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HUME'S IS-OUGHT THESIS IN LOGICS WITH ALETHIC-DEONTIC
BRIDGE PRINCIPLES

Gerhard SCHURZ
1. Introduction

1.1 A brief history of the problem. No statement about OUGHT can be de-
rived from statements about IS. This is Hume’s famous is-ought thesis
(Hume 1739/40, p. 469). For centuries, it was the object of a continuing
metaethical debate, without leading to an agreement (cf. Hudson 1969 for
the contemporary state). In the last three decades several philosophers and
logicians started to examine Hume's thesis on the level of mathematical ex-
actness provided by formal logic.! That this did not happen earlier is not an
accident. For “ought” is not a simple predicate but a sentential operator
having statements as its argument which express actions or (other kinds of)
states of affairs. Therefore, an adequate reconstruction of Hume’s is-ought
thesis was not possible within standard first order logic but had to wait
until the development of the framework of generalized modal logic as the
logic of intensional sentence operators. But the framework of monomodal
propositional deontic logic — which was the framework of the first result on
Hume’s thesis proved by Kutschera (1977) - is too narrow for being philo-
sophically adequate, on two reasons. First, many pretended is-ought argu-
ments in naturalistic theories of ethics refer in their premises not only to
contingent but to necessary facts, e.g. about the nature of human life or of
social collectives. Therefore, the formal modal language has to be (at least)
bimodal, containing the alethic necessity operator [ as well as a deontic
obligation operator O. We call these logic a.d.-logics (for “alethic-deon-
tic”). Second, to have philosophically interesting applications one has to
pass from modal propositional to modal predicate logic. In the light of
these considerations, Kaliba (1982) and Galvan (1988) have extended their
investigations to a.d.-propositional logic, and Stuhlmann-Laeisz (1983) and

Ict, among others, Prior (1960}, Shorter (1961), Kurtzman (1970), Kutschera (1977),
Morscher (1974, 1984), Kaliba (1981, 1982), Humberstone (1982), Stuhlmann-Laeisz
(1983, 1986), Galvan (1988), Pidgen (1989), Schurz (1989, 1991a, 1995a, 1997).
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Schurz (1989) to a.d.-predicate logic.2

1.2. Difficulties in the explication of Hume's thesis. The attempts to give a
general logical proof of Hume’s is-ought thesis had to overcome several
obstacles. One major obstacle was to find the right logical explication of
Hume’s thesis. Prior’s prima facie most plausible explication was this: “no
normative sentence is logically inferrable from a consistent set of nonnor-
mative sentences”.3 Thereby, Prior characterized normative sentences as
those which have ‘normative content’. But what does this exactly mean?
Two cases are clear. First: every elementary normative sentence — i.e., ev-
ery sentence of the form OA (where A, B... range over sentences) — and ev-
ery purely normative sentence — i.e., every sentence built up from elemen-
tary normative sentences by logical symbols — has ‘normative content’,
provided that it is not already logically true (cf. Prior 1960, p. 200).
Second: every purely descriptive sentence — i.e., every sentence which does
not contain an obligation operator (or any other normative operator) — does
not have ‘normative content’. The problem comes with mixed sentences,
having both descriptive and normative components. For example, do impli-
cations like p —0g or L(p—0Ogq) have normative content, or not? Since
they can be interpreted as conditional obligations, one would be inclined to
answer with ‘yes’ (cf. Prior 1960, p. 202). But however that may be, Prior
faces us with an amazing paradox: wherever we draw the distinction be-
tween nonnormative and normative sentences, there must always be infer-
ences from nonnormative premises to normative conclusions, already due
to simple laws of propositional logic. For, consider the following two infer-
ences (1) p+ pvOgq and (2) pvOgq, —p F Oq. If the mixed sentence
“pv Oq” is counted as normative, then (1) is an example of an is-ought-in-
ference, and if it is counted as nonnormative, then (2) is an example of an
is-ought-inference. So Hume's thesis in Priors explication is violated in ev-
ery possible case.

Prior concluded from his paradox that Hume’s is-ought thesis is simply
false: “one simply can derive conclusions which are ‘ethical’ ... from
premises none of which have this character” (p. 206). Prior noticed that the
inferences underlying his paradox are somehow ethically irrelevant or triv-
ial, but neither Prior nor the related papers of Kurtzman (1970) and Pidgen

21In a third step one might include various further intensional operators concerning
human beliefs or interests (cf. Schurz 1997, ch. 8.2). For the purpose of this paper the
framework of alethic-deontic predicate logic is sufficient.

3 Prior spoke of ethical versus nonethical sentences (1960, p. 200).
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(1989) succeeded in finding a suitable definition of what it means for an in-
ference to be “irrelevant” or “trivial”. Like Prior they end up with the con-
clusion that a general proof of Hume’s is-ought thesis fails. Maclntyre
(1981) turns this into a point of principle. He argues that a purely logical
definition of ethical irrelevance or triviality and hence a general logical
proof of Hume’s theses can’t be given, because what is ethically trivial is
itself dependent on one’s ethical view (p. 57f). It will soon turn out that this
argument is wrong.

Meanwhile, other philosophers suggested to get rid off Prior’s paradox
by excluding mixed sentences from the range of Hume’s thesis and hence
by asserting this thesis in the following restricted form, which I call the
special Hume thesis, abbreviated SH: no purely normative sentence which
is not logically true is derivable from any consistent set of purely
descriptive premises. This strategy was pursued, among others, by Harrison
(1972, p.72), Kutschera (1977), Kaliba (1982) and Stuhlmann-Laeisz
(1983). The concentration on SH led to progress insofar for the first time it
was possible to find restricted but clear proofs of Hume’s thesis. Ultimately
the exclusion of mixed sentences from the range of Hume’s thesis was not
a truely satisfying solution, but only a way of ‘defining away’ the problem.
For certain mixed sentences, namely conditional obligations, play the most
important role in ethical and juridical theories — and they clearly do have
ethical content. So what is needed is a generalization of Hume’s thesis
which is applicable also to mixed conclusions from purely descriptive
premises.

In (1991a) I have developed such a generalization, called the general
Hume thesis, abbreviated GH. It is based on the concept of an OQught-irrel-
evant conclusion, which in turn is a special application of a more general
approach to relevant deduction developed for various further purposes
(Schurz 1991b). GH claims that every conclusion following from a set of
purely descriptive premises is completely ought-irrelevant. Thereby, a
conclusion A of a set of premises I is called completely Ought-irrelevant
if it is possible to replace every predicate in A by every other possibly com-
plex predicate {of the same arity) on exactly those occurrences which lie in
the scope of an obligation operator O, salva validitate of the deduction
'k, A (in other words, also I't; A* is valid, where A* denotes the result
of this replacement). For illustration, if O(p—0Ogq) is a completely ought-
irrelevant conclusion following from premises D, then also D F,
U(p—0A) will hold for every sentence A, in particular for A=—g.
Obviously, is-ought-inferences with ought-irrelevant conclusions are
without any ethical use. For instance, if an ethical naturalist derives from
purely descriptive premises that every person ought to be married, and this
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conclusion is ought-irrelevant, then the same set of descriptive premises
will also imply, e.g., that every person ought to be a murderer, or ought to
be unmarried, etc. Note also that the concept of ought-irrelevance
employed in GH is a purely logical concept and hence not subject to
Maclntyre’s critique according to which explications of Hume’s thesis
based on concepts of ethically “irrelevant” or “trivial” conclusions are
always relative to one’s ethical viewpoint.

1.3. Results on Hume’s thesis in logics without bridge principles. The sec-
ond obstacle for the enterprise of proving Hume’s thesis lies in the fact that
there is not only one but an infinite class of a.d.-logics, and not all but
many of them are of philosophical interest. Moreover, if GH or a version of
SH has been proved for a certain logic L, nothing can immediately be con-
cluded for the truth of GH or SH in a stronger or in a weaker logic L*. If
L* is stronger, then this is obvious. If L* is weaker, this is seen as follows.
Let D vary over sets of purely descriptive formulas and -, stand for
deduction in L. If GH holds in L, then D +; A implies D I, A* for every
D, A and ought-restricted substitution result A* of A. Nevertheless GH may
fail in the weaker L*: D . A implies D F; A (for L is stronger than L*)
which implies D , A* (because GH holds in L), but D } ;» A* may still
fail for some A* (because L* is weaker than L). Similarly, if SH holds in
L, then D +; N implies (D+,(pA—p) ork; N), for any D and purely
normative formula N. Nevertheless SH may be false in the weaker L*: D
F;» N implies D +; N which impies (DF,(p A—p) or I, N), but still either
Dt.(pA—p) ort,. N may fail. Therefore, a satisfactory logical
investigation of Hume’s thesis should prove its truth or falsity not only for
one or some logical systems, but for a class of systems as broad as
possible, with the ideal aim of giving necessary and sufficient conditions
for the truth of Hume’s thesis.

The first logical results were obtained for SH. Kutschera proved SH for a
certain monomodal deontic logic with a dyadic norm operator (1977, p. 5f,
7f), and Kaliba (1982, pp. 21-24) proved it for the a.d.-propositional logic
aS55dS5' obtained from combining the alethic S5 with the deontic S5' =
DT'S: (cf. §2 for the explanation of our ‘code’ to represent various a.d.-
logics). Stuhlmann-Laeisz proved SH for all normal a.d.-predicate logics
(with constant domain and rigid designators) which are obtained from
combining an alethic S5 -logic with an arbitrary set of purely normative ax-
iom schemata (Stuhlmann-Laeisz 1983, pp. 116-119, pp. 129-150). The
gripping question is whether SH does indeed hold for all philosophically
‘reasonable’ a.d.-logics — at least for those which do not contain is-ought
bridge principles, in short bridge principles (BPs), among their axiom
schemata (like [JA — OA or A— OA), because the logical validity of BPs is
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exactly what is philosophically doubted. Indeed this was a conjecture of
Stuhlmann-Laeisz (1983, p. 147; 1986, pp.27). In (1991a) I investigated
this question for the class of all normal a.d.- predicate logics. The conjec-
ture turned out to be wrong. The proofs of Stuhlmann-Laeisz (1983) and of
Kaliba (1982) were restricted to the S5-character of the alethic axioms. I
proved SH for a proper extension of the Stuhlmann-Laeisz class and at the
same time gave counterexamples. For instance, SH is violated in the a.d.-
logic obtained from combining any purely deontic logic with the alethic
system G, where [ coincides with arithmetical provability; here, the fol-
lowing is-ought inference is valid: OOp F, [Ogq. But these counterexam-
ples are not a drawback for the validity of Hume’s thesis. For I was able to
prove the corresponding conjecture for GH: GH holds in an a.d.-logic ex-
actly if it is axiomatizable (or representable) without BPs. Thereby, an ax-
iom schema is called a BP iff it contains at least one schematic letter which
occurs both in the scope of some obligation operator and outside the scope
of any obligation operator.# So even in those a.d.-logics where SH is vio-
lated, all examples of is-ought inferences are ought-irrelevant. I concluded
that compared with SH, GH is the more important explication of Hume’s
thesis.

1.4. Hume’s thesis in a.d.-logics with the must-ought and the ought-can-
principle. The view that a BP can never be analytically true and hence can
never be a candidate of a logical axiom is not shared by all philosophers.3
There are in particular two BPs which are treated by at least almost all
ethicians “as if” they were analytically true. These are the ought-can prin-
ciple (OC), which requires the obligatory to be possible, and the means-end
principle (ME), which says that if A is obligatory (i.e., an end), and B a
necessary condition for realizing A (i.e., a mean for A), then B is also obli-

gatory.

(0C): OA—-CA equivalent: (JA — PA
(ME): (OAAJ(A —B))—OB equivalent: (A —B)— (OA—OB)

4 Hence the class of a.d.-logics axiomatizable without BPs is greater than that of a.d.-
logics axiomatizable without mixed axiom schemata. E.g. (aTvdT'): = (DA—>A)
vO(0OB — B) is mixed but not a BP; so K® + (g7, T is axiomatizable without BPs, and
GH holds in it.
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The equivalent versions at the right directly reflect the character of these
principles as BPs — implications with a purely descriptive antecedent and a
purely normative consequent. In normal a.d.-logics, (ME) is equivalent
with the (seemingly stronger) must-ought principle, which claims the
necessary to be obligatory (cf. §3):

(MO): A —-0A (equivalent version: PA — CA).

Also (MO) is treated by most ethicians “as if” it were analytically true (cf.
Schurz 1997, ch. 11.4, and 1995a).

It is therefore an ethically important question whether Hume’s thesis is
seriously violated if OC or MO is added to the underlying logic. Galvan
(1988) has undertaken the first step in this direction. He proved the follow-
ing result for the propositional a.d.-logic L = aS5dD4+0C, which is ob-
tained from combining alethic S5 with deontic D4 and adding OC (cf. §2):
there exists no L-consistent set of purely descriptive formulas I and no L-
falsifiable elementary normative formula OB such that D +, OB (1988, p.
50, theorem 1). He shows that this result is preserved if the purely norma-
tive axiom OA—[JOA is added to L (1988, p.58, theorem 3).% These re-
sults are encouraging. But in the light of what was said in §1.3, they are not
enough general, in two respects. First, Galvan’s theorems apply only to el-
ementary obligations but not to elementary permissions: the latter ones
clearly are logically inferrable in the presence of (OC) from a suitable set
D.7 Second, Galvan’s theorem 1 is restricted to the special logical system L
= aS5dD4 and fails if one takes another standard system. An example
given by Galvan (p. 53) is the system L* = aS5dD5 [where d5:=
PA—OPA]: here Up F. Pp +,. OPp is an example of an is-ought
inference violating Galvan’s theorem 1. One might conjecture that at least
if the set D of purely descriptive premises contains no necessity operator,
then the bridge principles MO or OC will not enable the derivation of an L-
falsifiable purely normative sentence from D. Even this is not true. If the

5 Cf. Schurz (1995a and 1997, ch. 11) for an extensive investigation of the question
whether there exist analytically true BPs. On reasons explained there, I do not consider
Moore’s famous “open question” argument as entirely convincing,

6 Theorem 2 of Galvan (p. 54) contains a result about SH in the logic aS5dD45 without
BPs.

7 Galvan's point that the derivation of an elementary permission is not a ‘real’ violation
of Hume's thesis (p. 47, p. 54) does not convince me.
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alethic part contains the axiom (B), we have, for example, —AF,
—OOAF, O-0AF, P-OA (by OC) F, PO—A.

Yet it is possible to prove a weakened version of Hume’s thesis which
applies to a very broad class of a.d.-logics containing MO or OC. The key
idea is the notion of a trivial is-ought inference (IOI). Its primary applica-
tion are inferences which have in their conclusion a categorial or condi-
tional obligation or permission of first degree (i.e. without nestings of O-
operators).® Since all normatively contentful statements of direct practical
importance are categorial or conditional first degree obligations or permis-
sions, we call them briefly the practically normative statements, and speak
also of practical obligations or permissions, respectively. The general form
of a practical obligation is (O)(Vx,_,)(D, - (Vx,_,)OD,). Hereby,
(vxl,j stands for a possibly empty string of universal quantifiers, ((J)
stands for zero or one occurrence of [, and “D; —” may be missing, in
which case the obligation is categorial (and hence purley normative), else it
is conditional (and hence mixed). Similar for a practical permission (P in-
stead of 0).7 It is important that together with descriptive initial conditions
practically normative statements imply elementary first degree obligations
or permissions (OD or PD); for this reason only boxes and universal quan-
tifiers (but not diamonds or existential quantifiers) may occur in the brack-
eted formula parts. 10

For every sentence A, A0 denotes the result of omitting all obligation-
and permission-operators in A (inductively defined in the obvious way).
Note that if A* results from A by replacing P-occurrences by their defini-
tions in terms of O, then A0 is tautologically equivalent with (A*)™ and
results from it by double negation elimination: (PA)© =A and
(—O0—A)0=——(A0). If A is a practical obligation or permission, then

8 Generally speaking, an O-occurrence in A is of first degree if it does not lie in the scope
of some O, and else it is of higher degree; A is of first degree if all of its O’s are of first
degree; else A is of higher degree. For an inductive definiton of the modal degree of a
formula cf. Fine/Schurz (1996).

9 In logics with constant domain OVxA is equivalent with Vx[JA. This is not so if
domains may vary from world to world, whence for this case, the general form of a
conditonal obligation would be (O)(Vx,_,, )(D)(D1 = (Vx_,)0D,).

10 Our notion of “practically normative” is grammatically rather restrictive. In a more
extended sense one might also call a statement practically normative if it logically implies
one in our restrictive sense. We do not need this extended terminology because these cases
are handled with help of our distinction of “direct” and “indirect” triviality in §3.
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A0=(0)(Vx,_,)(D, = (Vx_,)D;). A practical obligation is called
satisfied, and a practical permission is called realized, if the statement
required or permitted by it is true, provided the descriptive initial condition
is true. Using the * A™0”-notation, we may briefly say that a practically
normative statement A is satisfied or realized iff A is true.

If D F; A and A is practically normative, then A is said to be an O(ught)-
trivial conclusion of D if also A7 is L-derivable from D. This means that
if the descriptive premises D are true, then the practical obligation or
permission which they entail must be satisfied, or realized (resp.). Such
inferences are trivial because applied ethicists are interested in norms and
rights which need not be always satisfied or realized in the real world. For
instance, if an ethicist derives “all men should help the poor”
(VxVy(Mx APy— Ony)) from a descriptive premise set D, he does not
want to claim that his premises already imply that all men in fact help the
poor (VxVy(Mx APy— ny)) In the opposite, if this would be the case,
like in the example “all men breathe”, the ethicist would not be very
interested in deriving this as a norm, in our example “all men should
breathe”. Similar, if the ethicist derives “all men are permitted to live in
freedom” (Vx(Mx — PFx)), then he does not want to claim that also “all
men do live in freedom” (Vx(Mx — Fx)) is inferrable from his premise
set, for again, this would make his inference trivial.

For inferences with practically normative conclusions we can prove a
very broad triviality result. After presenting some logical background in
§2, we will prove in §3 for all standard a.d.-logics extended by OC or MO
that every practically normative statement following from a descriptive
premise set is O-trivial. In §4 we discuss the question of triviality for
purely normative conclusions which are not practically normative, e.g.
conclusions of the form Op —0gq. In §5 we strengthen our results by in-
troducing a notion of strong triviality. We also indicate how our results can
be transferred to a.d.-logics with a deontic part which is weaker than
normal.

2. Some logical background

Concernig our metalanguage: D will always represent a descriptive sen-
tence and D a set of such, N a normative sentence and N a set of such; M a
model, M a class of such, F a frame, F a class of such and L a logic. Small
greek letters a, f3,... denote possible worlds; d,, ds, ... individuals (in
possible worlds); capital A, B, ... arbitrary formulas, capital greek T, A, ...
arbitrary formula sets; X, Y, ... denote axiom schemata; X, Y, ... sets of
them. We introduce only one set of individual variables without an extra
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set of individual constants (following, e.g., Hughes/Cresswell 1984, p.
164ff). Hence our free individual variables play the same role as individual
constants in languages with the distinction between individual variables
and individual constants, and we may use the notions “formula” and
“sentence” interchangeable.

The(bimodal) language £ of an alethic-deontic first order logic, in short
an a.d.-logic, contains in its vocabulary (1) a denumerably infinite set V' of
individual variables x, y, z (possibly indexed) (2) for each n = 0, a denu-
merably infinite set R" of n-place predicates F, G, H..., (possibly
indexed; propositional variables p, q... are the 0-ary predicates), and (3)
the following logical symbols: — (negation), v (disjunction), V (universal
quantifier), [1 (alethic necessity operator), O (deontic obligation opera-
tor).!! The symbols — (material implication), A (conjunction), <
(equivalence), T (Verum), L (Falsum), 3 (existential quantifier), <
(alethic possibility operator) and P (deontic permission operator) are de-
fined as usual in classical (modal) logics. We identify the language £ with
the set of its (well-formed) formulas, according to the usual formation
rules. £¢ stands for the purely alethic and $4 for the purely deontic lan-
guage. The notions of free and bound variables, of alphabetic variants of a
formula (obtained via renaming of bound variables) and of substitution for
variables are explained as usual; A[yl,,, / xl,n] denotes the result of the
simultaneous substitution of y; for x; in A (1<i<n) under the usual
conditions prohibiting confusion of variables (cf. Bell/Machover 1977, pp.
54 - 67).

An alethic-deontic frame, in short an a.d.-frame, is a triple F = <W, R, S>
where W% (a nonempty set of possible ‘worlds’), Rc WXW (the
alethic accessibility relation), and S ¢ WXW (the deontic ideality relation).
The notions of a (purely) alethic frame (a.-frame ) <W, R> and a (purely)
deontic frame (d.-frame ) <W, S> are obtained by dropping R and S, respec-
tively. A model for the language &, in short an a.d.-model, is a quintuple M
=<W,R, S, Dm, v>, where F = <W, R, 5> is an a.d.-frame — we say that M
is based on the frame F —, Dm # & (a nonempty domain of individuals),
and v is a value assignment (or interpretation function) which satisfies the
following conditions: (1) for all x & %:v(x)e Dm (constant domain and
rigid designators), (2) for all Fe®Rn:v(F)c(Dm»xW) (hence for all
PeP v(p)cW.

11 Every individual variable occurring bound also counts as a logical symbol, whereas
free individual variables and predicates count as nonlogical symbols,
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Given a a.d.-model M and an individual d, then M[x:d] denotes the model
which is like M except it assigns d to x. The notion of “Formula A€ ¥ is
true at world a in model M = <W, R, S, Dm, v>" (where o € W'), in short:
“(M, @)= A”, is inductively defined as usual: (i) (M, @)= Fx,...x, iff
<v(xy), ..., v(x,), @>ev(F); (ii) the cases A=—B or A= Bv C are obvi-
ous; (iii) (M, a)=0B iff for all BeW with Raf:(M,B)E A; (iv)
(M, &)= OB iff for all B e W with SaeB: (M, B)= A; (v) (M, &)= VxB iff
for all d € Dm,(M([x:d], &)= A. The notions of a pure a.-model and a pure
d.-model are obtained by dropping S or R and the relevant clauses, respec-
tively. I' £ is said to be true at @ in M iff all AeT are true at o in M.
A€ is valid in a model M iff A is true at all worlds & in M, and Ae & is
valid on a frame F iff A is valid in all models based on F. ' c ¥ is
(simultaneously) satisfiable in M iff T is true at some world in M; T is
satisfiable on F iff I" is satisfiable in some model M based on F.

A normal alethic-deontic predicate logic (for constant domains and rigid
designators), in short an a.d.-logic, is every subset of £-formulas which
contains all instances of the following axiom schemata

(Taut): All tautological schemata

(aK): [(A—-B)—(OA—0OB) (dK): O(A—B)—(0A—0B)
(V1): VA-A[yx],provided yis freeforxinA  (forallx, yeV)
(V2): Vx(A—B)—=(VxA— VxB) (for all xe¥V)
(V3): A— VxA, provided x is not free in A. (forall xe¥")
(aBF): VxUA—>OVxA (dBF): VxOA—OVxA (forall xe¥)

and which is closed under the following rules:

(MPYA,A—>B/B (VR)A/ VxA (forall xe¥V)
(aR)A/0OA (dR) A/ OA
(Subst) A/ oA - the rule of substitution for predicates

The minimal a.d.-logic, K*, is defined as the closure of all instances of
the abovementioned axioms schemata under the four rules (MP), (VR),
(aR) and (dR)!2 The minimal alethic logic K* is obtained by restricting to
formulas of the purely alethic language £< and by dropping all axiom

12 As is well-known, a shorter axiomatization of the nonmodal quantifier part which is
equivalent to ( V1-3) + (VR) is given by (V1) + (VR*):=“A > B/A— V1B provided x is
not free in A” (Hughes/Cresswell 1984, p.166). The axiomatization used by us (cf. e.g. also
Fine 1978) simplifies some of our proofs.
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schemata and rules containing O; simiarly for the minimal normal deontic
logic K?. (Taut), (aK), (dK), (MP), (aR), (dR) represent the propositional
part of K*, and (V 1-3), (aBF), (dBF), (V R) the quantifier part of K**
(“BF” stands for “Barcan formula”). Some remarks on the rule of substitu-
tion for predicates are appropriate. This rule is just the generalization of the
analogous well-known substitution rule for propositional variables. Note
that the additional requirement of closure under substitution is unnecessary
when a particular a.d.-logic L (e.g. K*) is defined as the closure of cer-
tain axiom schemata (including the minimal ones) under the four rules
(MP), (VR), (aR) and (dR), because the fact that axioms as well as rules
are formulated as schemata will guarantee that L is closed under substitu-
tion. But the general definition of an a.d.-logic as any (normal) extension of
K* makes no reference to a particular axiomatization with help of axiom
schemata; so closure under substitution is not automatically guaranteed and
must be required separately.

The notion of uniform substitution for predicates has been explicated by
Kleene for nonmodal predicate logic (cf. 1971, pp.155-162). Here a brief
informal description is sufficient (cf. Schurz 1991a, 1995b for details).
Consider an n-ary predicate F attached with certain pairwise distinct vari-
ables x,,..., x,, which figure as name form variables carrying the substitu-
tion for Fx;...x,. Then uniform substitution of a formula B for Fx,...x,
means replacing each occurrence of Fz...z, by the corresponding B-sub-
stitution-instance B[z,_n / x,_,,], provided certain restrictions are satisfied
which prohibit confusion of variables. Nonmodal predicate logic and K**
is closed under this substitution rule (cf. Kleene 1971, Schurz 1991a
Appendix). It is also easily seen that for every a.d.-logic L defined in the
above way there exists a set Ou of additional axiom schemata such that L
is representable by OL, i.e. it may be equivalently defined as the closure of
all instances of the minimal K*®-axiom schemata and the schemata in O
under the rules (MP), (V R), (aR) and (dR). For, let A be the set of L’s the-
orems which are not contained in K* and let A* be the subset of all A-
formulas which are maximally general w.r.t. substitution for predicate let-
ters. If we reformulate the formulas in A* as schemata (replacing atomic
formulas by schematic letters) we will obtain a set OL of additional axiom
schemata with help of which L can be represented (for more details cf.
Schurz 1997, ch. 2.4.4). Not every ©L obtained in this way will be decid-
able. If O is decidable, then L is said to be axiomatizable by ©L (which
means that L is recursively enumerable).

Standard a.d.-logics are axiomatized by a finite additional set OL of
purely propositional axiom schemata (see below), which impose certain
structure on the frames of the logic. That an axiom schema (X) corresponds
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to a frame condition (Cy) means that (X) is valid on a frame <W, R> if and
only if (Cy) holds for <W, R>. Recall some well-known axiom schemata of
propositional monomodal logic-and their corresponding semantic condi-
tions on frames. “aX” (“dX”’) [“a+dX”’] means that X is a standard axiom
for alethic logics (for deontic logics) [for both kinds of logics].

(a+dD): —0OL (or: 04 -»<A)
R serial (Va3pRaf; likewise for O and S)
(al): A —A
R reflexive: VaRao
(dT"): 0O(0A—A)
S secondary reflexive (Veo((3BSpa) — Sac))
(aB): COA —-A
R symmetric
(dB'"): O(POA—>A)
S secondary symmetric (Va, B((318ye) - (Saf - SBa)))
(a+dd): [OA —-0O0A
R transitive (likewise for O and 5)
(a+d5): CA-0OCA
R euclidean (Va, 8, y(Raf A Ray — RBy)); likewise for O and S)

Usually, aT is is viewed as the smallest standard alethic logic, and dD as
the smallest standard deontic logic, at least within the realm of normal log-
ics. There exists a variety of other well-investigated additional proposi-
tional axiom schemata.!3 However, we also shall admit the case where ©L
contains additional predicate logical axiom schemata imposing additional
structure on the models. One example is the axiom [J3xA — 3x[JA, which
semantically corresponds to classes of models satisfying Fine’s notion of
local isomorphism (1978, p. 136).

Since every a.d.-logic is representable by some ©L, we can classifiy the
class of a.d.-logics in terms of what is contained in the set L. Close to the
Lemmon-code (cf. Bull/Segerberg 1984, p. 20) we write aXdYadZ for an
a.d.-logic which is representable by a set X of additional alethic axiom
schemata plus a set Y of additional deontic axiom schemata, and a set Z of
additional bimodal axiom schemata (thus @L=XUY UZ. Logics of the
type aXdY (containing only monomodal schemata) are called a.d.-combi-
nations, because they combine the two monomodal logics aX and dY with-

13 Consult the standard literature; e.g. Segerberg (1971), Hughes/Cresswell (1984),
Chellas (1980), Rautenberg (1979); for deontic logic cf. Aqvist (1984).
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out any bimodal axiom schemata. It is easy to see that the frames of a.d.-
combinations are just combinations of the respective pure frames; i.e. <W,
R, 5> is a frame for aXdY iff <W, R> is one for aX and <W, S> is one for
dY (cf. Fine/Schurz 1996, Prop. 1). Instead of the set X one may also list
the particular axiom schemata contained in X in non-bold letters. Thus,
aT4dDT'is the a.d.-combination containing (aT), (a4), (dD) and (dT") as
additional axiom schemata; aS5dD contains the alethic S5-axiom schemata
(TS = TB45) and the deontic axiom schema (dD) in its additional set. In
particular, a@dJ: = K* with empty ©L. L+Z denotes the extension of
the logic L by the ‘additional axioms’ in Z.

Every AeL has an L-proof, “I; A”denotes provability in L. A is de-
ducible (or derivable) in L from T, in short '+, A, iff +, (AT, — A for
the conjunction /AT, of some finite subset I';  T'.14 In particular, @ F,
Aiff -, T —= Aiff b, A. Note that V -rule, a-rule and d-rule are not valid as
deduction rules — they may only be applied to logical theorems, but must
not be applied to nonlogical premises (e.g. ; A=+, A, but not A},
(1A). Only MP is valid as a deduction rule, since only MP preserves truth
at a world in a model (cf. Schurz 1994). I'c & is L -consistent if not
Crpa—p.

M is a model for a given a.d.-logic L iff all L-theorems are valid in M;
similarly F is a frame for L iff all L-theorems are valid on F. M (L) and
F(L) denote the classes of all models or frames for L, respectively. An a.d.-
logic L is said to be weakly [strongly] model-complete iff every L-consis-
tent Ac £ [AC &, resp.] is satisfiable in some model in M(L). L is weakly
[strongly] frame-complete iff every L-consistent Ae£ [Ac &, resp.] is
satisfiable on some frame in F(L). (Strong completeness entails weak com-
pleteness, but not vice versa.) The standard technique to prove model-
completeness of a given logic L is to construct the so-called canonical
model of L, built up from maximally L-consistent and V-complete
formula sets in £. With this technique it is provable that every a.d.-logic is
strongly model-complete. The proof is analogous to that for purely alethic
logics (cf. Hughes/ Cresswell 1984, ch. 1, 9); for an exposition see Schurz
(1991a—Appendix, 1997-Appendix). This method of proof does not
automatically yield frame-completeness of L, but only if it can be shown in
addition that the frame of the canonical model is a frame for L. This is

14 This definition of F, is, e.g., choosen by Chellas (1980, p. 47), Aqvist (1984, p.
666f), Bull/Segerberg (1984, p. 19). A well-known alternative consists in using
VOO(AXx;) as axioms and MP as the only rule (cf. Leblanc 1976, pp. 224ff; Stuhlmann-
Laeisz 1983, p. 63).
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trivially true for K* (for any a.d.-frame is a frame for K*), so K™ is
strongly frame-complete. Whether it holds for stronger a.d.-logics depends
on their additional axioms in O. If the frame of the canonical model is a
frame for L, the logic L (and its additional axiom set) is said to be
canonical (cf. Hughes/Cresswell 1984, p. 56). Canonicity implies strong
frame-completeness (but not vice versa). All of the above mentioned axiom
schema and hence the standard logics axiomatized by subsets of them are
canonical. A well-known axiom schema which is weakly frame-complete
but not canonical is (aG): [(CJA -A)—[A; aG is the modal logic of
provability in arithmetics. An example of a frame-incomplete axiom
schema is (VB): OOA v O((A—A) > A).

An a.d.-logic is called propositionally representable iff it has an addi-
tional set O consisting solely of purely propositional axiom schemata.
Makinson (1971) has proved that every consistent propositionally repre-
sentable modal logic is valid on a singleton frame — on the reflexive single-
ton frame F*:=<{a},{< &, @>}> if it is consistent with (D), and on the
irreflexive singleton frame F-:=<{a}, @> if it contains (Ver):=0 L (o
the modal operator). This result does not generalize to all a.d.-logics with
additional predicate logical axiom schemata; e.g. take the mentioned ex-
ample of K* +03xA — 3x1A, which is invalid on every frame. However,
if a modal predicate logic is valid on at least some frame, it will be cer-
tainly also valid on either F* or on F-, for F* is a p-morphic image of
any serial frame and F- is a generated subframe of any non-serial frame
(cf. Hughes/Cresswell 1984, p. 70ff; Schurz 1997, ch. 2.6). These facts will
be of importance for theorem 3.

Canonicity and frame-completeness is well-investigated for monomodal
propositional logics. Let us denote a propositional modal logic by adding
the suffix“—0". Thus aT-0 is propositonal T and its predicate logical
counterpart is a7. Two important questions are: (1) Does frame-complete-
ness and canonicity always transfer from an a.0-logic aX—0 to its predicate
logical counterpart aX? (2) Does frame-completeness and canonicity
always transfer from an a.-logic aX and a d.-logic dY to its combination
aXdY? Question (1) is stated in Hughes/Cresswell (1984, p. 183f) as an
open problem. Today, the question is answered, and the answer is no. An
interesting counterexample is given by the axiom schema (M):
0GA - OOA (due to MacKinsey). Together with aS4-0 this axiom yields
the well-known logic aS4.1-0 = aT4M-0 which is canonical. Its predicate
logical counterpart a$4.1, however, can be shown to be frame-incomplete;
only if one adds the additional predicate logical axiom schema
O03xA - < 3x0A, the logic becomes canonical (cf. Schurz 1997, Prop.
4). A restricted completess-transfer is proved in Schurz (1997, Prop. 5)
saying that if aX—0 is canonical and its frames are closed under subframes,
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then aX is canonical, too. Concerning the second question, a very general
transfer result for propositional bimodal logics has been established in
Fine/Schurz (1996). Schurz (1997, Prop. 6) proves canonicity-transfer for
bimodal predicate logics.

3. MO, OC and practically trivial is-ought-inferences

First let us record some basic facts about the BPs MO and OC.

(1) MO is logically equivalent with the means-end principle (ME). (OA
~J(A —»B))— OB in all normal logics. [Proof: MO=ME: O(A—B) fol-
lows from (J(A — B) by MO, and OB from O(A — B) and OA by the axiom
(dK) and MP. ME=MO: Assume UA. OA is K®-equivalent with
O(T —A),and OT is a K®-theorem, so OA follows by ME.] If the deontic
part of the a.d.-logic is only regular (i.e. weaker than normal) and hence
does not contain OT (cf. §5, last paragraph), then MO implies, but is not
implied by ME.

(2) A weak analogue of OC, where “[J” is replaced by “logical necessity”,
is already contained in the axiom (dD), which implies OA - —(A & 1),
and a corresponding weak analogue of MO is already contained in the d-
rule: b, A = F, OA. Of course, OC and MO are much stronger since the
interpretation of [ is not restricted to logical necessity.

(3) OC implies the axioms (aD) and (dD) in K* [because —< L
— —0 L is the contraposition of an OC-instance, and =< L € K*; simi-
lar OT -»<T is an OC-instance, and OT € K*].

(4) MO and (dD) together imply OC in K*[[(J-A - 0—A by (MO),
O—-A — —0A by (dD), which gives [J—-4 — —0A, which is equivalent
with OA — OA].

(5) The semantic frame conditions which correspond to OC and MO and
canonically characterize these BPs are:

(Coc): VoapB: Rop A Sap (Cyo): Va, B:Saff — Rap

The proof of correspondence is straightforward. Canonicity is proved in the
standard way (cf. Schurz 1997, ch. 6.2); the proof establishes that if L is
canonical and B ¢ {MO,0C}, then L+B is canonically characterized by
F(L)NF(B) [where F(B) = the class of a.d.-frames satisfying B].

Theorem 1.1 tells us that in all a.d.-combinations aXdY enriched with
OC and MO the rule “A/A-9” is admissible, provided (aT)eX and
dY+(dD) is valid on at least one frame (this is true, e.g., if dY+(dD) is
consistent and propositionally representable; recall §2). So, this result ap-
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plies to all standard a.d.-combinations in a very weak sense of “standard”,
enriched with OC or MO. It immediately entails, via lemma 1, that all these
logics are practically I(s)-O(ought)-trivial in the sense that every practi-
cally normative conclusion derivable in them from purely descriptive
premises is O-trivial (def. 1).

Definition 1: An a.d.-logic L is practically I(s)-O(ught)-trivial if for every
purely descriptive DC &£ and practically normative Ae £ with D +; A, A
is an O(ught)-trivial conclusion of D, i.e. also D }-; A-© holds.

Lemma 1: If the rule “A/A-°" is admissible in an a.d.-logic, then it is prac-
tically /-O-trivial.

Proof: Assume D +; A, then +;D—A, where D:=/\A for some finite
Ac D.Hence +;(D— A)© (by assumption), and (D — A)°= D— A9,
because D is purely descriptive. So DI, A-¢, whence L is practically I-O-
trivial. Q.E.D.

Theorem 1: For every a.d.-combination aXdY where X contains (aT) and
dY+(dD) is valid on at least one frame, and for every (possibly empty) set
of BPs B< {MO, OC}:

(1.1) The rule “A/ A-©” is admissible in aXdY+B.

(1.2) aXdY+B is practically I-O-trivial.

Proof: (1.1): By the arguments of §2, dY+(dD) and hence dY is valid on
the reflexive singleton frame. So, dY is consistent with (dTriv): OA ©A.
Note that in dY+(dTriv), every sentence A is logically equivalent with A-©
[by replacement of logical equivalents]. We abbreviate aXdY+B as L. -
Let <A, ..., A;:=A> be an L-proof of A, and consider the sequence
<A9,..,A %=A0> We show that it is an L-proof (of A-9), by in-
duction on its length:

For the axioms: (i) Assume A; is an instance of a nonmodal or a
monomodal alethic axiom schema X (either a basic one or one in X). So
A; = 0X where 0 is a substitution function sending schematic letters to £-
formulas. By defining ¢*L =(6L)© for each schematic letter L in X, it is
easy to see that A, 0= ¢”X, i.e. that A, © is itself an instance of X, because
X contains no O-operator (the inductive proof is trivial and hence omitted).
Hence A;C is itself an L-theorem. - (ii) If A; is an instance of a
monomodal deontic axiom schema Y (either a basic one or one in Y), then
by similar considerations as in (i.), A, will be instance of Y-°. Now,
Y~0 is a formula schema of nonmodal (1st order) predicate logic. Since in
dY+(dTriv), Y0 is logically equivalent with ¥, ¥Y-° must be a theorem of
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dY+(dTriv), whence (all instances of) Y- must be valid on the reflexive
singleton frame. So Y-2 must be a theorem of nonmodal predicate logic
(otherwise it could be falsified -on this frame, by imposing a falsifying
model <Dm, v,> on it). If follows that A, is an L-theorem. - (iii)
Assume A; = [0 B—OB is an instance of (M O). Then A 0=
0( B-9) -(B-9), which is an L-axiom because (aT)eX. Similarly, as-
sume A = OB— OB is an instance of (OC). Then A4, 0= ( B-2) »<{( B-9),
which is again an L-axiom because (aT)eX.

For the rules: (iv) Assume A;= [JA; follows from A; by the rule (aR).
Then A;"0=[]( A;©) follows from A, © by (aR), and A;© is L-provable
by ind. hyp. — (VS If Ai=0A; and follows from A; by the rule (dR), then

; 0= A;70 and A, is L-provable by ind. hyp. - (vi) Assume A;= VuA;
follows f’rom A; by (VR). Then A, 0= Vu( A;79) follows from A; 0 by
(VR), and A, is L-provable by ind. hyp. - (vii) If 4; follows from A;
and A; = Aby (MP), then A = follows from A, © and (Aj -
A;)0=(4;0— 4,0) by (MP), where both A, and (A; - A,)© are L-
provable by ind. hyp.

(1.2): Follows from theorem 1.1 and lemma 1. Q.E.D.

A necessary condition for an a.d.-combination aXdY to be “standard” is
(besides DeY and TeX) that the deontic part is unmixed, i.e. the axiom
schemata are purely normative. Theorem 1 applies not only to all standard
a.d.-combinations, but even to those which contain in dY some monomodal
deontic bridge principles, like A—OA or A > PA, etc. Also the addition of
these BPs to standard a.d.-combinations (plus any of MO or OC) will keep
them practically I-O-trivial. The reason for this is clear from step (ii) in the
proof of theorem 1: a monomodal deontic BP Y can be consistent (in
dY+D) only if Y-© is a nonmodal first order theorem.

Theorem 1 can be generalized in two respects. Corollary 1.1 tells us that
if we replace “(aT)eX” by “(aT)eaXdY+B” and require B to be
nonempty, we obtain not only a sufficient but also a necessary condition
for the admissibility of the “ A/ A-2"-rule. (Note: it might be that although
(aeX, (aT) is derivable from other L-axioms, e.g. when Y contains the
BP OA—A and B contains MO.) In corollary 1.2 we generalize theorem 1
and corollary 1.1 to arbitrary sets of BPs B by replacing “(aT)caXdY +B”
by “B-2 ¢ aXdY+B” (where B-0:= {X‘0|X € B} ). A second information
contained in corollary 1.2 (a) (and in the second half of corollary 1.1) con-
cerns the admissibility of the “A/A-0"-rule: though generally stronger
than practical I-O-triviality, it is equivalent with the latter in all logics
aXdY +B where dY+(dD) is valid on at least one frame and the BPs in B
are practically normative schemata.
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Corollary 1: For every L:= aXdY, where dY+(dD) is valid on at least one
frame:

(1.1) For nonempty Bc {MO, OC}: (aT)eL+B & the rule “A/A-9" is
L+B-admissible < L+B is practically I-O-trivial.

(1.2) (a) For every set of practically normative BPs B: B-0 ¢ L+B < the
rule “A/A-9” is L+B-admissible < L+B is practically /-O-trivial. — (b)
For every set of BPs B: B-2 ¢ L+B ¢ the rule “A/A-°2” is L+B-admis-
sible = L+B is practically /-O-trivial.

Proof: (1.1): We prove a cycle of implications. The two =-steps are
proved as in the proof of theorem 1.142. For the «<-step, assume L+B is
practically /-O-trivial. Then for every L+B-theorem A which is practically
normative, A-9 will be an L +B-theorem (for note that A is L-inferrable
from the empty premise set). So either (Op —»O0p)-2 or (Op—<p)-2 or
both will be in L, and both are tautologically equivalent with Cp —p;
moreover every substitution instance of (Jp—p will be in L (because L is
closed under substitution), whence (aT)eL . (1.2)(a): Again a cycle of im-
plications is proved. For the first =-step we argue as in the proof of theo-
rem 1.1; by our assumption step (iii) of this proof goes through for all
schemata in B. The second = -step follows from lemma 1. Now assume
L+B is practically I-O-trivial and A = 0Z is an instance of a BP Z in B.
Since Z is practically normative, Z-¢ and all substitution instances thereof
will be in L+B Because A-0 is a substitution instance of Z-2 (for the
modified substitution function o*L={(oL)?), also A-° will be in L +B.
(1.2)(b): The =-direction of the equivalence follows as in (1.2)(a), the «-
direction of it is obvious; the implication follows from lemma 1. Q.E.D.

A BP is called practically I-O-(non)trivial if its addition to a standard a.d.-
combination yields a practically /-O-(non)trivial logic. Corollary 1.2 im-
plies the following necessary condition for practically nontrivial BPs: For
every a.d.-combination L = aXdY where dY+(dD) is valid on at least one
frame (and [ may be interpreted as any descriptive sentence operator), the
addition of a bridge principle BP to L will enable pratically nontrivial is-
ought inferences only if (1.) BP is bimodal, i.e. it states an (J-O-interaction
and (2.) L does not contain BP-2, BPs which are practically nontrivial are,
e.g., those which connect subjective propositional attitudes like belief or
desire with obligations, because the logics of such attitudes do not contain
(D).

Besides monomodal (alethic or deontic) axiom schemata an a.d.-logic
may contain certain bimodal but unmixed and hence purely normative ax-
iom schemata like (N1) := OA—0OA, (N2) := OOA—OUOA or (N3) :=
OUA —[OA. Does theorem 1 hold if one of them is added to the logic en-
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riched with {MO, OC}? Not in general. For example, in L =
aTdD+OC+N1 we have the inference COp +, OPp [via OC] +, Pp [via
N1], although p is not derivable from ¢Op in L. It would only be so if L
would contain the axiom aB. At least one can show that theorem 1 is
preserved under the addition of (N2) or (N3).

Corollary 2: Assume L := aXdY +B is as in theorem 1, and Nc {N2,N3}.
Then the rule “A/A-9” is L+N-admissible, whence L+N is practically I-
O-trivial.

Proof: There is just one additional step to the proof of theorem 1.1 (step
iii): assume A;= JOB—OUB, or A;= OC1B—[JOB, is an instance of N2
or N3, resp. Then A-¢ = (OB —[IB in both cases, which is an L-theorem.
Q.E.D.

4. Direct and indirect O-(non)triviality

The logical core of theorem 1 is the admissibility of the rule “A/A-°2”. So
far we have evaluated the consequences of this rule only with respect to
practically normative conclusions. What does it imply for arbitrary conclu-
sions? To answer this question we must extend the notion of triviality to
arbitrary conclusions. It would be tempting just to extend our previous
definition to arbitrary conclusions, calling any conclusion following from
D trivial if also D +; A-9 holds. This extended definition would imme-
diately imply that the logics of theorem 1 are not only practically but
generally I-O-trivial, i.e. trivial w.r.t. all conclusions following from
descriptive premises. But such an extended definition would be inadequate.
Let us explain why.

Ethicists usually emphasize that the means-end-principle has not the
power to admit the derivation of norms from purely descriptive premises
alone; only if in addition certain fundamental norms are given, (ME) allows
the derivation of various derived norms. For example, from the fundamen-
tal norm Op and the neccessary implication (J(p—¢q) we may infer the de-
rived norm Ogq [via the steps ((p—q) +, O(p—q) F, Op—0gq].In a
similar way we may infer derived permissions from fundamental obli-
gations with help of OC: O(p—q), Op +, Pp [via the steps O(p—q) +,
P(p—q) and P(p—q), Op -, Pq]. However, O(p —q), Op F, Oq implies
U(p—q) F, Op—0Ogq by deduction theorem, which is an inference with a
purely descriptive premise and a purely normative conclusion. It would be
counterintuitive to call the conclusion Op —Ogq trivial, in spite of the fact
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that also (p—q) F, p—q holds. Though Op— Ogq is not directly relevant
for the derivation of practical norms, it is indirectly relevant, since given
we agree upon Op, we obtain a further practical norm, namely Og, which is
nontrivial because U(p—q), Op ¥, q. Intuitively we would consider the
conclusion Op—0Ogq as trivial only if also Op—¢q would follow from its
descriptive premise set, as in the example Clg -, Op—0Ogq.

This tells us is two important things. First, that the extension of our defi-
nition of triviality to arbitrary conclusions is inadequate, because there
exist purely normative statements N following from descriptive premises D
which are nontrivial in spite of the fact that D +, N-© holds. Second, that
the above intuitive claim — that ME only allows to infer derived norms from
fundamental norms plus descriptive premises, but not to infer fundamental
norms from descriptive premises alone — is not exactly true, on two
reasons. On the one hand, there exist nontrivial and purely normative
conclusions following from descriptive premises, as in the example
O(p—q) F, Op—0gq, but they are not practically normative. On the other
hand, there exist practically normative conclusions following from purely
descriptive premises with help of ME, as in the example O(p—¢q), Op F,
Ogq (following from the previous example by the additional MO-step Cp F,
Op), but they are trivial. Hence the exact reformulation of the above
intuitive claim is nothing but our theorem 1.2: ME (=MO) and OC do not
allow the derivation of nontrivial and practically normative conclusions
from descriptive premises alone, but only from descriptive premises plus
certain fundamental practical norms.

The attempt to develope a definition of triviality in terms of the omission
of O-operators for conclusions of arbitrary complexity leads into various
difficulties. Often clear intuitions are missing. On these reasons I suggest to
evaluate the triviality of arbitrary conclusions in an indirect but simpler
way, namely with respect to the practically normative statements implied
by them together with other statements.

Definition 2: Assume I' -, A. Then:

(2.1) A is a O-nontrivial conclusion of T iff there exists a set A containing
descriptive or practically normative statements!> and a practically norma-
tive statement B such that {A} UAF, B,A¥, B, and B is a O-nontrivial
conclusion of 'UA (i.e. TUA¥, B-2). Else A is a (directly as well as
indirectly) O-trivial conclusion of T".

15 We do not allow any statements in A, for then every conclusion would come out as
indirectly nontrivial.
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(2.2) If a A exists satisfying (2.1) and containing only descriptive state-
ments, then A is a directly O-nontrivial conclusion of T" (else A is directly
O-trivial). :

(2.3) If some A satisfying (2.1) but no A satisfying (2.2) exists, then A is
called an indirectly O-nontrivial conclusion of T,

In other words, an O-nontrivial conclusion of I" serves as a relevant inter-
mediate step in the derivation of a nontrivial practically normative state-
ment from I' plus additional premises A. It is directly O-nontrivial if the
additonal premise set is descriptive; else indirectly O-nontrivial. Only di-
rectly nontrivial conclusions can stop the ethical justification regress in the
search for practically normative statements. Indirectly nontrivial conclu-
sions cannot do this, but they become indirectly relevant in the derivation
of new and nontrivial practically normative statements from others which
are given. For example, Op—Ogq is a indirectly nontrivial conclusion from
U(p—q), because Op—0gq, Op +; Og and Oq follows nontrivially from
{0(p —4q), Op}. But it is a directly trivial conclusion of J(p —q): there
exists an additional descriptive premise, namely Clp, such that Op—Ogq,
Op k. Og, but Ogq is a trivial conclusion of {J(p—q), Op}, since

Corollary 3.1 tells us that for the special case where A is practically nor-
mative, the definition of direct triviality coincides with our previous defini-
tion 1 for logics in which the “A/A -9 rule is admissible. Corollary 3.2
states what is to be expected, namely that every conclusion A following
from a descriptive premise set D in the logics of theorem 1 will be directly
nontrivial. However, it might be indirectly O-nontrivial, as is added in
Corollary 3.3.

Corollary 3: Assume L =aXdY+B is an a.d.-logic satisfying the
conditions of theorem 1 or corollary 1 or 2. Then, for any I" and A with T
F, A:

(3.1) If A is practically normative, then T+, A-© iff A is a directly O-
trivial conclusion of T'.

(3.2) If T is descriptive, then A is a directly O-trivial conclusion of T.
(3.3) For some A and C, C is an indirectly O-nontrivial conclusion of A.

Proof: (3.1): «=:If A is directly O-trivial, then for for every D* and practi-
cally normative B such that {A} UD*}+, B,T UD*}, B-9; in particular for
D*=0 and B:= A, so ' +, A-0. =: Assume {A}UD*}, B for
practically normative B. Hence D*}, (A—B) and thus D*}-;, A-0 »B-0
because “A/A-9”-rule is L-admissible by theorem 1 or corollary 1 or 2.
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Since I' +, A-© by the assumption that A is practically normative,
I' uD*}, B-2 follows, whence A is a directly O-trivial conclusion of T.
(3.2): Assume again {A}uUD*}; B for practically normative B. Hence
' UD*}+, B, where I UD * is descriptive by assumption. So by theorem |
or corollary 1 or 2, 'UD*F, B2, Thus A is a directly O -trivial
conclusion of T'. (3.3): O(p—¢q) -, Op—0q is an example, for Op —Ogq,
Op +, Ogbut O(p—q), Op ¥, q. QE.D.

Note also that there are various cases of conclusions following from nonde-
scriptive premises which are directly nontrivial but not practically norma-
tive, e.g. conjunctions of practical obligations O(p—0g) A O(r—0s) or
iterated necessary implications [I(p —UJ(g— Or)), provided the premises
do not entail their O-omitted versions. In this way our restricted notion of a
nontrivial practically normative conclusion is complemented by the much
more liberal notion of a directly nontrivial conclusion.

5. Strongly practically trivial Is-Ought-Inferences

A practical obligation D, — OD, following from D is called strongly O-
trivial if not only D, — D, but even D, -1 D, is L-inferrable from D;
likewise for the boxified and universally quantified cases. As for practical
triviality we may establish a result for strong practical triviality by proving
that the rule “A/A[[J/O]" is admissible, where A[[J/O] denotes the result of
replacing every occurrence of O by U in A. This notion is only adequate if
applied to an obligation OD (or more generally, to a positive O-occur-
rence), but not if applied to a permission PD (or more generally, to a nega-
tive O-occurrence).16 For practical permissions, strong I-O-triviality im-
plies that whenever D implies that D is permitted, then D implies also that
D is possible — but this is not a reason for calling D I, PD trivial (in some
sense). Therefore, we will speak more appropriately of strong triviality
w.r.t. obligations.

Definition 3: An a.d.-logic L is strongly practically I-O-trivial w.r.t. obli-
gations iff for every D c £ and practical obligation A with D +; A, D ,
A[CJ/O] holds.

16 According to a well-known definition, an occurrence of a symbol ¥ in a formula A is
called positive [or negative] iff it lies in the scope of an even [or odd, resp.] number of
negations or implication-antecedents (cf. Kleene 1967, p. 124).
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We may prove strong practical /-O-triviality w.r.t. obligations for every
a.d.-combination aXdY+MO under the weak condition that aX is stronger
than dY in the sense that dY[(D/O] c aX, i.e. every theorem of dY becomes
a theorem of aX when O is replaced by [J. The result is preserved if (N2)
or (N3) — and under certain conditions if (OC) or (N1) — are added to the
logic; moreover it is generalizable similar to corollary 1.

Theorem 2: For any a.d.-combination L:= aXdY+Z with dY[[V O] c aX:
QD IfZc{MO,O0C,N1,N2, N3}, and aDe Xif OCeZ, ad € X if
N1 € Z, then the rule “A/A[[J/O]” is L -admissible, whence L is strongly
practically 7-O-trivial w.r.t. obligations.

(2.2) Z[L/O) c L & the rule “A/A[[0/O]” is L-admissible = L is strongly
practically /-O-trivial w.r.t. obligations.

Proof: By similar arguments as in lemma 1 it is seen that a logic L is
strongly practically [-O-trivial w.r.t. obligations if the rule “A/A[(0/O]” is
admissible in L (for note that D = D[[J/O] for any purely descriptive D).
To prove the admissibility of this rule, we assume that < A, ..., A,;= A > is
an L-proof of A, and show that there exists an aX-proof (and thus an L-
proof) of A[LJ/O]. If A, = 0X is an instance of axiom schema X of aX, then
A; [[J/O] = o *X is an instance of X, too, by putting o * L = oL [[0/O)]. If
A, = Yis an instance of an axiom schema Y of dY, then A[(/O] =
o *Y[[0/0] is an instance of Y[[/O] (with o * defined as above), and
¥Y[[/O] is an aX-theorem by assumption. If A; is an instance of MO, then
A [0/0] = O(A[T/0]) - O(A[VO]), which is a tautology. If A; is an in-
stance of N2 or N3, then A;[[/0] = OO(A[C/0]) »0O0O(A[D/0)), again a
tautology. If A; is an instance of OC, then aD € aX by assumption, and
A;[[/O] = OJA—<A, which is an instance of aD. If A is an instance of
N1, then (a4) € aX by assumption, and (A,)[[(VO] = OA—OOA, an in-
stance of (a4). If B is derived from B by (aR), then (OB)[/O] =
O(B[CYOY)) is derivable from B[[J/O] by (aR), and B[/ O] is L-provable
by ind. hyp. Similar for ( V R) and (MP). Finally if OB is derived from B by
(dR), then (OB)[LJ/0] = O(B[(J/0]) is derivable from B[[J/O] by (aR), and
the latter formula is L-provable by ind. hyp. This establishes (2.1). For
(2.2) we argue as for corollary (1.2)(b). Q.E.D.

Under more restricted conditions a similar result is provable for permis-
sions, saying that if A is a practical permission and D |, A, then also D I,
A[L)/P] holds, where A[CV/P] is the result of replacing P in A by (J. We
speak here of strong practical I-O-triviality w.r.t. permissions. The proof is
now semantical, and the first degree restriction is essential for it, i.e. the
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rule “A/A[P/CJ]” is not generally admissible. For instance, if L =
aTd{T",.1}+MO [where (d.1) = OPA—POA], then Op +, Op [by MO] },
OPp [by dT'] +, POp [by d.1]; but OOp is not L-derivable from Clp. By a
frame construction we may prove strong practical I-O-triviality w.r.t. per-
missions for all logics of theorem 1 where aX is weakly frame-complete
and dY is unmixed.

Definition 4: L is strongly practically I-O-triviality w.r.t. permissions iff
for every D £ and practical permission A withD +, A, D |, A[CI/P]
holds.

Before we prove our theorem we state an important semantical lemma for
unmixed a.d.-combinations. For any given deontic frame F = <W, §>,
aeW and BeW, F*P =< WP §%*P 5 s the result of adding @ to F
at B, and is defined as follows: Wa+f = Wu{a}, and Se+8 = SU
<a,6>|<B,8>€8}. For an ad.-frame F = <W, R, S>, ¢ W and
eW, F**P.=< W**? R S**? > The operation “*# has an important
preservation property, concerning the truth of unboxed purely normative
sentences; it follows from this property that the frames of unmixed deontic
logics are closed under the operation @+, Thereby a purely normative sen-
tence is called unboxed if every [ (or <) contained in it lies in the scope
of some O (or P).

Lemma 2: (2.1) For any a.d.-frame F = <W, R, S>, ag W, Be W, model
M*F =<w**F R, §* Dm,v**? > basedon F**P: if M = <W, R, S,
Dm, v> is the restriction of M @+ tc W (i.e., ve+f(x) = v(x), w(F) =
v®*P (F)TW), then for every unboxed purely normative N: (Me+8, o) =N
iff (M, B)=N.

(2.2) For any unmixed deontic logic dY, F(dY) is closed under the opera-
tion @+f

Proof: (2.1): By induction on the complexity of N, which is built up of
formulas of the form OA by —, v and V. (i) N = OA: (M*+8, o) = OA
iff for all § with Se+Bad, (M2+8, )= A iff for all & with SB &, (M8,
d) E A (by def. of S=+B) iff for all § with S 6 (M, §) k= A [because: all
d with SB 6 are in W, whence the &§-R-S@+f—generated submodel of
M +B is identical with the §-R-S-generated submodel of M; by the def. of
S «+B]iff (M, B) = OA. (ii) The induction stepsfor N=—-Aand N=AvB
are straightforward. (ili) N = Vz B: (M2+#, a) =V z B iff for all d € Dm,
(Me+B[z:d], &) &= B. The restriction of M @+ [z:d] to W is M[z:d]. So we
proceed:... iff for all d € Dm, (M[z:d], ) = B (ind. hyp.) iff (M, B) = Vz
B.
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(2.2): Assume, for reductio, F € F(dY), but Fe+8 ¢ F(dY). Then there
exists an instance A of an axiom schema Y eY, a model Ma+f =
<Weo+B, Se+f Dm, ve+P > based on Fe+f and a world ye Wa+b[=
WU { a}] such that A is false at ¥ in the model M ®+8 . A is purely norma-
tive and unboxed, because Y is purely deontic and unmixed. It follows from
(2.1) that (Mo+8, o) = A iff (M, B) = A, where M is the restriction of
Me+B to W, which is based on F. For y 2z, (M2+8, y)EAiff (M, y) E
A holds trivially (by def. of M 2+8). Hence, also F cannot be a frame for
dY, contradicting our assumption. Q.E.D.

Lemma 2 plays also a crucial role in the proof of the following special
Hume thesis restricted to unboxed purely normative conclusions, which ap-
plies to a very broad class of a.d.-logics: If L is a weakly frame-complete
and unmixed a.d.-combination, N is L-falsifiable, unboxed and purely nor-
mative and D is L-consistent, then D |-, N (cf. Schurz 1997, ch. 5.4). - We
turn to our theorem.

Theorem 3: Let L = aXdY+B < {MO, OC}, where aX is weakly frame-
complete, (aT) € X, dY is unmixed and dY+(dD) is valid on at least one
frame. Then L is strongly practically /-O-trivial w.r.t. permissions.

Proof: By the remark in §2, dY is valid on the singleton frame Fj:=
<{ &}, {<,6>}>. Lemma 2 implies that it is also valid on the two point
frame <{ y,0},{< ¥y, 8>,<6, 6>}>, because dY is unmixed and the two
point frame results from F} by the operation 7*4. Assume (i) D ¥,

OV x.,(Dy = Vy,,0D;). We must show that (ii)) D ¥, OV x_,

(D, = Vy,_,,P D,). By frame-completeness of aX there exists a frame <W;
R> for aX, a model M = <W, R, Dm, v> on it and world & in M such that
M, ) ED,but M, o) F -0Vx_ (D, - Vy_ 0OD), ie. (M, a) &=
< 3Ax, (D) A3y, O~ D,). Hence for the model M+ = <W, R, Dm, v+>
with a valuation function v+ differing from v only in what it assigns to the
variables x,_, and y,.,., (M*,a) E O(Dy A< = D,) (here we assume that
the variables y,_,, do not occur free in D,.). So there exist worlds 3, 7 in
W such that aRBRy and (M", B)E= D,, (M*, y)= —D,, whence (M, B) F
DiAO—-D,. We add to <W, R> the following relation S: =
{<B,y><7, 7>} U {<68,6> | 6eW-{B, y}} <W,S> is the disjoint
union of the above two point frame and of F* — singleton frames; thus dY
is valid on <W, §> (by the remarks above and lemma 2), whence aXdY is
valid on <W, R, §> (by the remarks in §2). The axiom schemata MO and
OC are valid on <W, R, §> because R is reflexive (since aT € X) and S is
serial. In the model M* * = <W, R, S, Dm, v+>, D is true at «, D is true
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at fand O— D, is true at f3(since B’s only ideal world is y at which D,
is false), whence (M*+*,8) & (D AO-D,), thus (M** a) E
O( Dy AO=D,) and hence (M*,a) E <3x., (D Ady.,,0-D,), ie.
(M*, o) F -0V x_, (D, - Vy,.,PD,), where M* = <W,R, S, Dm,
vt>. Thus D ¥, OV x_, (D, > Vy,.,, OP D,). The cases where some
boxes or quantifiers are missing are proved similarly; the case of a
categorial permission is covered by letting D, be a tautology. Q.E.D.

For the strong triviality of purely normative conclusions which are not
practically normative the considerations of §4 apply in the same way: if we
call conclusions which are not strongly O-trivial weakly O-nontrivial, then
there exist /OI’s with weakly O-nontrivial conclusions, but these conclu-
sions are never practically normative nor directly weakly non-trivial, but
only indirectly weakly nontrivial.

It is sometimes argued that normal deontic logics are too strong because
they contain the axiom O, which is not intuitively obvious. Deontic logics
which are “one step weaker” are the so-called regular logics. The minimal
regular deontic logic is axiomatized by the rule (dER): A <> B/OA < OB
(replacing equivalents) and the axioms (dM): O(A A B)— (OA AOB)
(monotonicity) and (dC): (OAAOB)— O(AAB) (conjunction) (cf.
Chellas 1980, part III). It is easy to see that theorems 1 and 2 go through
also if the deontic part of the a.d.-logic is only regular; they will go through
even if it is only classical, which means that only the rule (dER) is
assumed. The only modification is that we must now explicitly assume that
dY+(dTriv) is L-consistent.!” If a deontic logic is regular and contains the
Barcan formula, it can be based on Kripke frames which include, besides
normal worlds, an additional set of queer worlds making every sentence of
the form OA false (including OT). Using these kinds of frames, also
theorem 3 will go through for a.d.-combinations with a regular d-part; we
just have to assume in lemma 2 and theorem 3 that the worlds are
deontically normal.

University of Salzburg

17 This is because the validity of dY+(dD) on some frame is only defined if dY is
regular, and even in this case it will guarantee L-consistency of dY+(dTriv) only if the
frame contains some (so-called) normal worlds.
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