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MOSTLY MEYER MODAL MODELS

Edwin D. Mares !

Abstract

In this paper, it is shown that several modal relevant logics are com-
plete over a semantics in which the truth conditions for the modal oper-
ators are the standard Kripkean truth conditions, viz., ak=0A iff
Vx(Sab=> b= A) and a = OA iff 3x(Sax & x = A). This proof con-
firms most of a conjecture made by Meyer in Routley and his
“Semantics of Entailment II” (Journal of Philosophical Logic 1
(1973)).

1. Introduction
In [4], Meyer suggests adding the postulate

Sab = Sa* b (1)
to the specification of frames for NR to satisfy the following scheme:

(Kv)O(Av B)— (CAvOB)
where S is a binary accessibility relation on worlds used to give a truth
condition for necessity in the standard Kripkean manner. But completeness
of R4 (= NR + Kv) over the resulting semantics has not yet been shown.
In [3], however, Mares and Meyer show that R4 is complete over the class
of NR-model structures that satisfy (2) below.

Sab = 3x(Sax & Sa*x* & x<b). (2)
Although (2) has some virtues (see [3]), it does not yield the standard

Kripkean relationship between possibility and the accessibility relation.
That is,

! T wish to thank Greg Restall and Bob Meyer for useful conversations pertaining to the
topic of this paper.
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al= QA iff 3x(Sax & x = A)
does not always hold in Mares and Meyer's models.

In this paper I show that several modal relevant logics with (Kv) are
complete over a class of modified NR-model structures that satisfy (1). The
modification to NR-model structures consists in a change to the postulate
that relates the binary accessibility relation to <. In [4], NR-model struc-
tures are stipulated to satisfy postulate (3) below.

(aSb&Sbc)ﬁSac 3)

The difficulty is that when (1) is combined with (3) (and the other postu-
lates defining NR-model structures), it is possible to derive the following:

(a=0A&b<a)= b=0A @)

Usually we think of < as something like a part-whole relation on worlds.
Propositions are closed upward under <; if @ < b and ‘A’ holds at a, then
‘A’ holds at b as well. It is counterintuitive that, in these model structures,
necessitive propositions are also closed downwards under <. In addition,
(4) makes it impossible to treat < in the canonical model as the subset re-
lation between theories as is usually done in completeness proofs for rele-
vant logics. This fact has until now foiled all attempts to prove complete-
ness for R4 over Meyer's models. I avoid this difficulty by replacing (3)
with (5) below.

(a<b & Sbe)= Ix(Sax & x<c) &)

I call the class of R-model structures that satisfy (1) and (5) “Mostly Meyer
model structures”, because they are so similar to the class of model struc-
tures specified by Meyer on page 70 of [4].

The condition (5) recapitulates a condition used by BoZi¢ and Dogen, in
[1] in their model theory for intuitionistic modal logic. They express this
condition using the notation of relational products. For two binary relations
P and Q, let us write ‘PQac’ when there is some b such that Pab and Qbc.
Then we can rewrite (5) as

< Sac = S<ac
or more elegantly as

<ScS<
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It is interesting to note, then, that the techniques of [1] can be extended be-
yond intuitionistic modal logic to relevant modal logic. There is nothing
about these techniques, furthermore, that makes them particular to modal
logics based on R. Similar modal logics based on other relevant logics,
from B to E, are ameniable to the same treatment.

In what follows, I show that the “base” logic, RK-, is complete over the
class of Mostly Meyer RK--model structures. After formulating RK-, I
present the frame theory for R, using version of the model theory due to
Routley and Meyer (and first published in their [5]. I utilize “unreduced
frames” (in the sense of [6] in which there may be more than one regular
world. Then I define three classes of R-model structures. The first is the
class of R[Clmodel structures. This class of model structures combines (1)
and (3). I show that this class of model structures has the untoward features
that I claim for it. Next I introduce the notion of an RK--model structure
( RK--ms). The completeness proof of [2] in effect shows that RK- is
complete over the class of RK-ms. The third class of model structures is
the class of Mostly Meyer (MM RK-ms). In section seven below, I prove
that the set of formulae valid over the class of MM RK - ms is a subset of the
class of formulae valid over the class of RK-ms. Thus I show that RK- is
complete over the class of MM RK-ms. In closing I indicate what postu-
lates have to be added to the specification of model structures to obtain
model structures for stronger modal relevant logics.

2. The Logic MM RK-

I use a standard modal language with proposition letters p,, p,, ..., connec-
tives —, A, v, ~, [, parentheses and the usual formation rules. As usual,
possibility is defined as GA =, ~[0~ A. The logic RK- is axiomatized as
follows:

Axiom Schemes
RT  All substitution instances of theorems of R.
Agg (OAAOB)—O(AAB)
Kv O(AvB)—(OAv<B)
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Rules
FA— B

2 p
FB

FA
B

FAAB

FA— B
FHOA - OB
A
FHOA

Adj

Note that this logic is slightly weaker than the logic RK of [2]; RK-, unlike
RK, does not contain every instance of the scheme [J(A— B)—
(0A - [OB). But this loss does not signify a very significant weakness of

RK-, since it does contain every instance of the closely related scheme
(O(A - B)ADOA) > OB.

3. R-Frames

An unreduced R-frame is a is a quadruple <K, P, R, *> such that X is a non-
empty set (the set of worlds), P (the set of regular worlds) is a non-empty
subset of K, R is a ternary relation on K and * is a unary operatory on K that
satisifies the following definitions and postulates. Where a, b, c, d,... are
worlds,

D<a<b=, Ix(x e P & Rxab),
DR?. R%abcd = 3x(Rabx & Rxcd).

R1  <is a partial order.
R2  Raaa.
R3  (a<b & Rbcd)= Racd.

R4  Rabc = Rac*b+*.
RS ax*=a

R6  R2abcd = R2acbd.
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4, RO-Frames

An RO-frame is a quintuple K = <K, P, R, $, *> such that <K, P, R, *> is
an unreduced R-frame and is a binary relation on K frame and

RO1 (a <hb& $bc) = $ac,
RO2 (aeP&$ab)=beP,
RO3  $ab = $axb*,

An RO ms is a triple M = <K, v, = ,> where K =<K, P, R, $, *> is an R(J
-frame, v is a valuation on K and =, is a satisfaction relation. A valuation
on K is a function from proposition letters to subsets of K closed upwards
under <, that is, the following “hereditariness postulate” holds:

HP.(a<b&aev(p))=bev(p)

As usual, each valuation determines a relation =, between worlds and for-
mulae such that:

cak= piff aev(p)

saF,AABiffaF AandakF B

sak, ~ Aiff ax b A

«al=,A— Biff VaVy(Raxy = (xi=,4 = y = B))
ca=0Aiff Vx($ax = x=,A)

A formula A is said to be verified in an RO ms M = <<K, P, R, *>,v, k&
y> iff, for all ae P, al= A and A is said to be R[-valid iff it is verified in
all ROms.

Now let us spend a moment showing that what I said in the introduction
about R[13 is true.

Lemma 4.1 If M = <<K, P, R, $, *>, v, & > is an ROms, then, for any
worlds aand b in K, ifa < b and b= [ A, then a= 0 A.

Proof. Suppose that @ < b and b= ,[0 A. Now let ¢ be an arbitrary world
such that $ac. Thus, by R(13, $a*c*. It can be easily shown that, on any
Rms, if a < b, thenb* < a *. So,b * <ax . Thus, by RO, $» *c *. By
RO3, $b ** ¢ **, and so by RS, $bc. Since b = ,[JA, ¢ = A. But, since ¢
is an arbitrary world such that $ac, it is the case that a = ,[JA, which is
what we wanted to show.
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An annonymous referee has pointed out to me that prima facie RO1
seems intuitive. Paraphrasing slightly, the referee argued that, if a says less
than b, then what is possible relative to a must be possible relative to b too
-- any information a had to rule a possibility out must be preserved in b.
The referee's point is well taken in the context of Routley and Meyer's
NRms, but not in the context of model structures that satisfy the Kripke
truth condition for possibility. For, if a < b and a =, OA, then b = ,QA.
Thus later worlds do not rule out any possibilitive propositions true at ear-
lier worlds. Given Kripke's truth condition for possibility and this heredi-
tariness condition, it appears as if later worlds have to have the same
worlds accessible to them as earlier worlds. For if b were to have accessible
to it a proper subset of the worlds accessible to a, it would become prob-
lematic how we could show that all the possibilitive propositions true at a
are also true at b.

5. RK--Frames

Thus, we are stuck with a dilemma, either we should abandon R[J 1, which
has some intuitive plausibility, or abandon Kripke's truth condition for pos-
sibility. In [3], we adopted the latter course. In that work, we replaced ROJ
3 with the following postulate:

RK $ab= 3x(x<b & Tax),
where
Tab =4 $ab & $axb*.

Let us call the resulting frames, RK--frames, and the corresponding model
structures, RK-ms, for RK- is sound and complete over this class of
model structures. Soundness and completeness are nice features, but the
definition of the class of RK--frames does lack intuitiveness.

Let us call the class of formulae valid over the class of RK-ms,
RK-valid.

I use the hereditariness lemma below in the completeness proof of sec-
tion seven. The proof of the hereditariness lemma follows the usual pattern
(see [4]).

Lemma 5.1 (RK-ms Hereditariness) In any RK-ms, for any worlds a and
b,if a=,A and a<b, then b= A, for any formula A.
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6. Mostly Meyer Frames

Although R(3 is problematic when added to frames that satisfy R[]l and
R0OJ2, it does have some nice features. In particular, as I said in the intro-
duction, it makes it possible to derive the standard Kripke truth condition
for possibility. Happily, we can define a class of frames over which RK- is
complete and which do not have the untoward features of frames dealt with
at the end of section four above. In this section, I define this class of frames
which I call *mostly Meyer RK--frames’.

A mostly Meyer RK--frame is a quintuple K = <K, P, R, S, *> such that
<K, P, R, *>is an unreduced R-frame and S is a binary relation on K, such
that it satisifies the following postulates:

MM1 (aSb&Sbc)=>3x(Sax&xSc),
MM2 (aeP&Sab)=>beP,
MM3  Sab = Saxb*.

An MMR K-ms is a triple M = <K, u, =" >, where u is a valuation on K
and acts just like a valuation in an R K-ms (i.e., its range is made up of
closed up sets of worlds). But the satisfaction relation =" determined by u
is slightly different from k= . The truth conditions for the various connec-
tives remain the same (replacing =, with ="") except for the truth condi-
tion for necessity which now reads

abE=,"0A iff Vx(Sax = x=rmA)

As before, a formula A is said to be verified in an MMR K-ms M = <<K, P,
R, S, *>, u, =™> iff, for all ae P,a="A and A is said to be Mostly-
Meyer valid iff it is verified in all MMR K-ms.

The reason we need MM]1 is to ensure the truth of the hereditariness
lemma below. The original hereditariness condition (3) works in the con-
text of Routley and Meyer's model structures for NR to transfer necessities
from indices to (weakly) later indices (under <). It says that the set of
worlds accessible to a later world is a subset of the set of worlds accessible
to an earlier world. The new condition (5) does the same job, but is not as
strong. It uses the hereditariness relation, < , to transfer truths at earlier
worlds to later worlds and to transfer truths at worlds accessible to earlier
worlds to worlds accessible to later worlds. Case 2 of the proof of the
hereditariness lemma below makes this claim rigorous.

Lemma 6.1 (MM Hereditariness)If a<b and al=""A, then b F=mmA,
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Proof. Suppose that a<b and aFEm™A
Case 1. A is p, BAC, ~B, or B— C. The proof is as usual (see, e.g.,
[SD. '
Case 2. A = [IB. By hypothesis, a =""[1B. Now suppose that c is such that
Sbc. 1 show that c="B. By MM]1, here is a d such that Sad and d < ¢. By
the hypothesis and the truth condition for necessity, d =""B. By the induc-
tive hypothesis, ¢ =™ B, as required. Thus, generalizing, b=""[1 B.
From the hereditariness theorem the soundness theorem follows in the
usual way (see, e.g., [5]).

Since one of the advantages I have claimed for MMR K-ms is that they
preserve Kripke's truth condition for possibility, I should prove it.

Lemma 6.2 aF="OA if and only if 3x(Sax&xl=:""A)

Proof. = Suppose that a=mQA. Then ak="" ~[J~ A. By the truth
condition for negation, a*# ™[]~ A. By the truth condition for necessity,
there is some b* such that Sa*b * and b* not =""~A. By the truth condi-
tion for negation, b=""A. But, by MM3, Sa**b**. By RS, Sab. Hence
there is a world b such that Sab and bE=""A.

& The argument for this direction is much like that for its converse, only
backwards to it. Suppose that there is a world b such that Sab and b= A.
By the truth condition for negation and RS, b* =""~A, By MM3, Sax*b *.
Thus, by the truth condition for necessity, a* =" [J~A. By the truth con-
dition for negation, al="" ~[0~A, i.e. aFE"™ OA.,

7. Completeness

I prove completeness by showing that the set of Mostly-Meyer valid
formulae is a subset of the R K--valid formulae. Since R K- is complete
over R K-ms, it is therefore complete over MMRR K- ms.

The following lemma is easy to prove by inspection..

Lemma 7.1 If <K, P, R, $, *> is an RK--frame, then <K, P, R, T, *> is a
Mostly-Meyer R K- -frame.

Given an RK-ms. <<K, P, R.3, *>, v, =,>, I define a relation = by
means of the following clauses:
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sak= piff aev(p)

*a= AABiffaF,Aandak= B

raE, ~ Aiff ax= A

*al=,A - Biff VxVy(Raxy = (x=,A = y =,B))
ca=0Aiff Vb(Tab= b=, A)

Lemma 7.2 below follows directly from lemma 7.1 and the definition of
=

-
Lemma 7.2 If <<K, P, R, $, *>, v, = > is an RK-ms, then then <<K, P,
R, T, #>,v, &= >isan MMR K-ms.

Let us call <K, P, R, T, *> ‘the Mostly Meyer R K--frame determined by
<<K, P, R, $, *>’ and <<K, P, R, T, *>, v, =,> ‘the MMR K-ms deter-
mined by <<k, P, R, §, *>, v, = >,

Lemma 1.3 Let K=<K, P, R, $, *>, be an RK--frame and v a valuation on
K. Then, for the RK-ms <<K, P, R, T, *>,v, =,> and the MMR K-ms K-,
<<K,P,R $, #>,v, = > forany ae K,a =, Aiff = A.

Proof. By induction on the complexity of A. The proof of the theorem for
A=p, BAC, B—C, ~B are easy. Suppose that A=0JB. = Assume
that a =, 00B. Then, for all b such that Tab, b=, B. Now suppose that c is
such that 3ac. I show that cl=,B. By RK, there is some b < ¢ such that Tab.
By the hereditariness lemma for R K-ms, c=, B. By the induction hypoth-
esis, c=,B, as promised. Thus, by the truth condition for necessity for
R K-ms, a=,0B. < is easy.

Corollary 7.4 For any formula A, if A is Mostly-Meyer valid, then A is
R K--valid.

Theorem 7.5 R K- is complete over the class of MMR K-ms.

8. Extensions

Adding postulates to the definition of MMR K-ms, we can determine
classes of Mostly Meyer model structures for stronger logics. The follow-
ing are some correspondences between axiom schemes and semantic postu-
lates:
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Scheme Postulate
0(A— B)— (0A—0OB) 3x(Rabx & Sxc)= IxIy(Sax & Sby & Rxyc)
CA— A Saa

OA -00A (Sab & Sbc) = Sac
A-0OCA Sab = Sha
OA—CA IxSax

Completeness for the logics resulting from adding some or all of the above
schemes to R K- and the corresponding postulates to the definition of the
class of Mostly Meyer R K--frames can be shown either directly, through
the standard canonical model construction or by adding the appropriate
postulate(s) to the definition of R K--frames (replacing S with $) and
showing that, for each resulting R K-ms, the MMRR K-ms that it deter-
mines satisfies the postulates (replacing S with 7).
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