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QUANTIFIED DEONTIC LOGIC WITH DEFINITE DESCRIPTIONS
Lou GOBLE
I

In a recent paper [1] I argued that deontic operators should be considered
extensional with respect to all singular terms, including definite descrip-
tions. That is, the rule of substitution for identically referring singular
terms, as well as standard, unrestricted rules of existential generalization
and universal instantiation, seem valid even when applied to statements
containing deontic modalities. This is in sharp contrast to the situation fa-
miliar from the logic of necessity and belief contexts. In order that these
rules be valid without restriction, it is necessary to modify the standard se-
mantics for deontic statements slightly. In [1] I proposed a way to do this.
Here I present that proposal more rigorously by defining a model theory for
a first-order deontic language containing identity and definite descriptions.
Further, to show that this way of interpreting deontic statements has the
kind of stability one might reasonably demand, I will present an axiomati-
zation of the set of logical truths and inferences valid under this interpreta-
tion, and prove strong consistency and completeness theorems for this sys-
tem.

That deontic contexts are extensional with respect to singular terms, and
that the standard rules for quantifiers and identity should hold for them
without restriction, is somewhat surprising, especially to those trained in
the ways of alethic and intentional modal logics. I will not try to rehearse
the arguments of [1] here; they may be summarized very briefly in four
main points:

(1) Our ordinary use of deontic statements, unprejudiced by interpreta-
tions drawn from other areas of modal logic, seems to treat them as exten-
sional; the inferences by the classical rules seem easy and unproblematic.
There are no natural examples of the rules’ failure, no cases obviously
analogous to the morning star/evening star or Scott/the author of Waverly.
The variables bound within deontic contexts seem to range over ordinary
persons and things; there is no temptation to invoke individual concepts or
possibilia or other entities of that ilk in order to interpret quantifying into
deontic modalities.

(ii) Deontic contexts must be regarded as extensional in order to explain
certain conflicts of obligation. There seems to be an important sense in
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which a statement of the form ’s ought to do A with respect to the one who
is the-F’ — OAsw.Fx — is incompatible with the corresponding statement
‘s ought not to do A with respect to the one who is the-G’ — O~As 1 x.Gx
— when the-F is one and the same individual as the-G. After all, s cannot
do what he ought to do in the first instance without violating what he ought
not to do in the second. This appearance of incompatibility can only be ex-
plained if ‘ought’ is extensional, since in that case the first statement OAs
1 x.Fx and the identity 1 x.Fx = 1 x.Gx imply OAs 1 x.Gx which is contrary
to the second statement.

(i11) It is sometimes proposed that deontic contexts must be non-exten-
sional in order to prevent the Good Samaritan paradox.! Such an appeal
does not adequately address the paradox, however. It leaves the possibility
open, indeed it invites it to be the case, that there are true statements in
which definite descriptions will lie within the scope of deontic operators,
whereupon the inference that leads to the paradox comes into play. Since
the paradox is not resolved if deontic contexts are non-extensional, its

spectre provides no reason to think they are not extensional.

" (iv) Furthermore, to try to resolve the Good Samaritan paradox in this
way, especially through appeals to scope ambiguities, requires quantifying
into deontic contexts. If those contexts are non-extensional, then it is diffi-
cult to see how one should interpret that quantification. The kinds of pro-
posals made to account for quantifying into necessity or belief contexts do
not seem appropriate to the deontic setting.

If these considerations give reason to think deontic contexts are exten-
sional, there are, nevertheless, also reasons to think they cannot be, if the
principles of standard deontic logic are valid without modification. For one
thing, if deontic contexts are extensional, then the scope solution for the
Good Samaritan paradox truly becomes unavailable, for statements with
wide scope for the definite description become equivalent to statements
with narrow scope. For another, there are powerful arguments that if deon-
tic contexts are extensional, then the deontic modalities reduce to triviality,
that if there is any true statement ‘s ought to do A with respect to ¢’, then
any statement ‘b does B’ would imply ‘b ought to do B’, that is, OAst >
(Bb o OBb) would be logically true, and, further, any statement ‘s ought

1 For example, by van Fraassen [6] p. 424, and Loewer and Belzer [3] p. 118.
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to do A with respect to r’ would imzply ‘s does A with respect to ', i.e.,
OAst o Ast would be logically true.

Hence, if, in light of considerations (i)-(iv), deontic contexts are indeed
to be taken to be extensional and the classical rules for identity and quan-
tification are to hold without restriction, then some modification in the
standard principles of deontic logic must be made. In particular, a slight re-
striction on the rule

P.1) IfF A > B,thenl OA > OB
and also on replacement for logical equivalents

P.2) Ifk A=B,thent C=C, where C is the result of replacing one or
more occutrences of A in C by B

is required. These will not hold in just those cases where the entailment in
the antecedent depends essentially on the occurrence of a definite descrip-
tion in A or B. That is exactly the situation that gives rise to the Good
Samaritan paradox and that is required for the argument that would reduce
the modalities to triviality. This restriction follows naturally from the very
aspects of the interpretation presented below that enable the deontic opera-
tors to be fully extensional with respect to singular terms. In all other re-
spects, the interpretation and the system of deontic logic that follows from
it, will be entirely within the spirit of standard deontic logic.

II

Standard propositional deontic logic would interpret statements Op within
the framework of a possible world semantics by saying, roughly, that such
a statement is true at a world w just in case p is true at every world w; that
is a deontic alternative to w. The deontic alternatives to a world are those
worlds that are best or ideal (from the point of view of the given world). To
say that it ought to be that p, or that s ought to do A, in this world is thus to

2 See [2] p. 409 for such a demonstration. Very briefly one argues thus: Suppose OAst
and Bb are both true; ¢ =1 x(x = r & Bb); hence, by substitutivity OAs1 x(x = t & Bb) is true.
Asn x(x = t & Bb) entails Bb; hence OAs1 x(x = t & Bb) entails OBb, by the principle of
standard deontic logic that if A entails B, then OA entails OB. Hence, OBb by modus ponens.
To show that OAst implies Ast, suppose that OAst is true but not Ast; hence ~Ast is true. So,
by the preceding O~Ast, contrary to the standard postulate that OAst entails ~O~Ast. This
kind of argument is familiar from the work of Quine, e.g. [4] esp. p. 159, though such
arguments stem from Church, Godel, and perhaps Frege.
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say that that is what occurs, or what s does, in the best of all alternative
worlds, in the worlds where all that ought to be is, or something like that.3
When this sort of account is extended to apply to statements of a first-order
deontic language, one might expect to interpret statements O Fz, where ¢ is
a singular term and F is an elementary predicate, by saying, roughly, that
such a statement is true at w just in case Ft is true at every world w; that is
a deontic alternative to w, and that will be so just in case, for each such w,
the denotation of ¢ at w; is a member of the extension of F at w;.

To apply such an interpretation to first-order deontic statements in a lan-
guage containing definite descriptions will lead, however, to deontic state-
ments being non-extensional. Thus, suppose that 1 x.Fx and 1 x.Gx are two
definite descriptions such that on interpretation 1 x.Fx = 1 x.Gx is true at a
world w (which we may suppose to be the actual world), and suppose that
OA1 x.Fx is also true at w. Hence, by the preceding, A1 x.Fx would be true
at every w; that is a deontic alternative to w. But there is no guarantee that
1 x.Fx =1 x.Gx would be true at any such w; and no guarantee that A1 x.Gx
would be true at w;; hence OAw.Gx might well be false at w despite the
identity of 1 xFx and 1 x.Gx.

What is needed to enable extensionality for deontic statements is a way
to evaluate statements A 1 x.Fx at a world w, that is keyed to the referent of
1 x.Fx notin w; but in w. Then if A 1 x.Fx is true at w; under this mode of
evaluation, so would A 1 x.Gx be true, since the referent of 1 x.Fx at w
would be the same as the referent of 1 x.Gx. That ‘cross-world’ mode of
evaluation is the key to the present proposal.

In this section I will define model structures of a familiar sort in terms of
which truth conditions may be defined for deontic statements in a language
of first-order quantification including identity and definite descriptions. In
this I follow Thomason’s treatment of definite descriptions in quantified
alethic modal logic (cf. [5], esp. p. 70f.), although one could, I am sure,
adapt the proposed interpretation of the deontic operator to other ways of
treating definite descriptions in modal contexts if one wanted. Then, in the
next section, I will present an axiomatic system which will be proved both
strongly consistent and complete with respect to the proposed interpreta-
tion. The proof of those results follows familiar Henkin-style techniques.

3 Many variations on this theme have been developed by different deontic logicians. It is
often considered necessary to specify more exactly how the deontic alternatives are related
to the given world, and to add other factors to the evaluation of deontic statements. I mean
the present account to be a generic description that might apply more or less to most such
variations; their differences in detail should not matter for present purposes.
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Let DL be a language for first-order predicate logic, with identity and
definite descriptions, and also containing the monadic deontic operator O;
that is, ©L contains the vocabulary:

i) An infinite set, V, of individual variables

il) A set, C, of individual constants

iii} A set, P", of n-ary predicates, forn > 1

iv) Logical symbols: ~, o, V, =, 1, and O (and parentheses for
punctuation)

with the usual formation rules. Other truth-functional connectives and
quantifiers may be introduced by definition in the usual ways. I use ‘A &
B’, ‘AvB’,"A=PB’, 'IxA’, ‘!xA’ to abbreviate ‘~(A © ~B)’, ‘~A D B’,
‘(A D B)& (B o A), ‘~Vx~A’, ‘FyVx(A=x=1y)’, respectively (where,
in the last, y is the alphabetically first individual variable not occurring in
A). Small italic letters ‘x’, y*, ‘z’, with or without subscripts, are variables
ranging over V, and small italic letters, ‘a’, ‘b’, ‘c’, similarly modified, are
variables ranging over C. Definite descriptions are terms of the form 1 x.B,
where B may be any well-formed formula of ©L. Small italic letters ‘",
often with subscripts, range over the entire class T of singular terms, i.e.
individual variables, constants and definite descriptions. Italic capital let-
ters, ‘A’, ‘B’, ‘C’, etc. are variables ranging over the class W of well-
formed formulas of ®Y. Where Ae W, and 1,,1, €T, At, /¢, is the result
of replacmg all occurrences of 1, in A by ¢, (with the usual constraints con-
cerning bound and free variables), and Ar, //1, is the result of replacing
one or more occurrences of ¢, in A by ¢, (with similar constraints).

To define truth-conditions for formulas A € W, a model-structure, m, is
the quintuple < wy, W, R, D, D'> where

a) wy €W (W is the set of possible worlds; wy is the actual world,
according to m.)

b) @ is a function assigning a set of worlds to each world w; eW;
Rw; cW. Further, for each w;eW, Rw, zA. (R selects the de-
ontic alternatives to w;).

c) D is a function assigning a non-empty domain of individuals, ® w;
to each world w; e W

d) D'isanon-empty set disjoint from U.cw Dw;.

Let Dm = D'UU, 4 Dw; be the domain of individuals for m. (Note that

forall w; eW, D -Dw; #A).

Given'm = <wp, W, R, CD ®'>, an interpretation function, I™, on m is,

as usual, a function such that for each w, e W
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1) If x is an individual variable, then I"(x, w;)€ D=, and for all
wi, wi €W, Im(x, w;)=I"(x, w;)

2) If c¢ is an individual constant, then I™(c, w;)e ®m, and for all
w, w; €W, Im(c, w;)=1I"(c, w;)

3) If Fris an n-ary predicate, then I™(F», w;) is a set of ordered n-
tuples of members of D=,

In the ordinary way of things, as discussed above, we would now define
truth conditions for sentences in the language so that, e.g., a sentence F is
true at a world w; €W’ if and only if the denotation of 7 at w; belongs to
the extension of ){" at w; ie, iff I(t, wj)elI"(F, w;) In keepmg with
the goal that the deontic operator O be extensmna] w1th respect to smgular
terms, it is necessary first to have a method of evaluating sentences in
worlds w; that are deontic alternatives to a world w; in light of the refer-
ences of singular terms that are determined according to the other world w;
itself. Accordingly, let us have a function I, the interpretation fixed by
w;, that is derived from /™ as follows: If e is a primitive expression as in
(1)~(3) above, i.e., if e is an individual variable, individual constant, or
primitive n-ary predicate, then for all w;, w; €W

1-(3)  I'(e, w;)=1Im(e, w;)

Truth-value assignments for formulas A€ W and denotations for other sin-
gular terms under such fixed interpretations I are defined by simultane-
ous induction in much the usual ‘way, except that they allow for such cross-
world reference, as for instance in clause (4) below. For every w;, w; ew:

4) Ir(Fray,..., ty, w;)=Tiff <IP(t, ;) ..., I7(1,, w;) >e I (Fr,w;);
I,"'(F"tl,.. L., wj)=F otherwise.
5) It =ty w;)=Tiff I (1, w,) = I (1, w;);
I,-’"(t, =t,, wj)=F , otherwise.

Suppose that I7"(A, w;) and I(B, w;) are defined for all w;, w; eW,
then, as usual, (where in all cases, I7"(A, w; ) = Fiff I"(A, w;) # T):

6) Ir(~Aw;)=T iff I"(Aw;)=T

7) I"(A>B,w;)=Tiff I"(A w;)# TorI"(B w;)=T
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8) Ir(VxA, w;)=Tiff foreveryd eDw; I'd/ x(A,w;)=T

where Id/x is exactly like I éxcept perhaps in assigning d to x. Further,
for deontic formulas

9) I(OA, w;)=Tiff forallw, eRw, I!"(A,w,)=T

Likewise, interpretations for definite descriptions are defined for each w;,
w; €W thus:

10) I ('1 x.B, wj) = the unique de Dw; such that I"d/x(B, w; =T) if
there is one. If not, then I ('1 xBw j) = an arbitrary member of

Dm — Dw; (subject to the constraint that in that case I ('1 x.Bw j)
= I"("x. B, w) for all w;, w, € W)

It is worth noting that, given that constraint, for all terms ¢, including defi-
nite descriptions, and for all w; and wj, I"(r, w;) = I7"(t, w;), and hence,
for all w; and w,, I (t, wj) = I (¢, w; ). Thus under this sort of interpreta-
tion, i.e., interpretations fixed by worlds w;, definite descriptions behave
like fixed, or rigid, designators, as familiar from the work of Kripke and
others. So construed, their values are the same in all alternative worlds.
Nevertheless, it is not always the case that I (t, w },) =1Ir (!, w j), nor, as it
will turn out given (12) below, is it always the case that
Im (t, w;)=1 '"(t, w j) when ¢ is a definite description. In that respect
definite descriptions are definitely not rigid designators; they are evaluated
at each world in quite the usual way.

The definition of the basic interpretation function /™ may now be com-
pleted. For each w; €W, foreach Ae W:

11) In(A, w,)=Ir(A w;)
and for each term te T
12) In(t, w;)=1Ir(t, w;)
So, for example, just as we described more informally above, for a

sentence OFt, I"(OFt, w;) = Tiff I" (OFt, w;) = TiffI,-"'(th, wj)= T for all
w; € Rw; iff for all w; €Rw;, I"(t, w;) e I"'(F,w,) iff for all w; eRw,,
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I"(t,w)el™ (F A wj), that is, iff the denotation of r at w; is a member of
the extension of F atevery w; that is a deontic alternative to w,.

Given a model-structure m = <w,, W, R, D, D'> and I™ defined for m,
then as usual a formula A € W is true on I™ for m iff Im(A, wy) =T, and A
is valid for m iff for every interpretation, I, defined for m, A is true on I™
for m. A is valid or logically true— + A —iff A is valid for every model-
structure m. A set of formulas, I', is simultaneously satisfiable or consis-
tent iff there is a model-structure m and an interpretation, I™, defined on m
such that for every Ce ', C is true on I™ for m. Finally, A is a logical con-
sequence of a set of formulas I'— I'k A — iff T U{~A} is not consistent
iff for every model-structure m and every interpretation, /™, defined for m,
if every member C of I is true on I™ for m, then A is true on I™ for m.

Given this account, it is now easy to verify the following principles of
standard deontic logic:

P3) F O(A&B)=OA&OB
P.4) F O(A> B)>(0A>OB)
P5) F OA>~O~A

for all formulas A, Be W.
As I discussed earlier (and also at greater length in [1]), we must not ex-
pect the usual principle of standard deontic logic

P.1) IfF Ao B, thent OA>OB

to hold without restriction, and indeed it does not hold on the present inter-
pretation; similarly for (P.2), replacement of logical equivalents.
Nevertheless, these principles are sound when their hypotheses contain no
definite descriptions that are essential to its validity. (A definite description
is essential to the validity of a statement when replacing it throughout the
statement by any other singular term, including individual constants and
variables, fails to preserve validity.) For any A€W, let A* be the result of
substituting a distinct variable y; new to A for every definite description t,
in A, then this slight modification of the standard principle does hold in
general:

P.1* IfF (A> B)* thent OA> OB
Also, generally, for any formulas C, Ce W:

P2* IfF (A= B)*, then F C=C', where C' is the result of replacing
one or more occurrences of the formula A in C by B.
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It is the restriction of P.1 to P.1* and P.2 to P.2* that, as remarked earlier,
prevents the collapse of the deontic modalities to triviality. It likewise pre-
vents the appearance of the Good Samaritan paradox in its usual forms.

Regarding quantification and identity, on this form of interpretation the
classical rules are valid without restriction. For any A € W, including formu-
las containing the deontic operator O, and for any singular terms in 7, in-
cluding definite descriptions:

I) F t|=t23(ADAtl//t2)
EG) F Jy(y=t)>(Ax/t>3xA)
Ul F 3y(y=1t)>(VxA> Ax/1)4

Thus the proposed interpretation succeeds, as advertised, in giving an ac-
count of deontic statements according to which they are fully extensional
with respect to singular terms, while at the same time keeping very close to
the original spirit of standard deontic logic.

Finally, since this is a deontic logic, we do require

FOADA and K A>OA

(with ‘b’ for ‘is not valid’). These are easily verified; they demonstrate fur-
ther that the modalities do not collapse to triviality.

111

This way of interpreting deontic statements is well-behaved and stable, in
the sense that the set of logical truths and inferences valid under this inter-
pretation may be formally axiomatized. Let the deductive system DLQID
(for Deontic Logic with Quantification, Identity and Definite Descriptions)
be defined by the following axiom and rule schemata For all A, Be W and
allteT:

A.0 If A is a truth-functional tautology, then FA
R.O If+tAand FA>D B, then B

Al FVxAD(I(y=t)> Ax/i)

4 The antecedent clauses on (EG) and (UI) ensure that the term r denotes; they are
required since many singular terms are definite descriptions, where, obviously, denotation

might fail. This is independent of considerations concerning the deontic character of the
modalities.
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A2 FVx(Iy(x=y)>A)>VxA

A3 FI3y(x=y)

A4 Fi=t

A5 th=no(ADAn//M)

A6 Fly(y=x.A)D3IyA

A7 I-Vy[Vx(A =x= y)] Sy=1x. A

R.1 If FAD B, then FA D VB, if x is not free in A

R2 IfFAo~t=xthent ~ A, if xis not free in A

A8 +FOAD~0O~A

A9 FO(A>B)>(0A>O0B)

Al0 Fy =600 =1,

All b~ =620~ =¢,

R3 IfA* = A4...t,/y...y, for every definite description, ¢, in A,
where every y; is foreign to A, then if FA*, then  OA

A.0 and R.0, obviously, yield classical propositional logic; A.1-R.2 yield
first-order logic with identity and definite descriptions; and A.8-R.3 yield
the deontic component of the logic.

Note that with A.9 and R.3, even with its restriction, the deductive analog
of (P.3) is derivable:

T.1 FO(A&B)=0A&OB
as are the counterparts of (P.1%*):

DR.1 If H(A D B)*, then - OA > OB, when (A © B)* is as A* in R.3.
and of (P.2*):

DR.2) If F(A=B)*, then FC=C’, where C' is the result of replacing
one or more occurrences of A in C by B.

Thus DLQID contains, along with standard quantification theory, all the
key deontic principles mentioned above, namely, P.1*, P.2*, P.3, P.4 and
P.5, though with the necessary restriction on P.1 and P.2.

DLQID is both strongly consistent and strongly complete. Where T is a
set of formulas of DL and A is a formula of DL,

Theorem 1 (Consistency) — If T'FA, then I'FA.
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This is readily shown by induction on the structure of proofs in DLQID,
since all axioms are valid and the rules preserve validity. The converse the-
orem

Theorem 11 (Completeness) — If T'FA, then T'FA

is proved using standard Henkin-style techniques. In this I follow
Thomason’s proof of (strong) completeness for his system Q3 in [5], al-
though the constructions are easier for DLQID because of the extensional-
ity of deontic contexts.

As usual, we show that any deductively consistent (d-consistent) set of
formulas, I, included in W is simultaneously satisfiable by letting I gen-
erate out of itself, as it were, a model-structure and interpretation upon
which all its members are true.

Lemma 1 — Every d-consistent set I' ¢ W has a saturated extension in any
w-extension of DL .

This lemma is proved as for classical logic, with the understanding that a
set A is saturated iff it is d-consistent, maximal (for every C, Ce A or
~CeA), w-complete (forall Ce W andall xeV, if 3xC e A, then there
isa yeV such that Cx/ye A) and further, for allt e T, there isan xe V
such that r=x € A. An w-extension of DL is DL plus denumerably many
individual variables not in £ . (In what follows designations ‘V’, and ‘T
will refer to the variables and singular terms of whatever extension of DL
includes the set of formulas being addressed.).

Where A and A' are saturated sets of formulas (in an w-extension of
DR ), define a relation R whereby A R A" iff for all formulas B such that
B contains no singular terms other than variables, if OB e A then Be A'.

Lemma 2 — If A is a saturated set of formulas and B contains no singular
terms other than variables and ~OB € A, then there is a saturated set A’
suchthat ~Be A’ and A R A"

Proof by construction: Let X = {C: C contains no singular terms other than
variables and OC e A}. X U{~B} is d-consistent, for suppose it were not.
Then X-B, and so there are formulas C,, ..., C, € X, such that C,, ..., C,kB.
Hence F(C &...&C,)DB; so + O(( &...&C,)D> OB by DR.1, and F
(OC &...&0C,)> OB by T.1, etc. Since all C, € X, all O C; € A; hence,
OBeA, and ~OBgA, contrary to the hypothesis of the lemma.
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Therefore, X U {~B} is d-consistent; hence, by Lemma 1, X U{~B} has a
saturated extension. Call one such A'. It is trivial that A R A"
Next, define a quintuple m* = <Ly, £, R, D, D'> thus:

i) L is a saturated set of formulas (in an @-extension of DY)
ii) &£, is the closure of { Ly} under R (as defined for Lemma 2)
iii) L; eRL iff LRL,

Partition the set of individual variables by an equivalence relation =
whereby for all x, yeV, x = y iff x = y € L, Select one member from each
partition & of V. Then, for all x € V and for all partitions 7, then if x e x,
let fix) = the selected member of .

iv) DL;={ f(x):xeV&Iy(y=x)eL; }
v) D'={f(x)xeV&forall L eL, ~3y(y=x)e L}

Let ©* = D'UU, . DL
Lemma 3 — m* is a model-structure.

The proof is merely a matter of rehearsing the definition of a model-struc-
ture. That &, is non-empty and that L, €<, are trivial. That for all L; €<,
RL; # A is given by Lemma 2. That for all L, €L, ® L, # A results from
Axiom A.3. That D' is disjoint from U fDL follows immediately from
the definitions and the fact that for all L;e£ and all variables
x,yeV,x=y elL;iff x=ye Ly, which is easnly shown glven A.10 and
A.11 and &£ the closure of { Ly} under K. D' is non-empty since, by satu-
ration, there is an x € V such that x=1y.(Fy&~ Fy)e Lyand f(x)¢e DL,
forany L, eZ.

Given m”= next define a function /* on it. First, for all €T, let g(t, L;)
= fix) for some x €V such that = x e L; By saturation there always will
be such a variable, and it is easy to show that it doesn’t matter which such
variable is chosen to determine the value of g(t, L;). Then define /* on m*
as follows:

a) I*(x L;)=g(x,
b) I*(c, L)=g(c,
o) I*(Fr, L)={<

L)=f(x) forall xeV
L)forallceC
flx

(x,)>: Frx,...x, eL,-} for all F» € Pr
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Further, define the function I on the basis of I*, as so far specified, fol-
lowing the pattern of (1)—(3") and (4)—(10) of the definition of interpreta-
tion functions fixed by worlds that was given in Section II, with the stipula-
tion under (10) that if there is no unique de®L, such that
I'd/x(A L;)=T,thenforall L;e &, I;("x. A, L;)=g(x. A, L)

Lemma4 —Forall L%, allAcW,andallreT, I}(t, L;)=g(, L;). and
AelL;ifandonlyif[; (A, L;)=T

Proof is by induction, rehearsing the definition of I, and is straight-for-
ward. Here is the case where the formula A is of the form OB. For this it is
useful to have the following

Sublemma—Forall L,Lie% ifI (1, L .)_1 (7. L;), then I} (A L;)=

£Ay/t., L; )andl (tz, L-) I (tzy/tl, ) (with the usual restrictions
on free and bound variables).

which is easily proved by induction on the structure of A or ¢z, Given the
sublemma, the case for the lemma follows easily. Suppose that OB.€ L
By saturation and A.5, there are individual variables x;...x, € V, such that
x;=t1€L; and ... and x,=t,€L; and OBy...1, /xl ..x,,ELj for all
terms in B. Hence, by definition of RL;,Bty...t,/x,...x, € L for all
L, R L; By the inductive hypothesis, I](Bt,...t,/x,...x,, L,)=T for all
L,eRL;. Hence I/(O By...1,/x...x,, L;))=T. Since by the inductive
hypothesis [ ”(t,, L; )— If (x,, L j I (OB L )’ T by the sublemma.

Similar steps estabhsh the converse. Suppose I (OB L )— T but that
OBgL; Then ~OBe L; by saturation, and then there w1ll be individual
variables x..x, €V, such that xy=t€L; and ... and x,=t,€L; and
~O0B#...t,/x...x, € L; for all terms #; in B. By Lemma 2 above, there is
an L, eQRL such that ~ Btl A,/ x...x, € L, Hence, By,...t,/x,...x, ¢ L,
and so, by the inductive hypothesis, I/(Bt,...t, /x,...x,, L,c);& T which
yields [I*(OBt...t,/x...x,, L;)#T. Then, by the sublemma,
I'(OB, L; ):t T, contrary to the orlgma] assumption. The other cases in the
in UCt10ﬂ for this lemma are even more routine, and may be left to the
reader.

Given I, the definition of I* is completed as by (11) and (12) of Section
IL. That is, I*(A L;)=1I(A L)and I*(t, L;)=1'(, L;). Lemma 4 then
yields immediately this

Corollary — For all Lie¥, alAeW, andallteT, I*(1, L,)=g(z, L),
and AeL; ifand onlyif I*(A L)=T
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It remains to establish
Lemma 5 — I'* is an interpretation function.

This follows directly from the definitions of /* and ;" provided that it can
be shown that if there is no unique d € @L; such that I'd/x(A, L)=T,
then for all L; e ¥, I-‘(’lx. A, L3= a member of D*-BDL, and for all
L,.LeZ, I,-'gn.x. A, ij =1I7(x. A L;). The latter is immediate from the
definition of I7. Of necessity, I/(1x.A, L;)=g(x.A, L;) is a member of
D*, so we must show that g(x. A, L;) ¢ DL, If there is no unique d e DL,
such that I'd/x(A, L;)=T, then I'(3'xA, L,)#T, so, by Lemma 4,
3'xA ¢ L;. Hence, by Axiom 6, 3y(y =1x.A4) ¢ L;. By saturation, there is a
z€V such that z=1x.Ae L; and such that g(x.A, L;)= f(z), by defini-
tion of g. Suppose, then, that f(z)e DL; by definition, Jy(y=2z)e L.
Since z=1x.A € L, 3y(y =x.A) € L; by Axiom 5. But Jy(y=x.4)e L,
so f(z)=g(1x.A, L;) is not a member of DL,.
These results combine to yield

Lemma 6 — If a set of formulas I’ is d-consistent, then I' is simultane-
ously satisfiable.

Suppose that I' is d-consistent. Then I' has a saturated extension; call it
Ly (Lemma 1). Let m* be as for Lemma 3 and /* as for Lemma 4. m* is a
model-structure (Lemma 3) and /" is an interpretation function (Lemma 5).
For all A, Ae L iff I'(A, Ly)=T (Corollary to Lemma 4). Hence for all
A € Ly, there is a model-structure, m, and an interpretation, /, such that A is
true on / for m. Hence L, is simultaneously satisfiable. Since ' L, T is
simultaneously satisfiable.

Theorem II above now follows immediately. Suppose that T'FA, but that
I'kA. Then T'U{~ A} is d-consistent; hence, by Lemma 6, T U{~ A} is
simultaneously satisfiable; hence 'FA, a contradiction.

This completes the demonstration of strong completeness for DLQID.
Theorem II has the obvious corollary:

Corollary — If I A, then F-A.
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