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A MINIMAL LOGICAL SYSTEM FOR COMPUTABLE CONCEPTS
AND EFFECTIVE KNOWABILITY ™

Max A. FREUND

I. Introduction

In contradistinction to logical realism and nominalism, conceptualism, as a
philosophical theory of predication, posits concepts as the semantic
grounds for the correct or incorrect application of predicate expressions.
Then, such a theory assumes that concepts constitute the semantic grounds
for predicate expressions to be false or true of things. A modern version of
conceptualism, stated and explored for example in Cocchiarella (1986a),
(1986b), (1989) and (1993), is conceptual realism. This form of conceptual-
ism maintains a dispositional view of concepts, more precisely, it looks at
concepts as cognitive (human) capacities, or cognitive structures otherwise
based upon such capacities, to identify, characterize, classify or relate ob-
Jects. Conceptual realism, we should point out, presupposes an ontological
distinction between objects and concepts, which is reflected, according to
such a philosophical theory, in their semantic relation to expressions of the
language: predicate expressions can never stand for objects, only for con-
cepts; singular terms can never denote concepts, only objects. Concepts
have an unsaturated nature which consists in their dispositional status as a
cognitive capacity, while objects, on the contrary, possess a saturated na-
ture. [For details on the nature of unsaturateness and saturateness of con-
cepts and objects, respectively, see Cocchiarella (1993)].

An additional feature of conceptual realism is related to the nominaliza-
tion of predicate expressions, i.e., the transformation of predicate expres-
sions into abstract singular terms, such as the transformation of “human”
and “red” into “humanity” and “redness”, respectively. Conceptual realism
does not assume that every nominalization denotes but only that some of
them do it, in which case, according to this philosophical theory, what they
denote is an object. However, there is no assumption concerning the nature
of such an object, apart from the requirement that there must be a connec-
tion between the object denoted by the nominalized predicate expression
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and the concept such a predicate expression stands for. The connection
should be based on the object being somehow related to the truth conditions
determined by the possible applications of the concept. For this reason,
possible denotations of nominalized predicate expressions are also called
concept-correlates.

Cocchiarella has not introduced within conceptual realism a distinction
between concepts which are effective capacities and those which are not.
By a concept as an effective capacity we shall understand a concept whose
exercise by any agent will allow him to identify, characterize or relate ob-
Jects in various ways in a finite amount of time, without the agent resorting
to random devices or to his ingenuity. Also, exercise of such a concept al-
ways yields the same result, that is, objects declared by an agent to fall un-
der a given concept of that sort will always be declared to fall under the
same concept, by the same agent or any other agent. We shall hereafter also
refer to concepts which are effective capacities as computable concepts.

Among concepts which are effective capacities or computable, we shall
distinguish between (what we shall call) fully computable concepts and
semi-computable concepts. By fully computable concepts we shall mean
computable concepts whose exercise will determine whether or not given
objects fall under them. More clearly, exercise of a fully computable con-
cept will allow the agent to determine in a finite amount of time, without
resorting to random devices or to his ingenuity, whether or not given ob-
Jects should be identified, characterized or related in the ways the concept
does it. The concept of a number being the addition of two numbers and the
concept of a number being the product of two numbers are clear examples
of (fully) computable concepts. By semi-computable concepts we shall
mean computable concepts whose exercise will determine that given ob-
jects fall under them whenever they do actually fall. In other words, exer-
cise of a semi-computable concept will allow the agent to determine in a
finite amount of time, without the agent resorting to random devices or to
his ingenuity, whether given objects should be identified, characterized or
related in the ways the concept does it. Consequently, if a predicate ex-
pression stands for a (fully or semi) computable concept, then such a con-
cept will provide an effective rule for the application and/or non-applica-
tion of the predicate expression.

Our concern, in this paper, is with the logical properties of computable
concepts as well as with the logical features of knowledge obtainable
through such concepts, which we shall call effective knowledge. To this
end, we shall characterize a formal language whose logical syntax contains
as primitive symbols, among others, a propositional operator and a quanti-
fier formally representing, respectively, the epistemic operator “it is effec-
tively knowable that p” and a universal quantifier whose range is the set of
semi-computable concepts. We shall offer an intuitive interpretation of the
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epistemic operator and, on its basis, we shall formulate an epistemic second
order logical system, which we shall call MEK. This system captures im-
portant logical principles governing effective knowability and the universal
quantifier over semi-computable concepts. Indeed, in terms of this quanti-
fier, we shall define another quantifier formally representing the universal
quantifier whose range is the set of fully computable concepts and we shall
prove, within MEK, logical theses valid for this defined symbol.

We shall also show the relative consistency of MEK + AC’, i.e., the
system resulting from the addition of AC’ to the axiomatic base of MEK,
where AC’ is a given formula expressing the statement that every semi-
computable concept has a correlate. This statement will be justified by ap-
pealing to both so called Church’s Thesis and our proposal, in this paper, of
interpreting correlates of computable concepts as Turing machines. Now,
AC” do not express our view of semi-computable concepts correlates as
Turing machines. So, in order to express this interpretation, we shall con-
sider an applied form of MEK to the language of arithmetic as well as add a
set O of axioms to the axiomatic base of MEK. We shall call this system Q-
MEK and show that within Q-MEK it is possible to construct a formula
(which we shall call 7°) consistent with Q-MEK and, obviously with MEK
as well, in which the above interpretation of computable concepts correlates
is explicitly stated. Finally, the relative consistency of some of the most
philosophically important extensions of MEK + AC® as well as of those of
O-MEK + T° will be also shown.

As a final note, we should point out that in Shapiro(1985), Reinhardt
(1985) and Reinhardt (1986) projects of constructing formal systems of
arithmetic and/or set theory containing a propositional epistemic operator,
closely related to our operator, have been explored. In the case of Shapiro’s
(cf. pp. 6, 11), the epistemic operator is intuitively interpreted as “it is ide-
ally or potentially knowable that p” where this notion is to be understood as
meaning “knowledge obtainable (in principle) by means of constructive
methods” cf. Shapiro (pp. 6, 11). Although not totally clear in such a work,
constructive methods would seem to include, at least, intuitionistic as well
as effective methods. Now, even though such an epistemic operator would
clearly bear a certain relationship to our operator (which will be formally
represented in our logical system by “[e]”), the intuitive interpretation of
this operator is different from Shapiro’s. On one hand, our interpretation
pressuposes a philosophical framework which is not assumed in such a
work. On the other hand, the logic of the operator in Shapiro is S4,
whereas, as it would emerge from our discussion in the following sections
of this article, [¢]o — [e][e]¢ could be not a plausible principle. According
to our discussion in sections II and III, effectively knowing that ¢ implies
exercise of computable concepts as a necessary and sufficient condition in
justifying our belief in ¢. Now, effectively knowing that ¢ is effectively
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knowable will necessarily require effectively knowing that the concepts in-
volved in the effective justification of ¢ are in fact computable. However,
in view of a well known result according to which the set of algorithms is
not effectively enumerable [see Davis (1958, pp. xvi-xviii, 77-8)] and our
view in section II concerning the link between computable concepts and al-
gorithms , effectively knowing that a given computable concept is com-
putable might never be possible. Therefore, even if @were effectively
knowable, it might not be the case that it is effectively knowable that ¢ is
effectively knowable. Although ¢ might be effectively knowable, resorting
to evidence that requires exercising computable concepts as sufficient and
necessary condition might never be sufficient to justify the belief that ¢ is
effectively knowable. This is because it might never be possible to effec-
tively know that the concepts involved in an effective justification of ¢ are
computable. Similar remarks on the difference between our project and
Shapiro’s equally applies to Reinhardt’s.

II. Algorithms, computable concepts, Turing machines and concept-corre-
lates

As usual, we shall distinguish an intuitive sense from formal senses of
computability such as Turing-computability, recursivity and lambda defin-
ability. It is well known that all formal senses so far proposed have been
proved to be extensionally equivalent. [For details, see, for example,
Boolos-Jeffrey(1980), Davis(1958) or Kleene(1952)]. A notion essential to
intuitive computability is that one of an an algorithm, that is, a finite set of
mechanical deterministic instructions which can give an answer in a finite
amount of time given certain input-data. A problem or set of problems with
respect to a certain entity is characterized as intuitive computable if and
only if there is an algorithm for solving that problem or set of problems
with respect to that entity. The problem of the values of a function given
certain arguments, for example, is said to be intuitively computable if and
only if there is an algorithm which, for any given argument or arguments,
the algorithm can calculate the value of the function (if there is such a
value) for such an argument or arguments.

Now, concerning algorithms and computable concepts, we shall look at
them as essentially linked to each other, in the sense that there necessarily
is an algorithm corresponding to a computable concept and vice versa. This
is because, on one hand, computable concepts provide the cognitive basis
for apprehending an algorithm as a procedure for computing a problem or
set of problems with respect to a certain entity, such as a numerical func-
tion. It is well known that the values of the same numerical function can be
computed by different algorithms. The values of addition, for example, can
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be shown to be computed by denumerably many different Turing-machine
algorithms, Lambda-calculus algorithms or Unlimited registers-machine al-
gorithms; but all of these possible algorithms are associated to the same
function because they are cognitively apprehended as computing the values
of that function. Without such an apprehension the different algorithms are
just sets of instructions which, given the same input-data, yield the same
output-data, that is, no link is established between the algorithms and the
function. The apprehension is possible only if a computable concept of the
numerical function has been constructed. If no concept of a number being
the addition of another two numbers has been formed, it is no possible to
apprehend an algorithm as computing the values of addition.

On the other hand, any computable concept can be associated, in princi-
ple, with an algorithm. More clearly, when the content of a computable
concept is grasped, then, in principle, it is possible to formulate an algo-
rithm whose implementation will classify, identify or relate objects in the
same way as it is done by exercising the concept associated with the algo-
rithm. The algorithm will express in its set of instructions the rule provided
by the content of the concept. For example, once the content of the concept
of a number being the addition of another two numbers is grasped, it is
possible, in principle, to formulate an algorithm yielding the addition of
two numbers. Also, different algorithms can be associated with the same
concept, that is, computable concepts can, as it were, modeled by different
effective procedures.

The connection between the intuitive and the formal senses of com-
putability has been established in the so called Church’s Thesis. According
to this thesis intuitive computability is extensionally equivalent to Turing-
computability (or to any other formal sense of computability so far pro-
posed). Consequently, if an algorithm or effective procedure for solving a
problem or set of problems with respect to a certain entity exists, then a
Turing-algorithm must exist for the same problem or set of problems and
entity and vice-versa. Assuming Church’s thesis as well as our view con-
cerning the link between algorithms and computable concepts, it follows
that for any Turing-computable problem with respect to a certain entity,
computable concept or concepts can be formed whose exercise would make
possible human computation of the same problem. Also, if computable
concept or concepts can be formed which make human computation of a
given problem with respect to a certain entity possible, then there should be
a Turing machine (T-machine, for short) whose implementation would
compute the problem.

On the basis of Church’s Thesis and our above line of thought, we shall
adopt T-machines as correlates of computable concepts. Clearly, a T-ma-
chine is an abstract object, namely: a set of quadruples (satisfying certain
conditions) from a given countable alphabet. It is also related to the concept
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truth-conditions by expressing in its set of quadruples the effective rule
provided by the concept. Then, our interpretation of concept correlates in
terms of T-machines agrees with the general approach, in conceptual real-
ism, of viewing such entities as objects of certain sort, somehow related to
the truth conditions determined by the possible application of the concept.
Since it is possible to have denumerably many equivalent T-machines (that
is, machines yielding the same output-data to the same input-data), then in
such cases it should be chosen as a concept-correlate the T-machine having
the smallest godel number under a suitable arithmetization of the theory of
T-machines such as that one in Davis (1958, pp. 56-7). It is important to
notice that correlates for non-computable concepts will not be postulated,
since algorithms cannot be associated with such concepts in the sense
pointed out above with respect to computable concepts.

III. Effective Knowability

We proceed now to describe several features we shall consider to be intu-
itively involved in the concept of effectively knowability, that is, in the
concept of that which can, in principle, be effectively known. We shall ap-
proach knowledge from a classical perspective and assume its main thesis,
according to which a necessary condition for possessing knowledge (of a
certain statement p) is to have a true justified belief in p. Consequently, we
shall assume that a necessary condition for effectively knowing a certain
statement p is to have an effectively justified true belief in p. By an effec-
tively justified belief we shall understand a belief which can be justified by
resorting to evidence that requires, as a necessary and sufficient condition,
exercising computable concepts. That is, exercise of only computable con-
cepts allows the knower to obtain evidence that will effectively justify his
belief in the truth of p and effectively justifying his belief in ¢ will neces-
sarily require exercising computable concepts.

Effective justification might pressupose exercise of computable concepts
the knowing agent has not formed yet but which can be formed, once cer-
tain limitations such as time were put aside. Also, exercise of computable
concepts might require an amount of time, scratch paper on which to write
the results of progressively exercising computable concepts and a level of
technical development the agent might not possess. If these restrictions
were put aside, the agent might be able to fully exercise those concepts so
as to obtain the evidence which will justify his belief. In all of these cases,
we find a situation in which effective knowledge can be achieved once
certain limitations of the knower are put aside. It is in terms of this situation
that we shall interpret the concept of effective knowability. More precisely,
by effective knowledge in principle (or effective knowability) we shall un-
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derstand effective knowledge the knower can have access to if his restric-
tions related either to formation of concepts or to exercise of concepts were
put aside. '

We should note that our assumptions in both sections I and 1I (according
to which there is a sense in which computable concepts are to be necessar-
ily associated with effective procedures or algorithms) furnishes us with a
ground to approach effective knowledge in terms of algorithms as well: by
implementing algorithms associated with computable concepts, evidence
can be obtained to justify the agent's belief in a given statement. Now, as in
the case of computable concepts, implementation of algorithms might re-
quire capacities which go beyond those possesed by the knowing agent
(such as large amounts of memory capacity, technical development and ca-
pacity to manage complex calculations). Putting aside these limitations, the
agent might be able to implement the algorithms.

IV. Logical Syntax

We shall now characterize the logical syntax of certain sort of formal lan-
guages containing, among its logical symbols, the propositional operator
“[e]”, which is intended to formally represent effective knowability. Such
languages will also contain the lambda operator to allow for the formal rep-
resentation of complex predicate expresions as well as universal quantifiers
applicable to individual and predicate variables. Clearly, the syntax of the
languages is of a second order nature.

We take a language L to be a countable set of individual and predicate
constants. We assume the availability of denumerably many individual
variables as well as denumerably many n-place predicate variables (for
each natural number n). We shall also use x, y, z and w, with or without
numerical subscripts, to refer in the metalanguage to individual variables
and F”, G" and R" to refer to n-place predicate variables. We shall usually
drop the superscript when the context makes clear the degree of a predicate
variable or when otherwise does not matter what degree it is. For conve-
nience, we shall also use u in order to refer to variables in general. As
primitive logical constants we take —,=, ~, A,V, Vfand [e], which we
shall intuitively interpret, respectively, as the material implication, identity,
classical negation, the lambda abstract operator, the universal quantifier,
the universal quantifier for semi-computable concepts and, as noted above ,
the epistemic operator “it is effectively knowable that p”.

Given a language L, we recursively define the set of meaningful expres-
sions of type n of L, (in symbols, ME, (L) as follows:
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(1) every individual variable or constant is in ME,(L)
every n-place predicate variable or constant is in both ME_,,(L)and
ME,(L) |

(2) if a,be ME(L), then (a=b)e ME,(L)

(3) if te ME,, (L)anda,,...,a, € MEy(L) then n(a,, ..., a,) € ME, (L)

(4) if deME/(L)andx,,...,x, are pairwise distinct individual vari-
ables, then [Ax,, ..., x,6|e ME, (L)

(5) if 8e ME,(L), then ~&e ME,(L).

(6) if 8, 0e ME,(L), then (6 - 0)e ME,(L).

(7) if §e ME,(L), then [e]6 € ME,(L).

(8) if 6 e ME,(L), x is an individual variable and F is a predicate vari-
able, then VF§, VsF3, Vxd € ME,(L).

(9) if e ME,(L), then [A5]e MEy(L).

(10) if n>1,then ME,, (L) c ME,(L).

We set ME(L)=u ME, (L), that is, the set of meaningful expressions of L.
nea

We shall use J, 0, 7 and o to refer to meaningful expressions of L.

Whenever t € ME,(L), we shall say that ¢ is a term of L. We shall use a, ¢
and b, with or without numerical subscripts, to refer to terms in general. On
the other hand, for n € @ we shall understand ME, (L) to be the set of n-
place predicate expressions. The wffs (well formed formulas) of L are just
the members of ME,(L). The concepts of a bound and free occurrence of a
predicate or individual variable are understood as usual. An occurrence of a
term b in a wff or term o is said to be a bound occurrence of b in o if
some occurrrence of a variable in b is a free occurrence of that variable in b
but a bound occurrence of that variable in ¢.If a, b are terms and @ is wff
or a term, then by @(a/b) we shall mean the wff or term that results by
replacing each free occurrence of bin @ by a free occurrence of a, if such
a wff or term exists, and otherwise we take @(a/b) to be just ¢ itself. We
shall say that a is free for b in @, if @(a/b) is not ¢ unless a is b. Finally,
we shall say that a wff 6 comes from a wff § by rewriting the bound
occurrences of a variable u in a meaningful subexpression ¥ of 8 by a
variable k of the same type as u if and only if there are meaningful
expressions ¢ and @ such that, either:

yis Vu o and o isVk o(k/u),

vis V'u o and a isV°k o(k/ u), or

vis [Ax,...x,0] and @ is [Ay,...y,0(3 / x,...y, /x,)], wherey, =k
and x, =uand x; = y;, for some m and for every j # m such that and
O<j<nand O<m<n.
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and 4 is the result of replacing one or more occurrences of ¥ in 8 by «.

The universal quantifier “V” when applied to predicate variables will be
intuitively interpreted as the universal quantifier whose range is the set of
all concepts (computable or otherwise), i.e., “V F” should be read as “for
every concept F”’ and when applied to individual variables should be read
as “for every individual”. On the other hand, “VsF” should be read as “for
every semi-computable concept F’. We define the existential quantifiers as
usual:

3F¢=df“’VF"'(P HX(p:df"‘VX“-(D, and EI~"F(p=df~VSF~(p.

We have not introduced a primitive symbol which, on the intended
interpretation becomes a universal quantifier whose range is the set of fully
computable concepts, because it can be defined by the primitive symbols
already introduced. As the reader will notice, this definition will be in
accord with our informal characterization (in section 1) of fully and semi-
computable concepts. But the reader will also notice that it presuposses the
possibility that a concept can be formed from two different concepts, one
being the logical complement of the other. However, there is no problem
with this assumption, since a view in conceptual realism, to which we shall
here subscribe, is that concepts can be formed from other concepts by ap-
plying booleans operations.

Definitions:
VeFg =y VF((3G(G=[Ax...x,F,...x,])

&3G(G =[}._7c‘...x,1 ~ Fxl...x,,]))—) ®)
HCF¢ =df~ VCF"" Q

In other words, according to this definition, F is a fully computable concept
if and only if there are semi-computable concepts G and G* such that exer-
cise of G will determine that given objects fall under F whenever they do
actually fall under F and exercise of G* will determine that given objects
do not fall under F whenever they do not actually fall under F.

V. A second order epistemic logical system

We proceed now to formulate a minimal logical formal system for com-
putable concepts and effective knowability as well as sketch proofs for
several of its most important theorems. However, we shall first make some
brief remarks on the principles (involving the epistemic operator or quanti-
fiers whose range are computable concepts) assumed as axioms by the for-
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mal system. We begin by considering principles [e]p — ¢ and
[e)( — ¥) —[e]p — [e]y. The former principle states the so called “truth-
condition” for effective knowability: we have effective knowledge of truth
statements only. We explicitly assumed this property in our characteriza-
tion of effective knowability, in section III. In order to see that the latter
principle is valid, just recall that once we effectively determine the truth of
a material implication and its antecedent, then there is an effective proce-
dure for deciding the truth of the consequent, that is, through truth table
methods.

Another principles we shall adopt as axioms are [e]Vxgp — Va[e]p,
[e]VsF@ — V:F[elp and [e]VF@ — VF[e]p. Clearly, if it is effectively
knowable that for every entity e, @ is the case, then by universal instantia-
tion it is effectively knowable of any particular entity e that ¢ is the case.
We should note that the converse of each one of those three principles (viz.
Vx[e]p — [e]Vxp V<Fle]o — [e]VsF@, VF[e]p — [e]YF@ might not be
intuitively valid in an infinite domain of quantification. That is, for every
entity e belonging to the domain D of quantification (where D might be ei-
ther the set of all possible concepts, the set of all possible semi-computable
concepts or the set of individual objects), it can be effectively knowable of
e that @, but this by itself, being D infinite, only guarantees that at any
given moment of time ¢ the knowing agent will be able to effectively know
of all the entities of the domain D considered at or before ¢ (but not
necessarily of all entities of D) that ¢.

The role of identity in intensional contexts has been extensively analysed
in the literature. It is well known that Leibniz’s law cannot hold in its unre-
stricted form in every intensional context, that is, equals cannot be validly
substituted, in general, for each other within intensional contexts, in par-
ticular, epistemic contexts. For example, the unrestricted form of that law,
in the philosophical framework of this article, would allow us to infer
(using propositional logic only and the evident formula [e](a = a)), the
formula a=b — [e]a=b. However, this formula cannot be valid, since it
will turn any empirical identity into an statement for which an effective
justification could (in principle) be obtained. Instead of Leibniz’s law, we
shall assume the following two formulas: a=b— @ < y (where ¢ does
not contain the [e] operator) and [e]la=b— (¢ & y), where w comes
from @ by replacing any free occurrence of a by a free occurrence of b. In
other words, we shall commit ourselves to Leibniz’s law with respect to a
given identity a = b only when such an identity is effectively knowable,
otherwise to a restricted form of such a law to non-intensional contexts.

After our brief remarks above, we shall now state the minimal logical
system for effective knowability (MEK, for short).
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System MEK

Where ¢, v, o, y are wffs and u a predicate or individual variable, the

axioms of MEK are

AO.  all tautologies

Al.  [e](a=a)

A2, VYu(p - y)—>(Vup > Vuy)

A3, V'F(o—> y)—(VFp—-YFy)

A4, @ — Vu@, provided u does not occur free in .

AS. [el(a=b)— (¢ & y), (where W comes from @ by replacing one
or more free occurrences of a by free occurrences of b).

A6.  (a=b)— (@« ) (where ¥ comes from ¢ by replacing one or
more free occurrences of a by free occurrences of b and there is no
occurrence of the epistemic operator in ¢.!

AT. VF'3G’(F=G)

A8. VF3G(F =G)

A9.  Vxdy(x=y)

Al10. VYFp->V'Fo

All.  ([Ax...Ax,Rx;...x,|=R)

Al2. lx,...ﬁ.xn(p](a,...an)e Ax,...3x,(a) = x,&...a, = x,& @) (where
no x;is free inany q,, for1<k, j<n)

Al3. o0& o*, where 0* comes from o by rewriting the bound occur-
rences of a variable u in a subexpression 8 of ¢ by a variable of

the same type as u new to f3.
Al4. elp— o
Al5. [e](o— }’)—)(He]tp—)[e]}’)
Al6. [e|Vxp — Vx[e]p
Al7.  [e]V'Fp - V'Fle]p
Al8. [e]VFp — VF|eo.

Where ¢, y are wffs and u either a predicate or individual variable, the
rules of MEK are: Modus Ponens (MP): from @, ¢ —  infer y; and

Universal Generalization (UG): from ¢ infer Yug.

If there is a finite sequence of well formed formulas such that every
member of the sequence is either an axiom of MEK or follows from previ-
ous members of the sequence by one of the rules of MEK, then we shall say
that the last formula ¢ of the sequence is a theorem of MEK, (in symbols
F @). From now on, every proof of a theorem or derived rule, requiring rea-
soning in accordance with principles and rules of classical propositional

I As the reader might have noted, the proviso that y be a wff precludes expres-
sions such as F=c—(F(F)&e(c)) and [e)(F=c)=(F(F)&c(c)) (where F is a
monadic predicate expression and ¢ an individual constant) from being instances of
AS and A6, respectively, since “c(c)” would not be a wff.
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logic, will be indicated by the expression PL. We now proceed to prove
several theorems and derived rules.

By UG, PL and A10, the following rule of generalization for the quanti-
fier over semi-computable concepts can be derived within MEK: UG‘) if
F ¢, then FV Fg. Obviously, by A10, A8 and PL, we can show that
(within MEK) every semi-computable concept is a concept:

Th.l +V°G3F(G=F)

A version of A4 for semi-computable concepts can be proved by PL, A4
and A10:

Th.2 ¢ — V'Fo, provided F does not occur free in ¢

Now, concerning universal instantiation principles, only their restricted
forms can be proved to be theorems of the system. By UG, AS (or A6 in the
case of Th. 4), A2 and PL, we can show

Th3  +3F"[e](F =[Ax,...x,0]) > (VF"¢ > ¢[Ax,...x,0]/ F) and

Th4 +3F'(F=[Ax...x,0]) > (VF"¢ - ¢[Ax,...x,0]/ F)
(provided F does not occur free in o, [/lx]...x,,o] is free for F in ¢ and, in
the case of Th.4, there is no occurrence of the epistemic operator in @); and
by UG, AS (or A6 in the case of Th. 6), A2 and PL:

Th.5 +3x[e](x=a)—> (Vxp - ¢%) and

Th.6 F3Ix(x=a)—> (Vx> 0%)
(provided x does not occur free in a, and a is free for x in ¢). Finally, by

definition, UG, PL, AS (in the case of Th.7) or A6 (in the case of Th.8)
and Th.2:

Th7  FFF[e](F=[Ax...x,0]) > (V'F"9 - ¢[Ax,...x,0]/ F)

Th8 +3F'(F=[Ax...x,0])> (V' F"9 > ¢[Ax,...x,6]/ F),
(provided F does not occur free in &, [Ax,...x,0] is free for F in @ and, in
the case of Th.8, there is no occurrence of the epistemic operator in ).

Clearly, formulas 3x(x =t) (for any term 1), 3F(F =¢) and IF(F=t)
(for any term ¢ of the same type as F) cannot be derived within MEK by
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universal instantiation principles, since only restricted forms of such prin-
ciples can be proved as we have noted above. Moreover, the semantics we
shall develop in section VI will provide a concept of validity with respect to
which a soundness theorem relative to MEK can be proved. Since the
aforementioned formulas can also be shown not to be valid in this seman-
tics, then, in view of the soundness theorem, those formulas can not be the-
orems of MEK and, therefore, MEK is free of existential pressupositions.

By PL, UG and definition, the rule of universal generalization for com-
putable concepts can be derived within MEK, that is, (UG”): if F @, then
FV*F@. Versions of A4 and A2 for fully computable concepts can also be
proved by PL, UG, A2, A4 (in the case of Th. 9) and by definition on page
347, PL, UG, A2 (in the case of Th. 10):

Th.9 + ¢ — V°Fo, provided F does not occur free in ¢,
Th.10 +Y°F(p— 0)—(V°Fp— V°Fo)

We can show (by PL, All, A6, UG and definition on page 347) that
according to MEK every computable concept is semi-computable:

Th.11 +VFFG(F=G)

and, by this theorem, PL, A10, UG®, Th. 10 we can prove that every fully
computable concept is a concept:

Th.12 +V°F3G(F =G).
Restricted principles of universal instantiation for the quantifier over fully

computable concepts can also be shown (by A5 and A6, UGS, PL, Th 9
and Th. 10) to be theorems:

Th.3 +3IF"[e)(F =[Ax,...x,0]) > (VF"¢ > ¢[Ax,...x,0]/ F)
Th.14 +3F(F=[x...x,0]) > (V*F"0 - ¢[ Ax,...x,0]/ F)
(provided F does not occur free in o, [lxl. . .x,,c)'] is free for Fin ¢ and, in

the case of Th 14, there is no occurrence of the epistemic operator in @).
Also, by definition on page 347, PL, Th.4, UG, A8, A2, we can prove:

Th.15 + V'F¥G(F=G)
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Consistency of MEK.

Let @* be the result of replacing any occurrence of “V*” by “V!” (i.e.,
Cocchiarella’s (1986b) universal quantifier of the first level of predicative
concept formation) and of ‘[e]’ by “~~" in a wff @ of MEK. Then, @* is
a wif of second order logical system HRRC* + Ext; [See Cocchiarella
(1986b), for details on this system]. It can easily be shown that ¢* is a
theorem of HRRC* + Ext;if ¢ is a theorem of MEK, that is, if I ¢ then
@* is a theorem of HRRC* + Exi, . Therefore, MEK is relatively consistent
to HRRC*.

V1. MEK and concept correlates.

We now consider our two theses in section II concerning computable con-
cepts correlates. Both of them can be expressed in terms of the logical syn-
tax, as follows:

ACs.VsFAx(F=x) ,and

ACe.VeFax(F=x).
Clearly, thesis AC* assigns correlates to every semi-computable concept
and ACc to every fully computable concept. When ACs is added to the
axiomatic base of MEK, the resulting axiomatic system can (by Th15,
Th.11, A10, A12, Th.14 and UG® prove AC* as a theorem. This new sys-
tem can also be shown to be relatively consistent to Cocchiarella’s system
HRRC* + Ext; , by the same procedure employed above for MEK.

Now, ACs and ACc do not express our interpretation of correlates of
computable concepts as T-machines. In order to construct formulas in
which such an interpretation is explicitly stated, we shall consider an ap-
plied form of MEK to the language of arithmetic. We shall show that it is
possible to construct a wff of such a language which (on the intended in-
terpretation of the language) asserts that every semi-computable concept
has (the Godel number of) a Turing machine as its correlate. We shall also
show the consistency of the formula with MEK2.

Let L,, be the language containg the monadic predicate constants “0”
and “N”, the dyadic predicate constant “S” and the triadic predicate con-
stants “Ad” and “Mulf’. We intend to interpret such constants, respectively,
as the concepts of being a zero, being a natural number, being the succesor
of a number, being the addition of two natural numbers and being the prod-

2 We are grateful to the referee for calling out attention to the problem whether it
is possible of explicitly expressing our interpretation of correlates (of computable
concepts) in a thesis consistent with MEK.
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uct of two natural numbers. So L,, on the intended intuitive interpretation
is a language for arithmetic.

We proceed now to recursively define the expression N, (x), which can
be intuitively thought as expressing the concept of being the natural num-
ber m as well as to define the expression 3!x¢ which can be read as “there
is a unique x such that ¢”:

Definition 1
N,=4 0

Npr =g [ 23 B(S(x,)& N, ()]

Definition 11
Where ¢ is a wff containing x free and y is free for x in ¢,
AlxQ=4 Hx(‘v’y((p% x= y))

Where a, b, ¢, d and ¢ are terms of L,,, let Q be the following set of wffs of

Ly:

Bl. N(a)- Ely(y =a) (provided y does not occur free in a )

B2. N(t)—> 3!x8(x, ) (provided x does not occur free in 7)

B3. (S(a,c)&N(c))— N(a)

B4. (S(a,d)&S(c,b))>(a=c—d=b)

B5.  3dyS(a,y) -~ O(a)

B6. (N(a)&~ O(a))— 3y(S(a, y)) (provided y does not occur free in a)

B7. (N(b)& N(c))— 3'xAd(x,b,c) (provided x does not occur free in
both ¢ and b)

BS. g(O(b)& N(a)) - Ad(a, a, b)

BY. S(d,c)—>(Ad(a, b,d) & Iw(S(a, w)& Ad(w, b,c))) (provided w
does not occur free in ¢, a and b)

B10. (N(b)& N(c))— 3'xMult(x, b, ¢) (provided x does not occur free in
both ¢ and b)

B11. (O(a)& N(b))— Mult(a, b, a)

B14. S(c,d)—(Mult(a, b, c) > Iw(Ad(a, b, w)& Mult(w, b, d)))
(provided x does not occur free ind, a and b)

B15. (Ad(a,b,c)— N(a))

B16. (Mult(a,b,c) - N(a))

B17. (0(a) - N(a))

B18. 3!x0(x)

This set of wffs constitutes our adaptation of Tarski-Motowski-Robinson’s
set of axioms of first order system Q for arithmetic to the logical syntax of
this paper (which does not contain function symbols) and to the peculiarity
(of being free of existential pressupositions with respect to singular terms)
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of the system we shall use as underlying logic (viz. MEK ). Let Q-MEK be
the system resulting of the addition of Q to the axiomatic base of MEK.
Conceming this system, we should first note that it can easily be shown by

induction, definition I, B17, B3 that, if » is a natural number and ¢ a term of
LAr ’

F o-mex N, (1) = N(1)

and so, by induction as well, B2, B18, definition I, that for every natural
number n,

= 1)) ().

On the other hand, it can also be shown (by a strategy similar to Boolos &
Jeffrey’s (pp. 166-68)) that every recursive function is representable in Q-

MEK, i.e., for every recursive function f and natural numbers n,,...,n,, k
there is a wff ¢ containing m + 1 (distinct) variables z, x,, ..., x,, such that
for any term 1,...1,,,u, if f(n,, ..., n, )=k, then

k Q‘MEK(an(tl)&...&Nnm( )& N, (u))—) o(ulz,t/x...1,/x,) and

Fo-mexNy (8)&. . &N, (1,)& N, (u) > Vx(@(x/ 2,8/ x,...1,,  x,,)
D x=u).

provided u,1,...1, are free (respectively) for z, x,,...,x, in ¢. By a re-
cursive predicate we shall mean an expression P(x1 ) containing as
free variables only x,...x, (which range over the natural numbers) and
such that the characteristic function of the set {<n,,..., n, >€ "
P(nl, vy My )} is recursive. Since Q-MEXK is strong enough to represent ev-
ery recursive function, then clearly monadic recursive predicates are repre-
sentable in Q-MEK as well. That is, more precisely, for every monadic re-
cursive predicate P and natural number n, there is a wff ¢ of Q-MEK con-
taining one free variable x such that, for every term 7 of L,, free for x in o,

if P(n) is true, then F ,_pe N, (1) > o(t/ x)
if P(n) is false, then + ,_,z N, (1) 5~ o(t/ x)

Now, let TM(x) be the predicate defined in Davis (p.60) which, for any
natural number m, TM(m) holds if and only if m is the Godel number of a
Turing machine (under the arithmetization of Davis (pp. 56-7). As shown
in Davis (ibid.), TM is a monadic primitive recursive predicate and so it is
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representable in Q-MEK. That is, there is a monadic predicate expression
¢ of O-MEK containing one free variable y such that, for every term ¢t of
L, freeforyin ¢, '

if TM(n) is true, then t ,_,,. N, (£) = (2 / ), and
if TM(n) is false, then b 5_pee N, () >~ (27 y).

Assume now an arithmetization of the syntax of Q-MEK. Let T be the
predicate expression containing one free variable, with the smallest Godel
number under such an arithmetization, representing TM in Q-MEK. We are
now able to fully express our interpretation of computable concepts corre-
lates, as follows:

T’.(V’F)(Hy)(T(y)&y = F)
T* .(V‘F)(Ely)(T(y)& y=F)

The reader can easily verify that T follows from T° within the context of
O-MEK [ see p. 352].

We proceed now to show the consistency of 7° with MEK. Thus, we
shall be showing that the interpretation of semi-computable concepts corre-
lates as T-machines is consistent with the logic of MEK together with the
assumption that every semi-computable concept has a correlate. Now, be-
fore proceeding to state the consistency proof, we shall first briefly outline
1t.

We shall begin proving the consistency of T° with respect to system
MEK by firstly developing a formal semantics. System MEK will turn out
to be sound with respect to this semantics, i.e., every theorem of MEK will
be valid in every model of the semantics. Now, we should note that we
shall not be claiming that the semantics is philosophically adequate for the
intended interpretation of the epistemic operator. Its role will be rather in-
strumental in proving consistency of MEK + T°. We should also point out
that we have constructed the semantics by modifying Cocchiarella’s inten-
sional Fregean-semantic system in Cocchiarella (1986a, chap.VI).

Next, we shall proceed to construct a model belonging to the semantics
(and which we shall call “H”) in which every formula of @ will valid.
Clearly, by soundness of MEK with respect to the semantics, H will also
constitute a model of O0-MEK, i.e., every theorem of Q-MEK will be valid
in the model.

For every n-place predicate variable F", the range of “V*F"” in H will
be the set of all ordered pairs < 1, S > such that S is a semi-computable sub-
set of n-tuples of natural numbers. Model H will also contain a function g
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assigning to every member < 1, S > of the range of “V*'F"” (in H) the
godel number of a T-machine computing S. (Definition of this function will
be based on results from computability theory). Intuitively speaking, func-
tion g will (set-theoretically) represent in H the correlation of every n-ary
computable-concept in H (i.e., every member of the range of “V*F"” in H)
with T-machines. Consequently, relative to H, every n-ary semi-computable
concept (in H) will have a correlate, viz., the gédel number of a T-machine.
On the basis of this and other features of H, the fact that being (the gédel
number of) a T-machine is a recursive property (and consequently
representable in O-MEK) and the validity of Q-MEK in H, we shall be able
to show the validity of T°in H. Therefore, since both Q-MEK and T* are
valid in H, the consistency of T° with respect to MEK will clearly follow.

Consistency of Q-MEK + T*

By a modified Cocchiarellan frame (C-frame, for short) we shall under-
stand a structure <D, S,,Y,, f; >, ., icw>» Where @ is the set of natural
numbers and such that (1) D and W are non-empty sets; (2) for all
new,S, ¥, cP(D")", where “P(D")"” stands for the set of functions
from W into the power set of D" (for n = 0, we set D° ={¢}); and (3)
there is a set D* such that D c D*and, for i € W, f, is a function from

D*U(UY,) into D* such that

neaw

(i) forall deD*, f,(d)=d,
(ii) forevery ze US,, thereis a d € D such that f,(z)=d, and

heaw

(ii1) forevery ne w, f; restricted to Y, is one to one.

Set D is the domain of discourse as well as the range of values of the bound
individual variables. Set D* is the range of values of the free individual
variables. Sets S, and Y, are, respectively, the range of values of the n-
place variables bound by the quantifier “V*” and the range of values of the
n-place variables bound by the universal quantifier “V”. For i e W, f; set-
theorically represents the correlation relative to i of a n-ary concept with an
object.

Where AU is a C-frame, we shall say that A is an assignment (of values to
variables in AU ) if A is a function with the set of variables as domain and
such that (1) for all new, all n-place predicate variables F",
A(F")eP(D")" and (2) for each individual variable x, A(x)e D*. Also
we set A(d/u)=(A-{<u, A(u)>}u{<u,d >}) . ie. A(d/u) is that ref-
erential assignment which is exactly like A except (at most) for its assign-
ing d to u. Now, where L is a language and U a C-frame, we say that / = <
h, U > is a (modified) Cocchiarellan intensional model for L (L -C model,
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for short) , if & is a function with L as domain such that for all n € @ and all
n-place predicate constants P € L, h(P)e IP(D”) and for each individual
constant c € L, h(c) e D*. '

If o is a meaningful expression of L, i.e., e ME(L), and I =< g, AL > is
a L -C model and A an assignment in %, then we define the intension of &
in / relative to A (in symbols, int; ,(0) as follows:

0.

10.

If a is a variable, then int; ,(a)=A(a). If c€ L (i.e. c is a predicate
or individual constant), then int, ,(c)= g(c).

For every ne w and o€ ME,,,(L), we recursivgly define the inten-
sion of o relative to A as that function in P(D”) such that

If ois n(a,...a,), where e ME,,, and a,...a, € ME,, then for all
ieW,

int; 4(0)i)=1iff < f,(int; 4(a)))... £,(int; 4(a,))>€int, 4(7) (i)
If oisa=>b, where a,be ME; (L), then forall ie W, int, ,(o)(i)
=1iff f; (int,',‘(a)) B fj(intl.A(b));

If o is [Ax...x,@] where pe ME,(L), then for all ieW,
int; 4(0)(i) = {< d,....d, >€ Dn:i‘ntl,A(d,.fxl...d,,!x,,)((p)(i) = 1}

If ois ~¢, where 9 € ME,(L),, then for all ie W, int, ,(o)(i)=1
iff int, ,(¢)(i)=0

If o is [e]p, where ¢ € ME,(L),, then for all i ew, int, ,(0)(i)=1
iff for all ke W, int, ,(@)(k)=1

If 0 is (¢p—>y), where g, ye ME,(L), then for all ieW,
int; o(o)(i)=1iff either int, ,(@)(i)=0 orint, ,(¥)(i)=1

If o is Vxy, where y € ME,(L), then for all ie W, int, ,(o)(i)=1
iff forall d € D, int; ., ,(¥)(i)=1

If o is VF'y, where ye ME,(L), then for all ieW,
int; ,(0)(i)=1,iff forall d e Y inty yam(7)E)=1

If o is V'F"y, where ye ME (L), then for all ieW,
inty s(0)i)=1iff forall deS, , int, 4, p(¥)(i)=1

If o is [Ap], where pe ME,(L),, then for all ieW,
int; A(0)(i) = int; 4(@)i)
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Where I, U and A are as above, and { € W, we define satisfaction, truth and
validity of a wff of L as follows: _

(i)  Asatisfies @ in/ atiiff int; ,(@)(i)=1;
(ii) @ istrue at i in [ iff every assignment in U satisfies ¢ in I at i; and
(iii) ¢ is validin 7 iff forevery ie W, @ istrue atiin I

The reader can easily verify that MEK is sound with respect to the above
semantics, i.e., if b,z @, then @ is valid in every L -C model, for any wff
¢ of L. In the case of axioms A5 and A6, the reader should proceed by
strong induction on the complexity of ¢. We should note that clause (iii) of
page 356 plays an important role in this inductive proof. Validity of A10
follows from clauses 2 and 8-9. With respect to A13, the reader should
proceed by strong induction on the complexity of ¢. Concerning A16-18,
it should be taken into account that their respective domains of
quantification do not vary across all i € W. We should point out that, due to
clause (ii) of page 356, AC’ is also valid and so MEK + AC’ is sound with
respect to the above semantics as well.

We now proceed to construct a L,, — C model in which every theorem of
O-MEK + T° is valid, showing then, at the same time, the consistency of
MEK + T°. However, we shall first state results formulated and proved in
Davis, which we shall employ in the construction of the model.

Let us consider the set of first order well formed formulas of the language
whose set of non-logical symbols are -, +,’ (which are to be interpreted, re-
spectively, as the multiplication , addition and succesor functions) and 0
(which is to be assigned the number zero as denotation). By a numerical
predicate we shall mean any of such well formed formulas containing free
variables. Clearly, numerical predicates qualify as predicates in the sense of
Davis (p.xxii). So, by Davis (p. 66), a numerical predicate P(x,...x,) is
semicomputable if and only if there is a partially computable function
whose domain is the set {<n,...n, > € @ P(n,...n, )} [Briefly, by a par-
tially computable function it is understood a partial numerical function
computable by a T-machine (cf. Davis (p.10)]. Now, by a semicomputable
set S" we shall mean a set of n-tuples of natural numbers for which there is
a semicomputable numerical predicate P(x,...x, ) such that

S'={<n...n,>€ aJ“:P(nl...nn)}
By the so called Klenee’s enumeration theorem [cf Davis (p.67, theorem

1.4)], for every semicomputable numerical predicate P(xl. ..xn) there is a
natural number z such that z is the gédel number of a T-machine and

P(xl...x,,)<—> ()T, (z, x,...x,, y)
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where the predicate T,(z, x,...x,, y) is defined as * z is the Godel number
of a Turing machine Z, y is the Godel number of a computation with respect
to Z having only the (Turing representation) of x,...x, on the tape in its
initial state “. We should note that such a predicate is primitive recursive
and, moreover, that if T, (z, p U y), then TM(z) [cf. Davis (pp. 57, 62)]
and so (since T represents TM in Q-MEK), for every term t of
Ly,.tb o_yexN,(£) = T(2). On the other hand, by definition of a semi-com-
putable set and Kleene’s enumeration theorem, for every semicomputable
set S", the set

Gy, ={ze w: forevery x,...x, € @, < x,...x, >€ §" > ()7,
(2, %,...x,, y) and z is the g&del number of a T - machineT

is not empty. Let L be the least element of G_,. By above remark, it fol-
lows that, since S(‘Ms (Lg ), 1.e. L, is the gbdel number of a T-machine, for
every termt, b o_yme N, (1) — T'Zt)

We can now proceed to construct a model for Q-MEK + T°. Let @ be the
set of natural numbers,

*= @ UU{A C 0":A is not semicomputable }
neaw®

W = {1} and B be the following structure:

<®,S,,C,, 8 >0 w Where

1) §,={<1,A>:AeP(w")and A is semicomputable},
2) C,={<1,B>BeP(w")},
3) gis the function from D*U(UC, ) into D* such that
neE®
(i) forall de D* g(d)=d,
(i) forevery new,if z=<1, B>€ S, (i.e. B is a semicomputable

subset of @"), then g(z)= Ly (i.e., the least element of Gy)
and

(ili) if z=<1, A>e(UC,)-(US,), g(z)=A.

new

Clearly, B is a C-frame. Let H = < h , B>, where h is a function with L,,
as domain such that:
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h(N)={<1, 0>},
h(Add)={<1,+>},
h(Mult)={<1, x>},

h(0) = {< 1,{0}>},

h(S)={<1,s>},
where + = (<a,b,c> ew3: b pluscequalsa}, x = {<a, b,c> ew3: a is
the product of b and c}, s = {< a, b > € ®?: a is the sucessor of b).

H clearly is a L,, -C model and so, by soundness, MEK is valid in H.
Also, as the reader can easily verify, every member of Q is valid in H.
Therefore, if F ;_yzx @, then @ is valid in H. Now, since Q-MEK is valid in
H and for every natural number » and term ¢ of L,,

if TM(n) is true, then + , ... N, (1) = T(t) and
if TM(n) is false, then b ,_,.e N, (£) >~ T(2)

then

if TM(n) is true, then (N, (f) > 7()) is valid in H, and
if TM(n) is false, then (N, (t) >~ T(¢)) is valid in H.

On the other hand, it can be shown by induction on » that

if £is a term of L,., n a natural number, A an assignment in H and
ieW,if A satisfies N,(¢) in H at i, then g(intH_A(t)) =n

The validity of 7° in H now follows from these results, the definition of the
correlation function [see clause 3ii], semantic clauses concerning quanti-
fiers and identity, and (since t,_,3!yN,(y)) the validity of 3!yN,(y) in
H.Therefore, since both Q-MEK and T° are valid in H, then T* is consis-
tent with Q-MEK.

VIL Existential presuppositions

As noted above, MEK is free of existential presuppositions concerning
predicate expressions. Although several principles can be formulated im-
posing such presuppositions, we shall only pay attention to those directly
related to the two major forms of concept-formation, viz., holistic concep-
tualism and constructive conceptualism, and consider the problem whether
these principles can be consistently added to axiomatic base of system
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MEK + AC’ , i.e. MEK together with the assumption that every semi-com-
putable concept has a correlate. We shall also consider the problem whether
those same principles can be consistently added to the system Q-MEK + T*
(in which our interpretation of computable concepts correlates as T-ma-
chines is explicitly stated).

Holistic conceptualism is the widest form permitted of concept-forma-
tion. It maintains that a stage of concept-formation can be reached at which
every predicate expression of a given language will stand for a concept.
This sort of conceptualism also allows for impredicative concept-construc-
tion, that is, formation of concepts presupposing a totality to which they
belong. In contradistinction to holistic conceptualism, concepts formed in
accord with the principles of constructive conceptualism are predicative,
that is, their formation do not presuppose totalities to which they belong.
Consequently, this form of concept construction obeys Poincare-Russell vi-
cious circle principle interpreted as a principle for the introduction of con-
cepts. We should note that holistic conceptualism is not opposed to con-
structive conceptualism, since it presupposes formation of predicative con-
cepts as basis for the process which leads to impredicative concept-forma-
tion. However, contrary to holistic conceptualism, a strict form of con-
structive conceptualism will reject impredicative concepts and, conse-
quently, for this variant of conceptualism only predicative predicate ex-
pressions could stand for concepts. [For details on holistic and constructive
conceptualism, see Cocchiarella (1986b)]

The above two major variants of conceptualism philosophically validate
principles (imposing existential presuppositions) which, as the reader will
note, amount to forms of comprehension schemata, the most general of
which is IF (F =[lx,...xn(p]2 (where F does not occur free in ¢). This
schema, known in Cocchiarella(1986a) as CP*, can be obviously justified
within the philosophical framework of holistic conceptualism. It should be
noticed that we will obtain a principle expressing a version of impredicative
conceptualism in which the identity sign does not stand for a concept, by
prescribing that ¢ in CP* should not contain the identity sign. This schema
corresponds to a form of holistic conceptualism which does not look at
identity as a concept at all and at the identity sign as a predicate expression.
Following Cocchiarella(1986a), we shall call this new principle CP**.
Now, a comprehension schema corresponding to constructive conceptual-
ism can be stated as : VG,...VG,3F(F =[Ax,...x,]), where [Ax,...x,0]
is a lambda abstract in which (1) neither F, the identity sign, nor any
predicate constant occurs (2) no predicate variable has a bound occurrence,
and (3) G,...G, are all of the predicate variables occurring (free) in ¢.
Again, following Cocchiarella(1986a), we shall refer to this schema as
CCP*.
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By the same procedure employed in section VI to show the relative con-
sistency of MEK + AC® , we can also show the relative consistency of sys-
tems MEK + AC* + CP*, MEK + AC'+ CCP* and MEK + AC’ + CP** to
system HRRC* + Ext, . On the other hand, both Q-MEK + T* + CP* and
Q-MEK + T° + CCP* can also be shown to be consistent systems: given
that we have shown in section VI that Q-MEK + T is valid in H, it is suf-
ficient to note that both CP* and CCP* are valid schemata in H as well,
since the universal quantifier applied to n-place predicate variables ranges
in H, at every i € W, over the entire power set of w”. Therefore, the philo-
sophical framework pressuposed by both MEK + AC® and Q-MEK + T° is
logically coherent with the two important ways of looking at concept-for-
mation represented by schemata CP* and CCP*.

We shall now consider the possibility that, relative to a given universe of
discourse U and language L for this universe, a conceptualization of U
would be such that every possible predicate expression of L would stand for
a computable concept. This possibility would constitute one in which the
holistic approach to concept formation applies to computable concepts and
so a situation relative to which EISF(F: lxl...xntp]) and/or
IF (F = [ﬂ.x‘...xn(p]) (where F does not occur free in ¢ and ¢ is a wff of
L) will turn out to be valid. Let us refer to these schemata as CP* and CP¢,
respectively. Now, in this situation it would not be possible to reason in ac-
cordance with the logic of MEK + AC’ without falling into a contradiction,
that is, neither CP* nor CP‘ can be consistently added to the axiomatic
base of M EK + AC’. Both schemata will respectively have
FF(F=|4x(3G)(G=x &~ G(x, ))Dh and 3I°F|F= [Ax, (3G)(G=x&
~ G |(x,))|) as their instances, from which an inconsistency can be derived
due to the Presence of AC* as well as of AC* in such a system [see above].
More precisely, it can be shown, on one hand, that both

L W{y=[3FG(G=x&-~G(x))|-
([}LxlEISG(G = x&~G(x))](») =
~[4xF6(G = x, &~ G(x))|(»)))

and

. ¥6(0=[nF6(0=xn e~ 6(x))] -
(Vy(y :[thSG(G =x &~ G(x1 ))] -
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([AinGG x &~ Gx )]y
[A636(G = x,&~ G(x ))](y)))

are theorems of MEK + AC®:

Proof of 1 :
L [A36(G=x&~G(x))|y)— ax,(xl =y&¥G(G=x&~G(x, ))])
(by Al3)
2. 3n(x =y&FG(C = x,&~ G(x))| > FG(G = y&~ G(»))
(by A6, PL, U.G., A2 and Ad)
3. FG(G=y&~G(y) - (y [ AxFG(G =x&~ G(x))| >
~ [T G(G = x &~ G(x,))](»)
(by A6, PL, UGS, A3 and Th. 2.)
4. Wy(y=[AFG(G=x&~G(x )|~ ([lxlEISG(G =x&~G(x))|y) -
~[Ax3G(G =x &~ G(x, N6))
(from 1-3 by PL and UG)
roofoffl:_ [4x36(6 = n &~ 6(x))]) -
(([A.x F¥6(G = x,& G(x))|=) -
(~[A3G(G=x&~ 6(x))|5) » FG(G=y&~ G(»)))
(by Th.8 and PL)

2. (Hx(x =y)&3FG(G = y& ~ G(y))) - Ix(x=y&3FG(G = x& ~ G(x))
(by A1, A14 Th.6 and PL)

3. Elx(x =y&3FG(G = x&~ G(x))) - [ZXIHSG(G =x, &~ G(x, ))]()’)
(by Al3)

4. F6(6=[236(G=x &~ G(x))]) >
Vy((y =[A43G(G=x &~ G(x, ))]) -

(—- [lx,EI’G(G =x&~G(x ))](y) - [AxIEISG(G =x &~ G(x, ))](y)))
(From 1-3, by PL, UG, A2, A4 and A9)
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On the other hand, when CP’ is added to the axiomatic base of MEK +
AC”’ , then the following are theorems of MEK + AC’ + CP*:

III. Vy(y = [}Lxﬁ’G(G =x&~G(x, ))] —
(-([lx,ﬂ’G(G =x&~G(x ))](y)) -
[A6,36(G=x &~ G(x))|(»)

(by I above, CP?, and PL),

Iv. ay(y =[A4F*6(G = 5, &~ G(x,))]
(by CP*, AC®, Th.8 and PL)

V. ~[AxF6(6=x&-G(x ))]([Axlafc(c =x&~G(x))]) o

[A%3G(G=x &~ G(x, ))]({/lxlEI‘G(G = x &~ G(x, ))]))
(by I, III, IV, Th. 6, Al and PL)

But then MEK + AC* + CP’ is inconsistent, since by PL
VL ~([A%3G(G=x&~G(x ))]([/lxIEI’G(G = 5 &~G(x))]) &

~[4x3'6(6 = x &~ 6(x)|[[ 22 36(G = x &~ 6(x ))]))

is also a theorem of MEK + AC* + CP’. An analogous inconsistency for
the system MEK + AC* + CP° can be obtained by both replacing use of
CP’ and AC’, in the proofs of I-VI, by CP® and AC® respectively, and by
replacing “3°F” wherever it occurs in I-VI by “3°F”. Finally, we should
point out that similar contradictions would follow from either O-MEK + T*
+ CP° or Q-MEK + T° + CP’ since in both of these system AC® can be
shown to be a theorem.

We have above taken into account a possible relationship between the
holistic approach to concept formation and computable concepts. We shall
now consider the problem whether computable concept formation can be
carried out in accordance with the principles of constructive or predicative
conceptualism. The following two schemata would represent this possibil-

ity:
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(CCP’ ): gii”G1 ) . .(VSG,I)(E!SF)(F= [)lxl...xn(p]), where [Ax,...x,@| is a
lambda abstract in which (1) neither F, the identity sign, nor any predicate
constant occurs (2) no predicate variable has a bound occurrence, and (3)
G,...G, are all of the predicate variables occurring (free) in .

(CCP”): L ‘G, )...(VCG,I )EEI"F)(F = [A.xl...xn(p]), where [/'l.xl. .x,0] is a
lambda abstract in which (1) neither F, the identity sign, nor any predicate
constant occurs (2) no predicate variable has a bound occurrence, and (3)
G,...G, are all of the predicate variables occurring (free) in @.

Now, neither (CCP“") nor (CCP“) will be valid if we take into account
both our discussion and assumptions in the previous sections of this article
together with certain results springing from computability theory. An im-
portant consequence of those sections is that, if P is a predicate expression,
P is Turing-computable (partially Turing-computable) if and only if a fully
(semi-) computable concept could be formed for which P will stand. Given
this consequence (which hereafter we shall call Cn), it is possible to find
invalid instances of both schemata. In the case of CCPS), there is the for-
mula VSFEISG(G = [Ay ~F (y)]) which implies that the negation of a
predicate expression (standing for a semi-computable concept) will also
stand for a semi-computable concept. Now, since there is a partially
Turing-computable predicate expression P whose negation is not a partially
Turing-computable predicate [cf. Davis (p. 68)], then by Cn a semi-com-
putable concept can be formed for which P will stand and no semi-com-
putable concept could be formed for which the negation of P would ever
stand. Thus, (CCP’ has a false instance and cannot be intuitively valid.

On the other hand, concerning (CCP”) we should first note that, accord-
ing to computability theory, there is a predicate expression P springing
from the addition of the existential quantifier to a certain two-place Turing-
computable predicate R(x, y) which is not Turing-computable; so, P would
be [Ax3yR(x, y)| (see Davids (pp. 62,66-68) for a description of this predi-
cate and a proof that is not Turing computable). Consequently, by Cn, since

Ax3yR(x,y)] is not Turing-computable, the formula IG(G=
Ax3yR(x, y)|) would be false. However, this latter formula follows from

CCP*), Cn and the Turing-computability of the predicate expression R,
and so CCP“) cannot be valid.

It is important to note that, due to the above remarks concerning con-
structive or predicative concept formation as applied to computable con-
cepts, neither semi-computable nor fully computable concepts can be iden-
tified with Cocchiarella’s (1986b) ramified constructive concepts. This is
because Cocchiarella’s principle characterizing ramified constructive con-
cept formation, viz.:
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(RCCPY, )V'x,..V/x,Y'F,.. V' F,3G(G =[Ay...y,0)), for every jew
- {0}, (where @ should satisfy certain conditions stated in Cocchiarella (op.
cit.)), will have , at every jew - {0}, the above mentioned formulas
among its instances. Also, since neither semi-computable nor fully com-
putable concepts can be identified with Cocchiarella’s constructive con-
cepts, the epistemic operator “it is constructibly knowable that p”, intro-
duced in Cocchiarella (op.cit.) and which we have intuitively interpreted
and formally investigated in Freund (1991), is different from the epistemic
operator we have considered in this article.

(1)
(2)
3)
4
(3
(6)
)
(®)
9
(10)
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