, A, =} B is
provable, and this sequent is not provable by assumption.

1.2.2 Kripke semantics

In [5] we gave a Kripke style semantics for the logic L; using partially or-
dered monoid structures. The system L; did not include the connective &
or the quantifier 3, nor the modal symbols !, ? .. To incorporate B, 3 we
extend our partially ordered monoids to complete meet semi-lattice
monoids (SO-monoids) as defined below. Let Lj denote the language L,
u{d, 3}.

Definition. A structure M = (M, FAUE oo) is a complete SO-monoid if

(i) (M, /\) is a complete meet semi-lattice with greatest element oo,

392 JOHN S. JEAVONS AND JOHN N. CROSSLEY

(i) (M, 1) is a monoid with identity 1, and for each m e M we have

Mm-:oco=oco:-p] =oco0,

(1ii) m-(/\,- n)-m'=/N\;(m-n; m’) holds for every m, m',n, e M.

If U is a universe then a valuation is a mapping F from the set of closed
atomic formulae of Lj(U) to the set of principal filters in the lattice struc-
ture. The relation F=is then defined by

(1) mkEL1,if and only if, m=oo

(2) mkE1,if, and only if, m > 1

(3) m=T holds forevery me M

(4) m=P if, and only if, m e F(P), where P is an atomic sentence of

7(U) excluding L, T, 1 but includin g 0.

(5) mE A>B if, and only if, for all (m, m,)e M? such that m, = A
and m-m, <m,we have m, =B

(6) m= AD'B if, and only if, for all (m,, m,) e M2 such that m =A and
m-m; < m,we have m, =B

(7) mE AeB if, and only if, there exists (m,, m,)e M2 with m, = A
and my EBand m;-m, <m

(8) m k=A@ B if, and only if, there exist {m, m,)e M? such that
m Amy, <m and both (m; =A; or m; =B) and (m, =A or m, =B)
hold.

(9) mkEA&BIf andonly if, n=A and m =B

(10) m k= VxA(x) if, and only if, for each ue U, mE=A(u).

(11) m = 3xA(x) if, and only if, there exists a subset {m;} _, of M and a
subset {u,-},.E ; of U such that /\;.;m; <mand m; = AC_:,.) holds for
each iel.

Ono [11] makes the observation that a complete SO-monoid is just a unital
quantale with the reverse order. Thus given a unital quantale structure B for
L} we obtain a Kripke structure M by reversing the order in the quantale so
that b, < b, holds if, and only if, b, <y b. Then if Fj is an assignment
for the unital quantale B in which Fz(P)=b, where P is a closed atomic
formula of Lj(U), we have a corresponding valuation F), in the associated
Kripke structure M by defining Fy(P)={m:b<, m}, a principal filter of
M (equivalently, a principal ideal of B). Conversely, given a Kripke model
we can obtain a corresponding quantale structure and assignment. Ono [11]
points out that this correspondence no longer holds if we restrict our atten-
tion to propositional logic in which case the Kripke models are SO-
monoids (not necessarily complete), and an assignment is only required to

associate a filter (not necessarily principal) in the SO-monoid with a closed
atomic formula.

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 393

In order to extend our Kripke semantics to incorporate the modal symbols
we can slightly modify the approach given in Ono [11] (for propositional
logic) so it can be applied to predicate logic. Ono [11] defines conditions to
be satisfied by two binary relations F, G on SO-monoids, called ac-
cessibility relations, and then extends valuations to include the modal con-
nectives using these accessibility relations. For example, m = A if, and
only if, n = A for some n such that nFm holds. Then a soundness and
completeness result is obtained for the modal propositional logic with re-
spect to modal Kripke structures. The conditions given in [11] for the ac-
cessibility relations can easily be modified to apply to complete SO-
monoids; basically we replace conditions involving A by analogous condi-
tions using /\. For example, one of Ono's [11] conditions is

(6) If yFx and y'Fx' hold then (y A y')F(x A x") holds.
This is replaced by
(6 If y;Fx; holds for each i€ I, then (/\;,)F(/\,) holds.

These modifications ensure that {m : m = A} is still a principal filter of M
even if A contains modal connectives. The soundness of Ly, with respect
to complete SO-monoids further equipped with our accessibility relations
follows from Ono [11] since our modified conditions on F, G imply Ono’s
conditions. The completeness argument in Ono is also easily adapted to
apply to complete SO-monoids equipped with accessibility relations.

2. Representing negation as failure in Ly,

In the declarative semantics for logic programming the negation as failure
rule is sound with respect to the completed program (see e.g. Lloyd [18]). In
general the completed program is an infinite collection of formulae, the
axiom schema for the equality predicate is an infinite schema. However, if
we have a finitely failed SLDNF-tree with root node <« P then the negation
of P is a logical consequence of a finite subset of the completed program.
Similarly, if an attempt is made to construct a finitely failed SLDNF-tree
for < P but the attempt fails due to the tree containing a success branch,
then we can show that P is a logical consequence of a finite subset of the
completed program.

In section 2.1 we define the completion of a normal program. In section
2.2 we address the construction of an SLDNF-tree in our logic. If ® is a
normal program and J is an SLDNF-tree for P U{« L, ---, L}, then we
specify how a finite set I of formulae may be associated with I such that

394 JOHN S. JEAVONS AND JOHN N. CROSSLEY

if J is a finitely failed tree then I' F —3(L; ®---¢ L,) holds, and on the
other hand, if J contains a success branch then I' + —V(Lje---oL,)O
where © is the computed answer substitution associated with the success
branch. The formulae of I" are instances of the completed program scheme.

Once I" has been defined for a given tree 7, it follows from the result in
section 1.1 that given J we can associate a formula !Ty (where T is the
conjunction of the formulae in I') such that either !Tg =+ —3(L; ®---o L)
or 1Ty =+ V(L e---¢ L ©) is a provable sequent in our logic. The formula
!Tg is the representation of the construction of the tree T in Ly,.

2.1 The completion of a normal program

Let P be a normal program (see Lloyd [18]) and suppose that the clauses in
P with head predicate letter Q form the non-empty set

{Q(s,.)i— Li:i=1,-, m}

where s; stands for s;,, -, 5;,, and L, stands for L;,, -, L;, , where each
L; ; is a literal. In the translation into formulae of L, a positive literal re-
mains unchanged, but a negative literal, say ~ P, will translate to ! = P. The
translation of a program literal L; will be written as L;. The process of ob-
taining the completed definition of the predicate letter Q with respect to the
program %P is given below. A program clause Q(s,-)(—Li is first trans-
formed to the L, formula

A

(((xl =5i1)&-+ &(x, = si.n)).f'i.l S .Li,m,-)D O(xy, 4+, x,)

where x, --+, x, are new variables not appearing in %, and = is a predicate
which does not occur in P. We abbreviate this formula to

(x=5,)oL; >0(x)

If y;1,+**, ¥, are the variables which occur in the program clause, then we
now form the formula

3y;15+% 3}’;,r,. ((x = si)’ i‘i) 2 Q(x)

which we abbreviate to E; > Q(x).

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 395

We thus have formulae E; > Q(x) for i =1, -+, m, and we now define the
completed definition of the predicate letter Q (with respect to P) as the
sentence '

Vx((E® - ®E,)> 0(x))&(Q(x) > (E® - E,)}

For the case m = 0 where % does not contain any clause with head predi-
cate letter O, we define the completed definition of Q by the sentence
Vx(Q(x)>L). We write P-comp(Q) for the completed definition of Q
with respect to %. The predicate = is required to satisfy the following
translation of Clark’s [12] equality theory.

2.1.1 Equality axiom schema
The axioms for equality are given by (1) - (9) below.

(1) Vx(x=x)

2 Va¥y((x=y)o(y=x))

(3) VaVyVe((x=y)&(y=2)>(x=2))

4) ‘v’xVy(ﬁ(x) o(x=y)o M(x)> L(y)e A:I(y)) , where L stands for a
co-joining [, e--- OI:,,, of literals, and likewise M.

(5) VxVy((x =y)&n(x)=t(x)>4(y)=1, (y)) where 1, and f, are terms

(6) Vx¥y((x=y)> f(x)= f(y)) for each function symbol

@) VxVy(f(x)=g(y) :)L) for each pair of distinct function symbols £, g
(including constants)

® VaVy(f(x)=f(»)2(x=y))
(9) Vx(t(x;)=x >L) where #(x,) is any term containing x,, which is
distinct from x;.

The axioms of (4) - (9) are schemata so our list of axioms is an infinite list
(assuming that we have at least one function symbol, or an infinite set of
constant symbols). Now let P(s), P(t) denote atoms with the same predi-
cate letter. If these atoms are unifiable (see Lloyd [18]) then the unification
algorithm generates a most general unifier (mgu); if the atoms are not
unifiable then the algorithm reports this fact. We assume a fixed determin-
istic instance of the unification algorithm. If we let S, ={P(s), P(1)} then

396 JOHN S. JEAVONS AND JOHN N. CROSSLEY

we denote by (5), the finite set of instances of schema (5) obtained by re-
stricting 1, f, to terms generated by the algorithm applied to ;. Similarly
for (9) 5. Also, (6) ;o denotes the finite number of instances of (6) obtained
by restricting the function symbols to the function symbols occurring in .
Similarly for (7) s, (8) 4. Finally denote by {EQUALS ,} the union of
(5) 505 (6) 50, (7) 505 (8) 50, (9) 50 and {(1), (2), (3)}. The schema (4) plays no
part in the following lemma. The formula A< B stands for
(Ao B)&(B>o A).

Lemma 1.
(i) If P(s) and P(z) are unifiable with mgu © = {v, /7y, ---, v, /r;} then

{EQUALS 50} FV((S] =t1)&---&(s,, =t,,)(—)(v1 = rl)&--- &(Vk = Tk))
(ii) If P(s) and P(t) are not unifiable then}
{EQUALS o} F¥((s1 =1,)& - &(s, =1,) DL).

Proof. Both parts are proved by induction on the number of steps required
by the algorithm.

2.2 Negation as failure

In the following two lemmas we establish syntactic analogues of results
given in Lloyd [8] pertaining to the soundness of negation as failure with
respect to models of the completed program. We begin with some termi-
nology.

Let & be a normal program and let G, be a normal goal « L, -,
M(u),---, L, in which the computation rule selects the positive literal
M(u). We assume that &P contains n-clauses with head predicate letter M,
say {M(t;) e Ay, -, A, i =1, ---n}, and without loss of generality we
may assume that M(u«) unifies with the first m of these clauses. The m re-
sultant goals are {Gj, -, G,} where G; is the goal « (L A;, -,
A Ly)9;,, and ©; is at most a general unifier of S; ={M(u), M(t,-‘)}.
We will write G; for the sentence —3(L e 04, DL P 0----Lq)
corresponding to the goal G;.

Lemma 2. If P is a normal program and the computation rule selects the
positive literal M(u) from the normal goal G, then

(i) if there are no derived goals

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 397

{# - comp(M)}U{EQUALS, }u-- U{EQUALS, }+G,;
(ii) If the derived goals form the non-empty set {G,, -+, G,, } then

{#- comp(M,)}U{EQUALS, }uU---U{EQUALS, } U
{EQ4¢, - EQ4¢, }HG &+ &G,) D G,,

where EQ4; stand for instances of the equality axiom (4), defined in the
proof below.

Proof.
(i) Suppose that the completed definition of M is V(M(x)>L). The se-
quent V(M(x) D_L) =t—3(Ly oo M(u)e-- is provable and hence

q
we have

{® - comp(M)}+G,.

The other case for no derived goals is when the completed definition of M
is

V(M(x)(—)EIEB---GBE,,)

and {M(u) M(1;)} is not unifiable for each i =1, ---, n. The formula E; can
be written as

3}’;'((" = ti).‘ii)
where fl,- stands for ‘31,-,1 o 'A,-J,', . We have
{® - comp(M)}FM(u) & @E,.’ (1)

where E; is obtained from E; by replacing x by u. Now from Lemma 1(ii)
we have

{BQUALS, }FV((u=1)>1) (2)

foreach i =1, -, n. The sequent

398 JOHN S. JEAVONS AND JOHN N. CROSSLEY

V((u=1)>L)F-E _ (3)
is provable, and (1), (2), (3) give us

{® - comp(M)}U{EQUALS, }u-- U{EQUALS, }F-M))
and from (4) we can infer

{# - comp(M)}L{EQUALS, } U UL {EQuALs, }+G,.
(ii) The distributivity of e over @ and the completed definition of M gives

{?P— comp(M)}I—(f,l 0---0ﬂ;1(u)0---0ﬁq)+—)lﬂ:31(f,1 e...oFe... f,q) (5)

Since {M(u), M(t;)} do not unify for i =m+1,---, n we have from Lemma
1(ii)

{EQUALS, }FV((u=1,)oL) forj=m+1,--,n,
and from this we can establish
{EQUALS, } F(i4 oo M(u)o---o 11,,) =1 (6)

for j=m+1,---, n. The constant L is neutral for @ so we now have from

(3), (6)

{? - comp(M)} U{EQUALS,, , }u---U{EQUALS, }+

(L.....M(u)o---ol:q)v(—)é(iq....QE;-...f,q) @)

The formula E; is Ey,r((u =1;)e ﬁi), and by standardizing apart the vari-
ables in y; do not appear in L;e--- e M(u)e---o q» SO that we can move
the quantifiers outwards in (7) to give

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 399

{# - comp(M)} U{EQUALS, }u---U{EQUALS, }+

(fq .__,.M(u).....ﬁq)Hégyi(ﬁl o---o(u=t,-)o...-f,q) (8)

This last step is justified because if x is not free in the formulae B, C then
3x(BeD(x)eC) > Be3xD(x)e C is a theorem.

Lemma 1(i) gives for i=1,---, m
{EQUALS, }Hu=1,) ¢ (v =r,)

where ©, = {v,-ll Pk ¥ AT} fc.-} is a mgu of §; This result together with
(8) give

{#?~ comp(M)}U{EQUALS, }u---U{EQUALS, s

(]:1.....A‘)[(u)o---oi,q)(—)%ayj(i]o...-(vi=ri)oza;o...o£q) €))

To complete the proof we now use the equality axiom (4) to give
{EQ4Gr‘}}'i« ooy ="r)‘ﬁf""‘£q 3(& ""'Ai "“'l':q)es (10)

where EQ4G,; stands for the following particular instance of the equality
schema (4)

A

V(f,lom-(v,. :r,.)oji,.o---oLq):)(I:lo---o/‘i‘.o---oﬁq)ei
The results in (10) and (9) allow us to infer

{® - comp(M)}U{EQUALS, }u---U{EQUALS, } U{EQ4G,:i =

A A A n A A ~ 1]
]’ e m}l—(Ll o .M(u)..Lq)DQiaya(L‘l ."'.Ai ._._.Lq)ei ()
and our result follows from (11) by observing that the sequent

B> él C, =+&m (-3C,) > —=(3B)

is a theorem of our logic.

400 JOHN S. JEAVONS AND JOHN N. CROSSLEY

The following proposition will be used in Lemma 3.

Proposition.1 Let G; be a goal clause « L, --L;_,, P(s), Ly, -+, L, and
suppose that the positive literal P(s) is selected. If % is a program contain-
ing a clause P(r) < Ay, -, A, whose head unifies with P(s) with mgu ©,
yielding the derived goal G, «L®©, - L_0 A0, A0,
Li®,---, L,O, then we have

P comp(P)I-(!I;G)o----!I:,-u,@-!ﬁleo----!ﬁkGOEL‘,,-HG)-n-!ﬁ,@)
(1@ e1P(s)0 0 01L,0)

Proof. The result follows easily from the fact that % - comp(P)H!
(A@%--eA05P(r)0). 0

Lemma 3 below establishes a soundness result for negation as failure with
respect to models of the completed program. Our proof shows that if P U
{< L, L.} has a finitely failed SLDNF-tree, say, then the sentence
—d|\L;e---eL,| is a logical consequence of a (finite) subset of the com-
pleted program, this subset being determined by J. Let & -comp
(PRED(TJ)) be the set of completed predicate definitions for each predicate
which occurs in a goal clause in 7, including any subsidiary trees to the
main tree. (Actually, we can restrict ourselves to the predicate letters P
such that the computation rule selects an atom P(t) or a negative literal
~ P(r) during the construction of J.) Similarly we define the instances of
the equality axioms associated with 7, P-comp(EQUALS(Y)), as follows.

(1) If 7 contains a goal in which a positive literal is selected and the im-
mediate derived goals form the non-empty set {G,, -, G,,,}, then
(using the terminology of Lemma 2), each member of the union of the
sets EQUALSSIE, -, {EQUALS,, f {EQ4g,. -, EQ4q, } belongs to
P-comp(EQUALS(D)).

(2) If T contains a goal in which a positive literal is selected and there are
no derived goals then each member of the union of the sets
{EQUALS, }, -, {EQUALS, } belongs to P -comp(EQUALS(Y)).
(Again, see Lemma 2 for the terminology.)

(3) The only members of P-comp(EQUALS(Y)) are given by (1) and (2)
above.

The following notation will be used in Lemma 3. If G is the clause
< L,--, L, then we write G for the formula L, e-.-e [, and !G for the

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 401

formula !f4 °...0 !lAM. Note that G is not the same as the sentence G defined
at the beginning of this section.

Lemma 3. Let P be a normal program and suppose that P U {« L, -+, L, }
has a finitely failed SLDNF-tree, I. Then we have

@ — comp(PRED(J)) P - comp(EQUALS(Y)) I——.El(f,l ..o !f,,,)

Proof. We proceed by induction on the number N of negative sub-goals
selected in the construction of J, including any negative sub-goals selected
in subsidiary trees to the main tree.

(i) The base case N =0 is handled by an inductive argument on the depth
of the tree T, using Lemma 2.

(ii) For the inductive step suppose that N #0 so that J contains at least
one goal clause (in the main tree) from which a negative literal is se-
lected. Let the goal « @y, -+, @i, ~ P, Q.,y, -+, O, be such a goal of
least depth d in J. It suffices to show that for such a goal we have

® — comp(PRED(T))U®P - comp(EQUALS(J))F—3

(QAIO..-.Q_].—‘P.QAH_I.....Qr) (D

since the induction hypothesis applies to other goals of depth d in 7 in
which positive literals are selected, and then Lemma 2 can be applied to
complete the argument.

To establish (1) we first consider the case where the negative ground lit-
eral ~ P is selected and the sub-goal <~ P succeeds yielding the derived
goal « @, -, 0y, Oiy1, -+, O, The induction hypothesis applied to this

derived goal gives
® - comp(PRED(T,))U P — comp(EQUALS(T,))+—3

(Qlo---oQ_lcQAiH.....QAr) (2)

where 7, is the subtree of J with root node « Q,,---, Qi_;, Gy, -+ O,.
Since J, is a sub-tree of I we have P- comp(PRED(T,))c

® — comp(PRED(J)) and similarly for % — comp(EQUALS(J ,)), so we

402 JOHN S. JEAVONS AND JOHN N. CROSSLEY

can replace J, by J in (2). Now the sequent 3(@1 o..ol~ P---'-Q,)=
I—E!(Ql 000 00, 00 Q,)'is provable, and from (2) we have

® — comp(PRED(J))u P - comp(EQUALS())F—3
-

as required.

The other case is when the sub-goal «~ P fails so that 7 contains a sub-
sidiary tree with root note <~ P, which has a success branch. Let G, and
G;,, be successive goals along this success branch such that a positive lit-
eral in G; is selected by the computation rule. By the proposition following
Lemma 2

we have

® - comp(PRED(J))uU P - comp(EQUALS(F))+!G,,, !GO (3)

where © is the mgu associated with the resolution step. If G,,, is derived
from G; by the selection of a negative ground literal which succeeds, say
~R, then from the induction hypothesis on N we infer

® - comp(PRED(T))U P - comp(EQUALS(J))+ I-L 4)

since if T'FA, then clearly T'F!A by an application of (!-R).
Corresponding to (3) above we have

® - comp(PRED(J))U %P - comp(EQUALS(J))F!G,,, 2!G;, (5)
Now an application of (3) and (5) along the success branch for P yields
P~ comp(PRED(J)) U P - comp(EQUALS(J))+!P (6)

(Since P is ground, the application of the unifier sequence to P has no ef-
fect.) Our result (1) now follows readily from (6), and this completes the
argument for the inductive step. O

For SLDNF-refutations suppose that P U {« L,, ---, L, } has an SLDNF-
tree I which contains a success branch . (The tree may be infinite.)
Denote by J 4 the partial SLDNF-tree obtained from by taking the suc-

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 403

cess branch together with any subsidiary trees associated with negative sub-
goals along the branch. Then from the argument in Lemma 3 we have the
following corollary. '

Corollary. If the SLDNF-tree for ® U {« L,, .-, L,} contains a success
branch f with associated unifier sequence ©,0,---0,,, then

P - comp(PRED(ST p))U?P - comp(EQUALS(E’Tﬁ)) F
V((I:lof,")e)l...@m)_

We can now specify a formula !T; corresponding to a finite possibly par-
tial) SLDNF-tree J. Let P be a normal program and let < L;, -, L, be a
normal goal such that either

(i) Pu{< L, -, L,} has a finitely failed SLDNF-tree 7,

or

(ii) PU{e< L, -, L,} has an SLDNF-tree I with a success branch 8 and
associated unifier sequence ©,---09,,.

Then if case (i) holds, the formula Ty is the conjunction (&) of all for-
mulae in -~ comp(PRED(J))u P - comp(EQUALS(Y)). In case (ii)
Tg is the corresponding conjunction using J ; instead of J. Then Lemma
3 ,and its corollary give us that in case (i) the sequent !T; =F—3

o ..o L:j is provable, and in case (ii) the sequent !Ty =FV
(‘Il,, oo)91- --9,,:3 is provable.

2.3 Representing SLDNF-derivations in Ly,

In [5] we represented an SLD-resolution step from goal G to derived goal
G, (via application of the computation rule to select an atom in G,) by a
provable sequent

G@,COMPI, H], Rl =|'G| (1)

where if Gy is « A, -+, A, -, A, and A, is selected by the computation
rule, the sentence COMP1 was defined as V(A, ®A e---0A, oA,
e---eA, DAe...0A, e...04,) The sentence H, represents the selected
program input clause C « B,,---, B, by V(B e---¢ B, 5C), and if A,, and
C unify with mgu © yielding the derived goal « (A, -+, A,_;, B, - B,,,
An, -+ A)© then R, (the sentence representing the ordering of atoms in
the derived goal) is defined as V(A e---oA, eBe---eB oA, .,
¢ 04)OO (B e eB eAe..0A oA -----A,()G)). Now consider

404 JOHN S. JEAVONS AND JOHN N. CROSSLEY

an SLDNF-derivation step in which the negative ground literal ~ P is se-
lected from the goal « @y, -, 0,_;, ~ P, Q;yy,*++, Oy, and «~ P succeeds
yielding the derived goal « @, -,0Q:y, @y, -, Q+k. Let T be the
finitely failed SLDNF-tree for « P. This step is represented by the prov-
able sequent

Go, COMP[, !Tg- = " Gl' (ii)

where COMP1 is the sentence (which in this case is a theorem of L;,)
V(~PeQis--0Q 100, 000, D0 000 8l-Pe O o 00,).
The sentence ! Ty is as defined at the end of the previous section and repre-
sents the tree J.

We can now specify an injective map from the set of all finite SLDNF-
derivations into provable sequents of Ly, in a similar manner to the map
from SLD-derivations into provable sequents of L,, given in [5].

Consider first an SLDNF-refutation of U {« L, .-+, L, } with associ-
ated answer substitution ©. If the penultimate goal is an atom P then we
have the associated provable sequent of the form

COMP,, -, COMP,, H,, R,, -, COMP,,, Ty, --, COMP,_,, H; = -
FV(Le--oL,)O :

where the sub-sequence COMP,, H,, R, corresponds to a resolution step in
which an atom is selected by the computation rule, and the sub-sequence
COMP,,,!T corresponds to the selection of a negative ground literal and
the construction of the associated SLDNF-tree, J. H; represents the final
(unit) program clause selected in the derivation. On the other hand, if the
penultimate goal is a negative literal the associated sequent is

COMP,, ---, COMP,, H,, R,,--, COMP,,, Ty, COMPi_,j!Tg. = i
’_V(LQ.'".LH)G (11

where J"' is the tree associated with the negative literal. For the case of
finitely failed SLDNF-derivations suppose the derivation terminates with
final goal «- @, -+, Q, and let © denote the composition of the associated
unifier sequence. Now if the final goal fails because the computation rule
selects a positive literal Q; which fails then (similarly to the corresponding
case in [5]), we may associate with this derivation the provable sequent

COMP,, -+, COMP,, H,, R,,+-,COMP,,'T, -+-, COMP, =
FV(Q,i oljessal oy "“'Qr):’V(La o0,)0 (ur)

A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 405

But this does not capture the final step in which after the computation rule
selects 0;, a (failed) attempt is made to unify Q; with the head of a program
clause. This means that U {(— Q,-} has a finitely failed SLDNF-tree of
depth zero, and if we denote this tree by I, we choose to replace (iii)
above by the following provable sequent

COMP,,---, COMP,, H,, R,,-:,COMP,,,'Ty, ---, COMP,, Ty =
"V((Qj'Q1"“'Qj-l’Qjﬂ""‘Qr)D (iv)
V(Lo o L,@))e!-3(Q; 00 ¢ 00 10000 0,)

The remaining case is that of a failed derivation in which the final goal is
0, Qi1,~P, Q-+, O and the negative ground literal ~P is se-
lected and fails. The following provable sequent corresponds to this case,
where T is the final tree constructed (containing the success branch for P).

COMP,, -, COMP,, H,, R,,---,COMP,,,!Tg, ---, COMP,, !Tg. =
H(V(i-PeQie-00, 1 0Q)1000,)
V(LieoL,))@el=I(—~PeQ o001 00, 0 00,)

Monash University
REFERENCES

[1] Abrusci, V.M., Phase Semantics and Sequent Calculus for Pure
Noncommutative Classical Linear Propositional Logic, Journal of
Symbolic Logic 56 : 1403-1451, 1991.

[2] Clark, K.L., Negation as Failure, in Logic and Databases: 293-322,
Gallaire, H. and Minker, J. editors, Plenum Press, New York, 1978.

[3] Girard, J-Y., Linear Logic, Theoretical Computer Science 50 : 1-102,
1987. '

[4] Gritzer, G., General Lattice Theory, Academic Press, 1978.

[5] Jeavons, J.S. and Crossley, J.N., A Logic-based Modelling of Prolog
Resolution Sequences, Logique et Analyse, 137-138: pp.189-205,
1992 (appeared 1996)

[6] Komori, Y., Predicate Logics Without the Structure Rules, Studia
Logica 45 : 393-404, 1985.

[77 Lambek, J., The mathematics of sentence structure, Am.
Math.Monthly 65, 1958.

406

(8]
(9]

(10]
(11]

[12]

JOHN S. JEAVONS AND JOHN N. CROSSLEY

Lloyd, J.W., Foundations of Logic Programming, Second Edition,
Springer-Verlag, Heidelberg, 1987.

Niefield, S.B. and Rosenthal, K.I., Constructing locales from quan-
tales, Mathematical Proceedings of the Cambridge Philosophical
Society 104: 215-234, 1988,

Ono, H., Semantical Analysis of Predicate Logics Without the
Contraction Rule, Studia Logica 44: 187-196, 1985.

Ono, H., Semantics for Substructural Logics, in Substructural
Logics: 259-291, Schroeder-Heister, P. and Do%en, K., Editors,
Clarendon Press, 1993.

Yetter, D.N., Quantales and (Noncommutative) Linear Logic,
Journal of Symbolic Logic 55 : 41-64, 1990.

