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INCONSISTENCY-ADAPTIVE LOGICS AND THE FOUNDATION OF
NON-MONOTONIC LOGICS!

Diderik BATENS

Abstract

In this paper I propose the reconstruction of (what I shall call) mixed
non-monotonic logics as a combination of a deductive and a preferen-
tial component. The first leads from the premises to a possibly incon-
sistent consequence set; the second weeds out the inconsistencies.
Among the candidates for the deductive component inconsistency-
adaptive logics prove most suitable. The ensuing preferential compo-
nent is formulated in terms of models and is itself split into two parts:
(1) a transparent, purely logical procedure leads from a set of inconsis-
tent models to a set of associated consistent models and (ii) the choice
between the latter relies on the preferences. The real fight between
mixed non-monotonic logics should concentrate on this last aspect. The
outlined approach has a broader domain of application than mixed non-
monotonic logics.

1. Aim of this paper

The first person who came across a bird that was not a flyer, was facing an
inconsistency and had to decide which ‘half’ should be retained. At present,
the belief that birds are flyers is considered a rule with exceptions. The be-
lief may still lead to inconsistencies, but we have a standardised procedure
to remove them. A rule with exceptions is arrived at by (devising and)
adopting such a procedure and the procedure determines the functioning of
the rule. In the present paper I pursue this line of thought and spell out an
approach to rules with exceptions in terms of two components: a deductive
component that may lead to inconsistencies, and a preferential component
that selects one half from each inconsistency.

A number of logics devised to handle rules with exceptions are adver-
tised under the label “non-monotonic logics”; I shall call them “mixed non-

1 previous versions of the present paper were presented in lectures in Krakow and
Warsaw, and at a conference in Ghent. Special thanks to Andrzej Wronski, Ewa Orlowska,
Joke Meheus and Laszlo Polos.
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monotonic logics”, as both components are blended in them. The label
“mixed” separates these logics from non-monotonic logics — logics for
which there are I', A, and A such that ' + A and G U A A — that are
free of any preferential elements and hence logics in the strict sense.

My aim is not to offer another type of mixed non-monotonic logic, but
rather a way to reconstruct existing ones. Such reconstruction has quite
striking further advantages, which I discuss in section 2. The separation of
both components may facilitate an ordering of the somewhat chaotic do-
main of mixed non-monotonic logics. It will moreover enable the logicians
working in this field to concentrate on the real disagreement, viz. aspects
of the preferential component. I argue, convincingly I hope, for this point in
section 12, after I presented the formal results.

I shall consider several candidates for each component. An interesting
candidate for the logical component is a mechanism presented as early as
1964 by Nicholas Rescher, next to (monotonic) paraconsistent logics and
(non-monotonic) inconsistency-adaptive logics. The latter will prove by far
superior to the alternatives.

The main technical results of the present paper concern the way in which
the set of models arrived at by inconsistency-adaptive logics may be turned
into a set of selected consistent models that defines the same consequences
as mixed non-monotonic logics.

Some parts of the present paper are unavoidably very technical. I have
taken great care to explain the results (as well as some unsolved difficul-
ties) for people who prefer to skip the proofs of the theorems. Also, rushy
readers might skip the sections on the reconstruction in terms of Rescher’s
mechanism. Their outcome is rather negative. Nevertheless, it is worth-
while to mention these results, as (i) Rescher’s mechanism deserves a spe-
cial tribute as the first non-monotonic system ever, (ii) several A.L re-
searchers continue working on this approach, and (iii) the lessons to be
drawn from it are quite illuminating (and no technicalities are involved).

2. Separating the deductive and the preferential component

As soon as one considers examples that are not extremely simple, mixed
non-monotonic logics lead to a variety of consequence sets that depend on
the order in which the rules-with-exceptions (henceforth “non-monotonic
rules”) are applied. If Tweety is a penguin, “Penguins are birds” is believed
unexceptionally, and both “Birds are flyers” and “Penguins are non-flyers”
are non-monotonic rules, the only way to decide whether Tweety is or is
not a flyer, is by relying on an ordering amongst the rules. What this really
comes to is that applications of some rules are preferred over applications
of other rules. In the example, applications of the least general rule will
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typically be preferred, thus leading to the conclusion that Tweety is a non-
flyer. A (somewhat different) relation between non-monotonic rules and
preferences is revealed in Yoam Shoham's model-theoretic approach that
actually turns around the notion of a preferred model.

There are several annoying things about non-monotonic logics. I mention
three. The first is the very fact that the deductive and preferential compo-
nents are blended together. This makes it rather difficult to study systems
of preferences and their general properties. The second nuisance is that the
non-monotonic rules should be identified beforehand and that the preferen-
tial order should be fixed beforehand. This drastically restricts the domain
of application of non-monotonic logics. For example, they do not shed any
light on belief revisions that lead to non-monotonic rules by degrading gen-
eral statements. That is not worse than classical logic, which also is unfit
for really interesting thought episodes. Yet, a better situation is easy to
imagine. The third nuisance is the rather wild proliferation of non-mono-
tonic systems (some people produce at least three a year) and the fact that
considering somewhat more complex examples steadily results in new ap-
proaches involving new complications. Even if one does not regard, with
Kuhn, such proliferation as typical for dying paradigms, one cannot see it
as a mark of great health either.

These difficulties may be overcome by separating the two mechanisms
that are blended together within mixed non-monotonic logics. Roughly, the
idea is to proceed as follows: given some set of premises I', a derivation of
A from I'" and a derivation of ~ A from I', prefer A (and drop ~ A) iff the
first derivation does not contain applications of non-monotonic rules
whereas the second does (and vice versa). Of course, the criterion will in
general have to be more complicated.

On this analysis, the separation of the purely deductive component from
the preferential one is straightforward. The deductive component should
define a possibly inconsistent? consequence set, whereas the preferential
component should take care of weeding out this set in such a way that the
result is consistent. As a side-effect, this reformulation does not require
non-monotonic rules to have a specific form; it only requires that suitable
preference values be attached to certain statements.

The sketched procedure will not enable one to reconstruct all mixed non-
monotonic logics. For example, some may require that each inconsistency
be resolved as soon as it occurs. For some sets of premises, however, such
logics result in different consequence sets depending on the order in which
the derivation proceeds (in other words, they do not define a unique fixed

2 T is inconsistentiff T + A and T + ~ A for some A. Obviously, consequence sets are
inconsistent iff they contain an explicit inconsistency.
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point for each set of premises). Although such ‘indeterministic’ non-
monotonic logics may have some suitable applications, they are not within
the mainstream of the research tradition and I shall disregard them in the
present paper. '

The proposed separation of the deductive and the preferential component
will enable us to study them independently. We may look for a variety of
candidates for the deductive component as well as study the properties of
preferential systems. clearly, this separation can but clarify things (and lead
to some more order in the present proliferation).

The separation has, however, a further important advantage. I mentioned
already that one cannot even start applying some (mixed) non-monotonic
logic unless the preferences are given (in suitable form). This eliminates
important cases in which a logical analysis of the premises or additional in-
formation is required before the preferences are fixed.3 If both components
are separated, however, nothing prevents us from applying the deductive
component to analyze the situation, to decide what further information is
required, and to fix the preferences on the basis of this analysis or of in-
formation obtained. Also, one may decide to eliminate some inconsisten-
cies only. In other words, the approach I propose not only clarifies things in
the field of mixed non-monotonic logic, but, being more general, it also
opens up new domains of application.

3. Rescher's 1964 mechanism as a candidate for the deductive component

The deductive component will, in interesting cases, lead to an inconsistent
consequence set. One naturally expects some paraconsistent logic here, but
first I shall consider a system that is not a paraconsistent logic in the usual
sense, viz. Nicholas Rescher's 1964 mechanism.4

Given some possibly inconsistent set I' of premises, we consider the
maximally consistent subsets (m.c.s.) of T" (the A such that (i) AcT, (ii)
A is consistent, and (iii) for any Ae-A, AU{A} is inconsistent).

3Joke Meheus 199+ studies such a case, and supports the claim that mixed non-
monotonic logics are useless to understand creative processes that occur in the course of
some scientific discovery. Her contribution moreover suggests that applications of mixed
non-monotonic logics to discovery, conceptual shift, and the like, is bound to be restricted
and very superficial.

4In Rescher 1964 the mechanism is applied to counterfactuals; other applications are
presented in Rescher 1973 and Rescher and Manor 1970 — the latter deals explicitly with
inference from inconsistent premises. As I see it, this mechanism was a central source of
inspiration for Rescher and Brandom 1980.
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Rescher defines the set of strong consequences of I" as the set of the for-
mulas derivable from each m.c.s. of I', and the set of weak consequences
of IT" as the set of the formulas derivable from some m.c.s. of I". We are
clearly interested in the set of weak consequences only, the set of strong
consequences being always consistent and too poor to function as the logi-
cal component of mixed non-monotonic logics.

It is typical that weak consequence is defined with respect to some set of

consistent sets of premises. The union of these sets may be inconsistent, but
the sets never are. It is instructive to see what this comes to in terms of
consistent models (of classncal logic). Given a (possibly 1ncon31stent) set I"
and a model M, define S™ as the set of formulas true in M and S™"
I' " SY . Next, define a maximal model of T" as a model M such that, for a]l
models M, if SMT c SMT then SMT = SMT — clearly, a maximal model is
a model of an m.c.s. A is a weak consequence of T" iff there is a maximal
model M of T such that, for all M', if S*" =S"" then Ae S In other
words, the set of weak (respectively strong) consequences5 is a union
(respectively mtersectlon) of intersections of sets S¥ . In a sense, a prefer-
ential semantics is already present here: among all (classical) models, we
prefer those that contain a maximal number of members of I (and com-
bine them in a certain way); if I" is consistent, we obtain classical semantic
consequence: we prefer the models in which all members of I' are true.

Rescher's 1964 mechanism is a special case as it was supplemented from
the very beginning with a preferential component. I shall, however, first
comment on its suitability as a deductive component, and postpone to sec-
tion 8 the discussion of the preferential component built into the mecha-
nism by Rescher. '

It is well known that Rescher's mechanism is extremely dependent on the
formulation of the premises: if two premises are replaced by their conjunc-
tion, the resulting set of m.c.s. may change drastically and so may the sets
of weak and strong consequences. Such procedure is quite sensible if the
formulation of the premises has some specific rationale, for example if
each premise describes the conjunction of information obtained from some
source. Mixed non-monotonic logics are sometimes applied to such situa-
tions. Moreover, some mixed non-monotonic logics are themselves highly
dependent on the formulation of the premises, viz. of the rules.

5 If the set of weak consequences is inconsistent, it has no models and its maximal
models are identical to those of the set of premises. In Rescher and Brandom 1980,
‘disjunction-worlds’ (models in which are true all formulas true in two or more classical
models) constitute models for inconsistent sets (but not for explicit contradictions such as
p&-~p).
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The upshot is that we should take Rescher's 1964 formalism as a serious
candidate for functioning as the logical component of some non-monotonic
logics. Its deductive properties are transparent and may be studied without
having to deal in the same breath with the preferential component.

4. Monotonic paraconsistent logics as candidates for the deductive com-
ponent

A second set of candidates for the logical component are (monotonic) para-
consistent logics. A host of these have been developed during the last
twenty years (including relevant logics). As mixed non-monotonic logics
are extensions of classical logic — henceforth CL — and as the only
‘problem’ for the deductive component is the occurrence of inconsisten-
cies, I shall restrict my attention to the predicative versions of some of the
logics of Batens 1980. The weakest logic discussed there contains the full
positive fragment of classical logic as well as the negation-completeness
‘half’, Av ~ A, of the meaning of negation; its paraconsistent extensions
contain such theorems as ~(A&B)>(~Av~B) and (A&B)>
(~(A&B)> C).1list the syntax and semantics of the minimal logic PIL —
I shall also need it for the inconsistency-adaptive logic discussed in section
5. The definition of terms, formulas and wffs (not containing any free
variables) is as for CL, and functions are disregarded — including them is
straightforward. As usual, A(x)is a formula in which x occurs free, and
A(a) is obtained from A(x) by replacing every free occurrence of x in A
by a. Also, the & and B should be interpreted in such a way that all (main)
formulas are wffs.

Syntax
MP From A and A o B to derive B
ADl AD(B>A)

AD2 (ADB)DA}DA
A>3 (A>(B>C())>((A>B)>(A>())
A& (A&B)> A

A&2 (A&B)>B

A&3 A:EB::(A&B))

Avl A>(AvB)

Av2 Bo(AvB

Av3 (ADC)D((BDC)D((AVB)DC))
A=l (A=B)>(A>B)

A=2 (A=B)>(BoA)

A=3 (A>B)>((BoA)>(A=B))

A~1  (A>~A)>~ A (alternatively: Av ~ A)
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RY  To derive FA D (Va)B(e) from FA > B(B), provided B does not
occur in either A or B(a).
AY  (Ya)A(a)> A(B) .
R3 To derive HJa)A(a) > B from FA(S) > B, provided B does not
occur in either A(a) or B.
A3 A(f)>(Fa)A(e)
A=l a=a
A=2  a=fB>(A>B) where B is obtained by replacing in A an occur-
rence of a that occurs outside the scope of a
negation by 36

Semantics

Let S be the set of sentential letters, P the set of letters for predicates of
rank r, C and V the set of letters for individual constants and variables re-
spectively, F the set of (open and closed) formulas, and N the set of formu-
las of the form ~A.7 A model is a couple M = (D, v) in which D is a set
and v is an assignment function defined by:

Cll v:S—{0, 1}

Cl2 v:CuV-DissuchthatD = {v(a)laeCuV]}8

Cl13 v : Pr— P(Dr) (the power set of the r-th Cartesian product of D)
Cl4 v:N-{0 1}

The valuation function Vo determined by the model M is defined as fol-
lows:

C2.1 v, :F={0 1}
C22 whereA€eS, v, (A)=v(A)

6ltisa general characteristic of PIL that expressions that have the same extension cannot
in general be replaced by each other within the scope of a negation; e.g.,

o p=(p&p)butk  ~(pdq)=-~((p&q)dq)

7 This is not the place to discuss the extent to which negation is analyzed in this type of
models. In some extensions of PIL the definition of N may be drastically simplified and the
semantics may be further analyzed along the lines of section 11 of Batens 1986b. Other
ways of analysis are in terms of positive and negative extensions of predicates, etc.

8 The requirement, which is obviously much weaker than @ -completeness, restricts the
semantics to models with countable domain D, but greatly facilitates both some other
clauses and the proofs.
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€23 v, (n'a..a)=1iff (W(a) .., v(e,))ev(n")

C24 vM(a:ﬁ)=1 iff v(a) = v(B)

€25 v (~A)=liffv_(A4)=0orv(~A)=1

€26 v, (A>B)=liffv (A)=0orv (B)=1

€27 v, (A&B)=1iffv (A)=landv (B)=1

C28 v, (AvB)=liffv _(A)=lorv (B)=1

Cc29 vM(AEB)zlifva(A)= v, (B)

C2.10 vy((Ye)A(@))=1 iff v, (A(B))=1 forall BeCUV

C2.11 vy((Fa)A(a))=1 iff v, (A(B))=1 for at least one B CUV.

<

Derivability, theoremhood, truth in a model, semantic consequence and va-
lidity are defined as usual.

Clause C1.4 makes sure that v, is fully determined by M =(D, v)
Some care is at hand here. It would be unacceptable that the clauses charac-
terizing the assignment function were dependent on each other. C1.4
should be taken literally, the value of v(~ A) being completely independent
of the value of v, (A). As a result, v(~ A) = 1 may but need not make the
model inconsistent. Also, if v and v' differ from each other in C1.4, they
may still determine formula-equivalent models, where M and M' are for-
mula-equivalent models iff v, (A) = v, .(A) for all (closed and open) for-
mulas A.

Whereas the standard CL-semantics rules out the trivial model (in which
all formulas are true), the present PIL-semantics does not. However, it is
easy to show that it does not make any difference for the semantic conse-
quence relation whether we include the trivial model or not.

An important similarity between CL-models and PIL-models is that, ex-
cept for the trivial PIL-model, they are maximally non-trivial — this is
proved (and commented upon) as Theorem 1 in Batens 199+. There are
also important differences. PIL being much weaker then CL, PIL-models
are by no means CL-models in which some more formulas may be true,
thus making the set of true formulas inconsistent. Indeed, given that
v, (~ p) may be true, the truth of vM(p) does not entail the truth of
v,,(~~ p). Another and more important difference is that an @®-complete
C’E-model is fully characterized by the set of sentential letters, primitive
predicative wifs, and identities that are true in it — let us call these primi-
tive wffs, and, when open formulas are included, primitive expressions.
Such characterization will not do for PIL-models. Yet, one may recur to
similar types of characterization.
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Let there be an ordering over the members of C and of V, and let
“a < B express either that & € C whereas B €V, or else that o precedes
B in the ordering. The simplest (redundant) characterization of an @-
complete PIL-model M is a quartuple (S°, I, E°, N°) in which S°, I°, E°,
and N° are respectively the members of S, the identities (that are wffs), the
primitive predicative wffs, and the formulas of the form ~ A that are true
in M. To obtain a non-redundant characterization, define Cm, the
minimization of C with respect to M, as the set of those a € C for which
there is no feC such that B <o and v, (=pf)=1; next define a non-
redundant characterization of an @-complete PlL-model M, by requiring
that ¢=f¢€l° only if aeCmand f&Cm, and that no elements of
C—Cmoccur in E°. Finally, one may recursively define a N-minimal
characterization of a PlL-model M by moreover restricting N° as follows.
Where the complexity of a wff is the number of occurrences of connectives
and quantifiers,” and the complexity of ~ A is n, ~ A € N°only if ~ A is not
a semantic consequence of S°UI°UE® together with the members of N° the
complexity of which is smaller than n. Remark that these characterizations
are not essentially more complex than those of PC-models. The only
difference is N-minimality. Likewise, the proof of the following Theorem
proceeds basically as for PC and is left to the reader.

Theorem 1. Any w-complete PIL-model has a unique N-minimal charac-
terization, and all @-complete PIL-models that have the same N-minimal
characterization are wff-equivalent (for all wffs, v, (A) is identical for all

M).

Corollary 1. The N-minimal characterization of an @-complete PIL-model
M completely determines the value that v, assigns to wifs.

N-minimal characterizations are often useful, but have the disadvantage to
be restricted to @-complete PIL-models. For some applications, it is handy
to have a tool that works for other kinds of models as well. With the pre-
sent PIL-semantics this is easily accomplished, viz. by considering formu-
las instead of wffs and members of C UV instead of members of C. This
time I shall only consider one kind of characterization, viz. the one that will
prove most useful later. Let the canonical characterization of a PIL-model
M be the quartuple (S°, I°, E°, N°) in which S° is as before, 1°, E°, and N°
contain closed as well as open formulas, and N° is minimized as in the
definition of the N-minimal characterization of an @-complete PIL-model

9 For some paraconsistent extensions of PIL — see below in the text — it is handier to
define the complexity of a formula in a different way.



66 DIDERIK BATENS

M. clearly, the canonical characterization of a model M is redundant.
Moreover, it is obvious that it is possible to turn any canonical
characterization into a model by (i) identifying O™ as the set of those
o e CUV for which there is no § such that B <aand a=f€l°, (ii) set-
ting D = O™, and (iii) defining v from S°, I1°, E°, and N° in the obvious
way. Given this, it is obvious that:

Theorem 2. Any PlL-model has a unique canonical characterization, and
two PIL-models have the same canonical characterization iff they are for-
mula-equivalent.

Corollary 2. The canonical characterization of a PIL-model M completely
determines v, .

Finally, it is useful to also have the notion of N-minimality at the semantic
level. Define: a model is N-minimal iff, for any A, v(~ A) = 0 whenever
v,,(A) = 0. In other words, in a N-minimal model it holds that, for any A,
v(~A) =11ff v (A)= v, (~A) = 1. This leads to a useful theorem, proved
in Batens 199+, which we shall need in section 10:

Theorem 3. For any PIL-model M, there is a formula-equivalent N-
minimal PIL-model M".

There is a whole family of logics between PIL and CL. For example, one
may add such semantic clauses as v, (~ (A&B))=v, (~ Av ~ B) (and the
corresponding axioms). Some of these logics are maximally paraconsistent,
viz. any extension of them leads to either CL or the trivial logic (in which
every wff is a theorem). For more information on the propositional logics,
see Batens 1980.

Consider some set of premises I' in which the non-monotonic rules have
been turned into universally quantified statements. If Cn, (T') is inconsis-
tent and hence trivial, Cn,, (I") too will be inconsistent but not trivial
(except for some border cases). Hence, PIL seems a sensible candidate for
the deductive component of mixed non-monotonic logics. However, I shall
show in section 7 that an inconsistency-adaptive logic based on PIL is more
suitable in this respect.

In view of Theorem 3, it is safe to concentrate on N-minimal PIL-
models. It is useful for future reference to consider a CL-model as a PIL-
model that is formula-equivalent to a N-minimal PIL-model in which w(~
A) =0 for all A. It is indeed obvious that the description of any such model
may be transformed into a description that agrees with the (rather, any)
standard CL-semantics.
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5. Adaptive logics

Consider a theory (I', L), where T is the set of axioms and L the underly-
ing logic. L will contain several presuppositions about the domain de-
scribed. For example, CL presupposes that the domain (as approached by
observational, operational, or other criteria) is consistent (that the criteria
do not, for some A, lead to both A and ~ A). I" may violate some of these
presuppositions, in which case we shall say that I" has abnormal properties
(with respect to the intended underlying logic). For example, the CL-con-
sequences of I' may turn out to be inconsistent or to assert incompleteness
(by way of non-logical theorems of the form ~(Av ~ A)). If the abnormal
properties cannot be readily removed, or if we have to reason about
(T, CL) in order to improve this theory, then neither CL nor a monotonic
weakening of CL will do.

Here adaptive logics come in. They localize the abnormal properties of
the theory, safeguard the theory for triviality by preventing specific rules of
L from being applied to abnormal consequences of I", but behave exactly
like L in all other cases.

The easiest way to understand how all this proceeds, is to realize that an
adaptive logic ‘oscillates’ between the original logic L and a fragment Lf of
L that differs from L in not sanctioning the abnormal properties involved. If
the abnormal property displayed by T is inconsistency, Lf will allow for
inconsistencies (will not lead from inconsistency to triviality); if the ab-
normal property is (negation-)incompleteness Lf will allow for incom-
pleteness (by not having such theorems as Av~A or such rules as
ADB, ~A>B/B). That the adaptive logic La will oscillate between L
and Lf may now be characterized intuitively, but somewhat inaccurately,
by saying that La allows for the application of all rules of L, except for ap-
plications to consequences of I' for which it is derivable from I that they
display abnormal properties. This formulation is inaccurate because the
“derivable” is not specified. The correct specification is somewhat compli-
cated, but if one studies the specification and its rationale, the outcome ap-
pears extremely intuitive — see Batens 1986a, 1989, and 199+ for the in-
consistency adaptive case, other cases being analogous.

I hope the previous paragraph clarifies that an adaptive logic localizes the
abnormal properties. At the syntactic level, a rule operates on finite sets of
consequences of I' (as for other logics); if a rule presupposes that an ab-
normal property is not involved, then it will be applicable or not applicable
according as it is or is not derivable from I' that the wffs included in the
set have the abnormal property. In other words, it prevents abnormal
properties of specific wffs to turn the consequence set of I" into the trivial
set, but does not restrict the rules of L in as far as they are applied to con-
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sequences of I" that have not the abnormal property. If applied to a normal
theory, nothing has to be restricted and the adaptive logic La leads to ex-
actly the same set of consequences as L itself,

Another way to look upon adaptive logics is to say that they minimize
(the consequences of) abnormality. L presupposes normality. Lf gives up
some form of normality, thus heavily restricting on the set of consequences
of ' La takes into account that T is abnormal at specific points, but goes
on presupposing normality elsewhere, thus leading to a set of consequences
that is a real subset of the L-consequence set iff the latter is trivial, but is in
general a real superset of the Lf-consequence set.

It should be stressed that adaptive logics do not require any inventiveness
(or even any intervention) on the part of whoever applies them: applying
the adaptive logic leads to correct (although not necessarily interesting) re-
sults. Also, adaptive logics (at least, those I have in mind here) have a nice
and intuitive semantics that is directed precisely at minimizing abnormal-
ity.

Adaptive logics are non-monotonic: if ' UA is more abnormal than T,
some B derivable from the latter need not be derivable from the former.
Some adaptive logics (e.g., the one discussed in section 6) are decidable at
the propositional level and exactly as undecidable as classical logic at the
predicative level.

To end this section, I record some facts. Adaptive logics differ from
mixed non-monotonic logics because of two (related) properties: (i) they do
not involve any non-logical preferences and (ii) they do not rule out the ab-
normal properties. In this sense, they form the purely logical basis for some
non-monotonic logics: they localize the problems but do not resolve them.

In his (1991) Graham Priest invokes adaptive logics to an end that is
completely different from the one I originally intended, but proves very in-
teresting from his philosophical stand. Priest is a dialetheist who believes in
the existence of a true logic, which he takes to be paraconsistent. He
agrees, however, that in many situations we are justified in presupposing
consistency. He goes on to show that, if his preferred paraconsistent logic
LP (from his 1987) is turned into an adaptive logic LP™ by assuming con-
sistency until and unless shown otherwise, then LP™ recaptures all classi-
cal reasoning where it is sensible (according to his so qualified dialetheist

view),
6. The inconsistency adaptive logic APIL2

The predicative inconsistency-adaptive logics APILI and APIL2 are de-
scribed in detail in Batens 199+. Both have a dynamic proof procedure:
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some formulas may only be added to the proof under certain conditions and
should be deleted (or marked “out”) if these criteria are no longer fulfilled.

Although this dynamics depends on the formulas that occur in the proof
(and the way in which some of them have been derived), it is possible to
define, for both APIL1 and APIL2, a static notion of final derivability. It
may be shown that, if A is finally derivable from I', then A is derivable in
the extension of any proof from I'. The set of formulas that are finally
derivable from I" may be shown to be identical to the set of semantic con-
sequences of I".

In the present paper, I shall restrict my attention to APIL2, and more
specifically to its semantics. But first we need some definitions.

Where (A&~ A) is a formula in which the variables ¢, ..., o, (k>0)
occur free (in that order), let (A&~ A) be (Ha, )...(Hakb(A&—- A). Let
DEK(A, ..., A,)referto3(A &~ A )v..v I(A,&~A,) — a disjunction
of one or more (where necessary) existentially quantified contradictions. I

shall say that A, ..., A are the factors of DEK (Av wior A ) As permuta-
tions of the factors and of the quantifiers in “3” result in equivalent formu-
las, I shall from now on use sets to refer to any such permutation. Remark
that DEK(XU{Px}) is PlL-equivalent to DEK(ZU{Py}) and is PIL-
derivable from DEK (Zu {Pa}), but that neither Pa nor Py is a factor of

DEK(Z U {Px}). For the sake of generality, DEK(@)v A will be A.

The semantics for APIL2 is both enlightening and intuitive. First remark
that all CL-models are PIL-models. If T is consistent, then its consistent
PIL-models are its CL-models, but it will have inconsistent models as well
(except for the border case in which I' is maximally non-trivial). If T" is
inconsistent, it will have inconsistent PIL-models only (and no CL-models).
For any PlIL-model M, let EK(M)= £A|vM(3 A&~ A))= l}. The set of the
APIL2-models of T is defined by {M|thereisnoM such that,
EK(M')c EK(M)}, in other words, the set of APIL2-models of I’
contains those PlL-models of I' that are not more inconsistent than is
required by I". I summarize the situation in Figure 1: in both halves of the
figure, the two larger ellipses represent all PIL-models and all CL-models
respectively; the circle represents the PIL-models of I'; the smallest field
marked I'represents the APIL2-models of I". If T" is inconsistent, its
APIL2-models form in general a real subset of its PIL-models, if T is
consistent, its APIL2-models coincide with its CL-models. For all three
logics, I' = A is defined as usual (there is no model in which all members
of I'are true and in which A is false). In other words, T" has in general
more APIL2-consequences than it has PIL-consequences and if T is
consistent, its APIL2-consequences are identical to its CL-consequences.
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It seems worth mentioning that this semantics too is a form of preferen-
tial semantics: among the PIL-models of I, we prefer those that are as
consistent as possible with respect to I'. Clearly, APIL2 is non-monotonic,
but it is not a mixed non-monotonic logic (as it does not involve any extra-
logical preferences).

APIL2 will be our third candidate for the deductive component of a
mixed non-monotonic logic. To every paraconsistent extension of PIL cor-
responds an inconsistency-adaptive logic. For reasons already mentioned in
Batens 1989, it does not seem likely that these other inconsistency-adaptive

logics will be preferable to APIL2, except perhaps for some special situa-
tions.

PIL PIL

Inconsistent set of premises Consistent set of premises

Figure 1

There are many brands of paraconsistent logics besides PIL (based on
weaker positive logics) and most of them allow one to define an inconsis-
tency-adaptive logic. I cannot study such systems in the present paper.!0
Also, some logics that are adaptive with respect to other forms of abnor-

mality seem to some extent promising; I hope to publish some results on
such logics soon.

10 A nice example is the adaptive logic presented in Priest 1987 and 1991.
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7. Why adaptive logics are more promising than (monotonic) paraconsis-
tent logics.

Consider the following set of premises — the extended Tweety example:
(7.1) (Vx)(Bx > Fx), (Vx)(Px > Bx), (Vx)(Px>~ Fx), Pa&Bb

with the first premise preferred less than the other three. The PlL-conse-
quence set of (7.1) contains the following atoms:

(7.2) Pa, Ba, Fa, ~ Fa, Bb, Fb

Precisely these very same atoms are derivable from (7.1) by (full classical)
positive logic. The APIL2-consequence set contains the atoms: .

(7.3) Pa, Ba, Fa, ~ Fa, ~ Pb, Bb, Fb, ~ Pa(for all other constants o)

In contradistinction to the PIL-consequence set, the APIL2-consequence
set contains (Vx)(x # a >~ Px). This may seem a bit drastic from an intu-
itive point of view, but it is exactly what one would obtain by the usual cir-
cumscnptlon procedure. Indeed, c1rcumscr1pt10n presupposes that anything
that is not bound to be abnormal in view of the premises, is normal; as all
penguins are abnormal birds (with respect to being a flyer), all birds not
given to be non-flyers are supposed to be flyers (and hence non-penguins).

A first central difference is that ~ Pbv (Fb&~ Fb) is true in all PIL-
models of (7.1), whereas neither disjunct is. As APIL2 minimizes inconsis-
tencies, ~ Pb is true in all APIL2-models of (7.1). A second central differ-
ence is that no APIL2-model of (7.1) contains any inconsistency except for
Fa and ~ Fa, whereas any inconsistency will be true in some PIL-model of
(7.1). So, APIL2 has the advantage that the preferential component will
only have to eliminate inconsistencies that are in a natural sense unavoid-
able in view of the premises. A different way to put this is by saying that
APIL2-models have the important property to be not more inconsistent
than is required by the premises. As explained in section 6, if M is an
APIL2-model of some set of premises, and EK(M)c EK(M'), then M’ is
not an APIL2-model of the same set of premises.!!

11 In other words, APIL2 minimizes the inconsistencies in view of the premises; see also
Theorem 14 of Batens 199+,
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8. Eliminating inconsistencies: Rescher 1964 style

The reader will remember from section 3 that Rescher's mechanism pro-
ceeds in terms of consistent models only. So does his preferential compo-
nent. If preferences are attached to the premises, one may define a prefer-
ence order on the m.c.s,, e.g. by assigning them the preference of their least
preferred member. Next, some criterion may be applied to select the set of
preferred m.c.s.; this criterion may be absolute (e.g., those at least preferred
to degree n) or relative (e.g., the most preferred ones). According to
another procedure, a m.c.s. is preferred iff it contains all members of the
premises that have a preference ranking not worse than some limit. The
sentences true in all preferred m.c.s. are the preferred consequences of the
premises.

It is obvious that this procedure may be modified by defining a prefer-
ence ordering on the maximal models (as defined in section 3). Also, the
preference ordering defined on the models should not necessarily be de-
rived from a preference ordering on the premises. E.g., with respect to ab-
normality predicates (as used in circumscription approaches) the preference
ordering of the models might be based on the set of abnormal entities that
occur according to the models.

Let us briefly see what comes out of Rescher's mechanism if we apply it
to a simple example. Consider again the premises (7.1) with the first
premise preferred less than the other three. The maximal models are those
in which exactly three out of the four premises are true — ~ (3x)Px is true
in the models in which the first three premises are true. The set of weak
consequences of (7.1) contains the following atoms:

(8.1) Pa, ~Pa, Ba, ~Ba, Fa, ~Fa, ~Pb, Bb, Fb, ~ Pa (for all constants a)

Let the set of preferred models be those in which (only) the first premise is
false. The set of all preferred consequences is the CL-consequence set of
the (redundant) consistent set containing:

(8.2) Pa, Ba, ~Fa, Bb, (Vx)(Px > Bx), (Vx)(Px >~ Fx)

This is clearly inadequate, as b should come out a flyer. That is the whole
point of mixed non-monotonic logics.

At first sight, this inadequacy seems easily repaired by proceeding as fol-
lows. Whenever a universally quantified premise (or an equivalent for-
mula) occurs among the premises, we add all its instances to the set of
premises. Next, we consider the maximal models of this so modified set.
The aim of this modification is to allow for the possibility of leaving out a
universally quantified formula together with its problematic instances —
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(Vx)(Bx > Fx) and Ba> Fa in the previous example — but to leave in all
its other instances — Bb > Fb, Bc > Fc, ... in the previous example. The
atoms among the weak consequences of (7.1) still are as in (8.1), but the set
of atoms true in all preferred models now contains:

(8.3) Pa, Ba, ~ Fa, ~ Pb, Bb, Fb, ~ Po.( for any constant & # a)

However attractive this result may seem, the underlying procedure is not
very promising. As the essential aspect of Rescher's mechanism consists in
selecting consistent sets of premises, any previous logical operation on
premises ruins the enterprise. Indeed, according to both the letter and the
spirit of this mechanism, the instances of the universally quantified formu-
las should be added in conjunction with the universally quantified state-
ment itself. In that case, however, we are back at the original version, rep-
resented by (8.1)-(8.2) — all instances of (Vx)(Bx > Fx) are removed to-
gether. Even worse, there seems to be no sensible formal criterion to add
the instances as separate premises. Suppose indeed that the premises are
given thus:

(8.4) Pa&(Vx)(Bx> Fx), (Vx)(Px > Bx), (Vx)(Px>~ Fx), Bb
Adding the premises

(8.5) Pa&(Ba> Fa), Pa&(Bb> Fb), ...

would involve a terrible bias in favour of Pa, whereas adding the premises
(8.6) (Ba> Fa), (Bb> Fb), ...

would come to actually disconnecting (Vx)(Bx > Fx) from Pa, which
again runs counter to the letter and spirit of Rescher's mechanism.
Rescher's mechanism does not seem very promising for the present pur-
poses. (This should by no means be read as an objection to Rescher: he
never meant the procedure to serve that purpose in the first place.) In gen-
eral, mixed non-monotonic logics that proceed in terms of subsets of the set
of premises — a few complications have been proposed after Rescher 1964
— are themselves not very promising. They will adequately handle a few
special cases, but run into trouble as soon as one considers arbitrary sets of
premises. Here are some premises that may replace one or more of those in
(7.1): (Vx)(Bb&(Bx o Fx)), (Vx) ((Px > Bx)& (Bx > Fx)), ~(3x)(Pa>
(Bx o~ Fx)), ~(Pa&(3x)(Bx&~ Fx)) It is possible that such mixed non-
monotonic logics may be reconstructed in terms of Rescher-like
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mechanisms. However, more sensible mixed non-monotonic logics, such as
those based on circumscription, cannot be so reconstructed.

9. Weeding out inconsistencies: first results

From now on I suppose that the logical component may lead to inconsistent
models. We have to apply the preferential component in such a way that
the result is a set of consistent models. In the present section, I disregard
the question whether PIL or APIL2 has been used as the logical component
and concentrate merely on the elimination of inconsistencies. Also, I shall
suppose that some preference ordering is given, and not discuss its possible
origin or foundation.

The most obvious approach seems to proceed as follows: first select all
consistent models M such that the formulas true in M are true together in
some (non-trivial!2) PIL-model of the premises, and next choose between
these consistent models by means of the preferences. This, however,
doesn't work because the first step will lead to the selection of the empty
set of models, as the following theorem shows.

Theorem 4. If T is inconsistent and M is a non-trivial PIL-model of r,

then there is no CL-model M' such that all formulas true in M' are true in
M.

Proof. Let M be a non-trivial PIL-model of an inconsistent set I" and sup-
pose that M' is a CL-model. As T is inconsistent, there is an A such that
vi(A)=vy(~ A)=1. Forcibly either v,.(A)=0or =v,,.(~A)=0; sup-
pose vy.(A)=0. It follows that v,.(A> B)=1 for all B. If all formulas
true in M are true in M, then v, (A>B)=1 for all B. But then, as
vu(A)=1, vy, (B)=1 forall B. Hence M is the trivial model. |

So, we have to look for a procedure that relies upon the preferences and
enables us to weed out the inconsistencies by transforming the PIL-models
into CL-models. Considering N-minimal characterizations of the PIL-mod-
els offers some help here. A PIL-model is inconsistent iff N° is not empty.
So, we should transform the PIL-models in such a way that N° is empty in
the N-minimal characterizations of the resulting models.

Remark that there is no reason why the same inconsistencies would occur
in all the PIL-models of some set of premises I'. Indeed, if I'F

12 1f we do not rule out the trivial model, then obviously all consistent models qualify,
whence the effect of the logical component reduces to nil.
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DEK(A, B) whereas I' ¥ DEK(A) and T ¥ DEK(B), then DEK(A) will
be true in some of the models and false in others. Moreover, inconsis-
tencies in PIL-models may be related to each other in two different ways.
Each of these need special attention.

The first form of relation between inconsistencies obtains if the elimina-
tion (in a specific way) of one inconsistency involves or presupposes the
elimination of another inconsistency. Suppose that A, ~A, B, and ~(A&B),
and hence also A&B, are true in some model M. If the inconsistency con-
sisting of A and ~A is removed by transforming M to M’ in such a way that
A is false in M', then A&B is false in M' as well, and hence the inconsis-
tency consisting of A&B and ~(A&B) is removed at once. On the other
hand, if the inconsistency consisting of A&B and ~(A&B) is removed by
transforming M into M’ in which A&B is false, then either A or B is false in
M. If A is false in M', the inconsistency consisting of A and ~A is removed
at once.

The second form of relation between inconsistencies obtains if the elimi-
nation (in a specific way) of one inconsistency entails the introduction of
another inconsistency. Suppose that A, ~A, ~B, and ~ (A D B) are true in
some model M, whereas B is false in M. If the inconsistency consisting of A
and ~A is removed by transforming M into a model M’ in which A is false,
then AD B is true in M'; if the other sentences true in M are true in M’,
then both A> B and ~(A > B) will be true in M'. This problem seems
rather difficult. Should it be allowed that the removal of one inconsistency
results in the introduction, at least temporarily, of another inconsistency?
And will it be possible to find some procedure that leads to the elimination
of all inconsistencies, and does so in a deterministic way?

I think this is the right time for an extremely important remark. We have
to operate on models in order to show that the preferential component
serves its purpose. But this does not mean that the preferences would be
determined by the logical structure of the models. Quite to the contrary,
preferences will be determined by non-logical features. Some statements
true in a model will be observational data, others will be laws of nature,
still others will derive from the combinations of observations and unques-
tioned laws. All of these will obtain the maximal preference value in the
usual examples to which mixed non-monotonic logics are applied. In other
words, we should not try to find a general solution on the basis of formal
properties for the last example. If ~A and ~B are empirical data, and
~ (A D B) is just a side effect of the fact that A is true in M whereas B is
false in M (hence A > B is false in M), then we should decide to make
~(A D B) false in M'. But if ~(A > B) has a higher preference than ~A
and ~B, then the inconsistency should not be removed by making A false in
the first place.



76 DIDERIK BATENS

There is another, quite puzzling problem with respect to PIL-models of
inconsistent sets of premises. Most such models contain inconsistencies
that are not even related to the premises (some PlL-models of p&~p con-
tain ré&~r, etc.) and it is by no means clear how these should be eliminated.
The fact that we have preferences about such statements as “All birds fly.”
does by no means offer us a way to handle “The moon both is and is not
made of blue cheese.” As we saw in section 7, this is precisely the (second
and major) reason why APIL2 proves superior as the logical component:
the APIL2-models are minimally inconsistent with respect to the premises.
This warrants that all inconsistencies that occur in them are directly related
to the premises.

10. Weeding out inconsistencies from APIL2-models: defining a set of
consistent models

If T is inconsistent, so are all APIL2-models of I". The problem we are
facing is to transform the set of these models into a set of consistent mod-
els, taking into account the preferences. This procedure should be determin-
istic: it should not depend on the order in which inconsistencies are re-
moved. To guarantee so turns out somewhat tricky, as the reader may ex-
pect. For this reason, I proceed in two steps. The first step leads from the
set of APIL2-models of I" to a set of consistent models, which I shall call
the consistent models associated with T'; this step depends on purely logi-
cal considerations, not on the preferences. In the second step we select, on
the basis of the preferences, a subset of the consistent models associated
with T'; the members of this subset will be called selected consistent mod-
els associated with T". The first step contains several complications and
will be described in the present section. The second step is postponed to the
next section.

Each APIL2-model M of T" will be transformed into one or more consis-
tent models associated with M. The set of consistent models associated
with T" will consist of the consistent models associated with an APIL2-
model of I'". The transformation itself is defined by a set of sets of re-
quirements. Each set of requirements determines one or more consistent
models arrived at by minimally transforming — see below — the original
model. Needless to say, there will be no transformation at all if the APIL2-
models of T" are consistent. In this case, there will be only one set of re-
quirements and it will be empty.

The sets of requirements
Where M is an APIL2-model of I', consider the canonical characterization
of M, hereafter called CC,,.~ AeN° iff V),(A)=V,,(~ A)=1. So, in order
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to remove the inconsistencies from M it is necessary to require either “A is
false” or “~A is false* for any ~ AeN°. Let us call a set of requirements
coherent iff it agrees with at least one CL-model.!3

The initial sets of requirements, IR,, IR,, ..., are the coherent sets that
contain, for each ~ A e N°, either “A 1s false” or “~A is false” — as a bor-
der case, the (single) initial set of requirements is empty if N° is empty.
Each of the IR, is extended and possibly ‘split’ into several alternative sets
according to the rules of Table 1 — it is always supposed that
o, feCuV. Remark that the only formulas for which there is no rule are
primitive expressions (in which members of V may occur free). Some ap-
plications of the rules of Table 1 may lead to incoherent sets of require-
ments. Incoherent sets are discarded at once. The extension comes to an
end if the correct rule has been applied to all requirements for which there
is a rule in Table 1. At that stage, the sets of requirements as well as the set
of these sets will be called “finished”. Let FR;,, FR,,, ... be the finished
sets deriving from IR

All FR are (coherent and) well-defined but cannot in general be effec-
tively wnttcn down. As we shall see in section 11, it is easy enough to spell
out the effects of the procedure I am describing for the intended examples.

By inspecting the rules in Table 1, one readily sees that:

Lemma 1. The order in which the rules from Table 1 are applied has no
effect on the finished set of sets of requirements.

Lemma?2. Applying the rules of Table 1 to any initial set of requirements
IR, results in at least one finished set of requirements FR, ;.

Proof. There is a CL-model (i.e. PIL-model with v(~ A)=0 for all A), say
M, that meets all the requirements in IR.. By 1nspectmg Table 1, it is easily
seen that, for any rule, (i) if the rule does not require the set to be split, then
the added requirements are met by M, and (ii) if the rule requires the set to
be split, then the requirements added to one of the subsets is met by M.
Whence the Lemma follows by induction. |

Canonical characterizations of consistent models associated with T

Having started from an APIL2-model M, how do we get to the consistent
models associated with M from the finished set of sets of requirements? We
shall do so by first defining the canonical characterizations of those models

134 set may be incoherent because it contains, for some CL-theorem A, the requirement
“A is false”; or because it contains, for some A, requirements to the effect that A and ~A
have the same truth-value,; etc.
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add:

(Va)A(a) is true

for all B, add “ A(B) is true”

(Va)A(a) is false

split the set into a copy for each B and add in
each copy “ A(f) is false” (for that )

(Ja)A(e) is true

split the set into a copy for each B and add in
each copy “ A(B) is true” (for that 3)

(Ja)A(e) is false

for all 8, add “ A(B) is false”

AD B is true

split the set into two copies, add “A is false” to the
first and “B is true” to the second

A D B is false

“A is true” and “B is false”

A&B is true

“A 1s true” and “B is true”

A&B is false

split the set into two copies, add “A is false” to the
first and “B is false” to the second

Av B is true

split the set into two copies, add “A is true” to the
first and “B is true” to the second

Av B is false

“A is false” and “B is false”

A= B istrue split the set into two copies, add “A is true” and “B
is true” to the first and “A is false” and “B is false”
to the second

A =B is false split the set into two copies, add “A is true” and “B

’l is false” to the first and “A is false” and “B is true”
to the second

~A is true “A is false”

~A is false “A is true”

Table 1

from the set of requirements and CC,, . The idea is this: each finished set of
requirements FR; ; defines a set of primitive expressions that have to be
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true in the consistent model; the latter set will be combined with as much
primitive expressions from CC,, as is possible in view of (i) the require-
ments in FR, i and (ii) the defmltlon of a CL-model.

For each finished set of requ1rements FR. ;, we proceed as follows. Let R
be the set of the primitive expressions, that are required to be true by FR, ;
Some subsets of S°UI°UE° UN°UR are compatible with some CL-model
and fulfil all requirements in FR, . Let MSS, ,, MSS,, j2» - be the
maximal subsets!4 of S°UI°UEC UNC UR that are cornpatlble with some
CL-model and fulfil all requirements in FR; ;

No members of N° occur in any MSS, ; ,, “and there is a unique maximal
subset of S°UE®° that is compatible with R. The fact that there may be
several MSS;, ; , is caused solely by the members of |°. Here is an example:
ifa=b,~a=b,a=candb = c are true in M, and FR; ; contains the
requirement “a = b is false”, then there will be MSS, ;, of which a =c is
and b = c is not a member, and there will be MSS, ; of which b = ¢ is and
a = c is not a member.

Let CMSS,;, be the closure of MSS,;, under the rule o=},
A(a) 7A(B). éurnmarlzmg for any FR,;, we defined the sets CMSS, ; .,
CMSS, ;2 .-

Lemma 3. Each CMSS is the union of the elements of the canonical
characterlzatlon of some CL-model.

Proof. Consider some CMSS,; ., . By separating its elements accordmg to
their form, we obtain a quartuple (S°, I°, E°, N°). To see that this is a
canonical characterization of some CL-model, remark that CL-models im-
pose no conditions on S°; that N° is empty; and that the only condition on
I° and E° is that they should be closed under the semantic consequence
relation. But the rule o=, A(«a)/A(f) takes care of this condition. M

In view of Lemma 3, I shall call the CMSS, ; , canonical characterizations
(of CL-models). Actually, they are nearly canonical characterizations: we
only have to separate their elements as indicated in the proof.

Lemma 4. For each finished set of requirements FR, ; there is at least one
canonical characterization CMSS, ; , .

14 1t is obvious that some subsets are maximal in this respect. This entails that they
contain all members of R, that they do not contain any A for which “A is false” is required,
and that they contain no formula of the form ~A.
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Proof. Let (S°, I°, E°, N°) be CC,, and let R be defined from FR, j as
before. R is a subset of S°UI°UE® UN®UR that is compatible with some
CL-model and meets all the requirements of FR, .. Hence, even if, for any
A in"S°UIPUE°UN®, R U {A} either is incompatible with some CL-model
or conflicts with the requirements in FR, ;, there is a MSS; jx (viz. R) and
hence also a canonical characterization CMSS, ; . L]
The consistent models associated with T

To obtain the consistent models associated with M, we turn any canonical
characterizations of consistent models associated with I into a CL-model
which we shall call typical for this canonical characterization. The
(completely standard) procedure to do so is as follows:

(i)  We define D={a|aeCuV and there is no 8 such that = el°

and B<al.
(i) IfoeDthenv(a)=a;if agDand o=pBel°, thenv(a)=p.
(1ii) v(n") is the set of all r-tuples <a], ar) such that «;, ..., &, € D

and mray,...o, ¢E°.
(iv) Where A€S, v(A)=1 iff AeS°.
(v) forall A, v(~A)=0.

I leave it to the reader to show that the resulting model and more specifi-
cally that C1.2 is well defined.

Let me quickly recapitulate. We start from the APIL2-models of T". For
each such model we define an initial set of requirements. Each initial set of
requirements is turned into one or more finished sets of requirements. Each
of these finished sets leads to one or more canonical characterizations of
CL-models. Each of these canonical characterizations may be turned into a
CL-model. The thus obtained CL-models are the consistent models associ-
ated with T".

In section 11, I schematically illustrate the procedure by means of some
concrete examples and discuss the way in which we arrive at the selected
consistent models associated with T'. For now, it is important to show that
the present procedure leads to the desired results.

Let a coherent selection from a set of contradictions &~ A,
A&~ A, } be any set {i - A, } (in which each “+” 1s either a
negation or nothing) that has a CL-model — it has such a model iff it is not
itself inconsistent.



INCONSISTENCY-ADAPTIVE LOGICS AND NON-MONOTONIC LOGICS 81

Theorem 5. There is at least one coherent selection from each (non-empty)
set of contradictions.

Proof. First, there obviously is a coherent selection from the subset
{A,&~ A} in view of C2.5. Next, if {#A,, ..., +4,} has a CL-model, say
M, then vy (A, )=1o0rvy,(~A4,,)=1; consequently, {iAl, i LA
A +1} or {iAl, w Ty #A +1} has a CL-model. The Theorem follows

from these by induction. |

As, moreover, consistent P|IL-models have the empty set as their initial set
of requirements:

Corollary 3. For each PlL-model M, there is at least one initial set of re-
quirements.

Theorem 6. If M is an inconsistent PIL-model, then any coherent selection
from the set of contradictions true in M is true in at least one consistent
model associated with M.

Proof. Consider a PIL-model M and any coherent selection S from the set
of contradictions true in M. In view of the definition of an initial set of re-
quirements, there is an initial set of requirements IR that agrees with S.
This means: wheneverv (A&~ A)=1, “tAisfalse” € IR iff t A ¢ S.

IR results in at least one finished set of requirements FR; ; (from
Lemma 2). Each FR, ; results in at least one canonical characterization
CMSS, ; . (from Lemmas 3 and 4). Each CMSS; ;, has a typical CL-model,
which is a consistent model associated with M.

In view of the procedure leading to the consistent models associated with
M, each such model fulfils all requirements in the FR; j from which it is
built. Indeed, it fulfils all those requirements that pertain to primitive ex-
pressions; and it is easily shown, by an induction on the complexity of for-
mulas, that the rules of Table 1 warrant that all requirements in the set are
fulfilled if the requirements on the primitive expressions are fulfilled. W

Before leaving the matter, I add four comments, some clarifying, other ex-
panding. The first is that the consistent models associated with M need not
have the same domain as M and not even a domain of the same cardinality.
(But their domain is always countable.) Removing an inconsistency may
require that two elements of the domain of M are identified, or that new el-
ements are added.(This formulation is sloppy, but clear enough.) Consider,
for example some ‘rich finitist arithmetic’ as described in Jean Paul van
Bendegem 199+ (for L fixed). There is an infinity of ways to make such a
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system consistent, the results being (consistent) finitist arithmetics with L,
L+1, ... distinct numbers, and (infinitistic) classical arithmetic. All but the
first system require that the domain be extended with 1, 2, ... up to denu-
merably many elements; each of these solutions is equally acceptable in
view of our present only aim: to define the set of consistent models associ-
ated with some set of premises.

The second comment is that, for many purposes (especially computa-
tional ones) it is not only advisable but also safe to take only N-minimal
models into account. First remark:

Theorem 7. For any APIL2-model M of T, there is a formula-equivalent
N-minimal APIL2-model M of T".

Proof. From Theorem 3 and the fact that, as M and M’ are formula-equiva-
lent, the latter is an APIL2-model of T' iff the former is one. |

Remember that the first step towards the consistent models associated with
M was the canonical characterization of M, viz. CC,,. Hence, Theorem 2
and Theorem 7 warrant that the N-minimal models of a set of premises T
will give us all consistent models associated with T".

Before proceeding to the preferences, it is worthwhile to consider what
might happen if one were to stepwise eliminate the inconsistencies. People
only interested in the reconstruction of mixed non-monotonic logics based
on CL may skip the sequel of the present section, as it only concerns other
(in my view more important) types of applications that presuppose the
elimination of some but not all inconsistencies. The most significant appli-
cations are those in which one eliminates inconsistencies one at a time, se-
lects the less inconsistent models in view of the preferences, and possibly
continues research to fix further preferences.

A central question, so it seems, is whether the deterministic character of
the procedure is safeguarded: if we eliminate inconsistencies one (or some)
at a time, gradually passing from inconsistent models to less inconsistent
models, do we then arrive at the same set of models as defined by the pre-
vious procedure? The answer is: under rather obvious conditions, yes in-
deed. But it turns out that this answer has no direct importance for the ap-
plications I have in mind. Let me start with the answer itself.

First, in which way will a single inconsistency (or part of the inconsis-
tencies) be eliminated? We start, as above, with initial sets of requirements.
Only, we now define these sets with respect to some subset of N°, rather
than with respect to N°, itself. We extend this set by the rules of Table 1 to
coherent finished sets of requirements. This time, the constraints on the
MSS, ; , are that they are incompatible with the definition of a PIL-model

(not a CL-model), fulfil all requirements in FR, ;, and do not lead to in-
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consistencies that were false in the original model. From there, we go to the
CMSS, ; , and the less inconsistent models associated with the premises.

It turns out to be astonishingly simple to prove that the stepwise elimina-
tion of the inconsistencies leads ultimately to the same result as the elimi-
nation of all of them at once. However, as I announced, this result is not
terribly important. If the reader wants concrete examples of the subsequent
arguments, I refer him or her to Meheus 199+ (in this volume) on scientific
discovery. First argument. In view of the preferences, some consistent
models may be ruled out that would turn out preferable if all inconsisten-
cies were eliminated at once and if, quite counterfactually, all preferences
were fixed at the outset. Nothing can be done about this: that choices are
made on the basis of present insights is unavoidable. A further complica-
tion is related to the fact that some inconsistencies are interdependent: if an
inconsistency is removed in a specific way (relying on the preferences),
another inconsistency may be resolved at once. As a consequence, it will
never be studied which preferences should be assigned to each of its
‘halves’. Second argument. In many cases, it is sensible, in view of the
preferences, to eliminate an inconsistency in such a way that new inconsis-
tencies arise; sometimes this will be a reason to eliminate the inconsistency
in a different way, but sometimes it simply will not. It is possible that new
premises (constraints) are added, e.g., because new experiments are per-
formed or some (non-logical) ‘principle’ is tried out — as Clausius's pre-
cursor of the entropy principle. The requirement that no new inconsisten-
cies should arise is nice from a logician's point of view, but might be quite
useless (and mistaken) for a practising scientist. The one and only criterion
for the scientist are the preferences. For him or her, empirical adequacy and
the coherence of the theory are far more important than any formal criterion
a logician could imagine.

11. Weeding out inconsistencies: selecting amongst the consistent models

Let us return to the preferences to define the set of selected consistent mod-
els associated with T". Here the reader may easily verify the significance of
the argument presented in section 7: we need to start from APIL2-models
of T", not from (all) its PIL-models.

The negative result on the elimination of inconsistencies by Rescher's
mechanism (section 8) teaches us a very positive lesson on the preferences:
the important question is not how many non-monotonic rules hold true in a
model, but how many instances of such rules are true in it (and which in-
stances — see below).

It is generally said that it should be left to the user which predicates are
circumscribed, but this would not work. There is something wrong with
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that instruction itself, as it may lead to inconsistencies (see, e.g.,
Lukasiewicz 1990, p. 238). This, however, is hardly a problem for mixed
non-monotonic logic. All the latter requires is that suitably employed ab-
normality predicates are circumscribed in some order. So, here is my claim:
if we transfer this order from the abnormality predicates to the preferences
of the instances of the corresponding general statements, we obtain an ac-
curate reconstruction on the approach defended here.

Let us first consider circumscription with one abnormality predicate (or
with a set of abnormality predicates that do not conflict with each other in
the application). (7.1) forms a simple example that will enable me to illus-
trate the procedure. I repeat the premises

(7.1) (Vx)(Bx D Fx), (Vx)(Px> Bx), (Vx)(Px>~ Fx), Pa&Bb
as well as the set of atoms contained in the APIL2-consequence set:
(7.3) Pa, Ba, Fa, ~Fa, Bb, Fb, ~Pa (forall eCuV-{a})

In the circumscription approach, the first premise of (7.1) would be
rephrased as (Vx)((Bx&~ Xx) > Fx), where “X” is the abnormality predi-
cate. So, the reconstruction requires two steps. First, we attach the lowest
preference to (Vx)(Bx D Fx) and its instances, and a higher one to the
other premises and their instances. As a result, we have two (in other cases
more) sets of (open and closed) formulas: I, containing the formulas with
the highest preference, and I1, containing the formulas with the lower
preference. For each model M and each set IT, Let ,II. = {A |A€Il, and
v, (A)= 1}. Next, starting with IT,, we eliminate from the set of consistent
models associated with (some) I" those M for which there is an M' (in the
set) such that | IT, . IT ; we repeat this procedure for IT,, and so on.

Let us return to (7.1). There is one inconsistency in its APIL2-conse-
quence set. This inconsistency holds true in all APIL2-models of (7.1), and
no other inconsistency holds true in any APIL2-model of (7.1). So, it is
quite obvious that we have two sets of consistent models. Still, let me il-
lustrate schematically the procedure from section 10.

Consider a model M =(D, v) with D= {ol, . V— } v(a)=o, (and
o, is assigned to no other individual constant or variable), v(b)=02,
vtP)={o i v(B)={al, e O fr v(F)={ol, svag 015}, v(~ Fa)=1, and
v(~ A) =0 whenever A # Fa. M is incompletely described, but in all es-
sential respects, M is representative for all APIL2-models of (7.1). For ex-
ample, if v(P) would contain more elements, or if v(~ A) would be 1 for
more formulas, or if another individual constant were assigned the value
o, there would be more inconsistencies in the model than required by
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(7.1), and hence M would not be an APIL2-model of (7.1). I leave it to the
reader to check that all of (7.1) are true in M.

Given that M is incompletely characterized (for the sake of generality),
the description of its canonical characterization is somewhat complex:

CcC,,
- S$°and |° are fully unspecified
- E° contains Pa, Ba, Fa, Bb, and Fb, does not contain Pa for any

o e CuV —{a}, and is unspecified as far as other atoms are concerned
- N°={~ Fa}

The finished sets of requirements are {Fa is false} and {~Fa false, Fa is
true}. This leads to

CMSS, , , (separated into the elements of a canonical characterization)

- S°and I° asin CC,,

- E° contains Pa, Ba, Bb, and Fb, does not contain Fa and does not contain
Po for any o€ CUV-{a}, and is identical to CC,, as far as other

primitive predicative expressions are concerned
- N=@

CMSS, |, (separated into the elements of a canonical characterization)

- S°and I° asin CC,,

- E° contains Pa, Ba, Fa, Bb, and Fb, does not contain Pa for any
a€CuV—{a}, and is identical to CC,, as far as other primitive pred-

icative expressions are concerned
- N°=@

In the corresponding CL-models, say M, and M, ,,, we have (I mention
only a relevant selection):

M,
True: Pa, Ba, Bb, Fb, (Vx)(Px> Bx), (Vx)(Px >~ Fx),
Ba o FaforallaeCuV-{a}

False:  Fa, Pa forallaeCuV-{a}-{a}, Ba>Fa

MZ,I.]
True: Pa, Ba, Fa, Bb, Fb, (Vx)(Bx> Fx), (Vx)(Px> Bx),
Pa o~ Faforalla e CuV—-{a}

False:  Pa>~ Fa, Po forallceCuV-{a}
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In other words, M, | | is just like M except for v(F)= L — 015} and
M, , | is just like M except that v(~ A)=0 for all A. In view of the prefer-
ences, M, , , is the only selected consistent model associated with (7.1) —
it contains all instances of (Vx)(Px >~ Fx) whereas M, | does not. In
other words, a comes out a non-flyer, as it should. o

Would this work equally well for other APIL2-models of (7.1)? The only
possible difference with the (incompletely described) model M is that an
alternative model would map some members of V on o, =v(a).!5 In this
case, the procedure leads to the somewhat unexpected result that these
members of V will be mapped on an element of the domain that is different
from v(a). This, however, has not the slightest effect on the truth of any wff
in the selected models, and hence the wffs true in all selected consistent
models associated with (7.1) will be the CL-consequences of {Pa, Ba,
~ Fa, Bb, Fb, (Vx)(Px > Bx), (Vx)(Px >~ Fx), (Vx)(x#a>(Bx>
Fx))} —(Vx)(Px > x = a) is among these.

It is easy to see that this result is, the formulation left aside, identical to
the one we obtain by circumscribing X. Only, the selection of models pro-
ceeds in a different way. The first premise will be formulated as
(Vx)((Bx&~ Xx) > Fx). All premises will be true in all models (so nothing
corresponds to the second set above), but models will differ with respect to
the number of abnormal entities. If we minimize the abnormal entities by
circumscription, we obtain exactly the set of models we selected above
(with v(X)=v(P)).

Let us now consider circumscription with two interfering abnormality
predicates, say X, and X, . I first write the extended set of premises with the
abnormality predicates:

(11.1) (Vx)((Bx&~ X,x) > Fx), (Vx)(Px> Bx), (Vx)((Pxé&~ X,x) >~ Fx),
Pa, Bb, Pc, Fc

Here we allow “Penguins don't fly” to have exceptions, and fortunately so,
as c is a flying penguin. All penguins now are abnormal: non-flying pen-
guins are X -abnormal (abnormal as birds with respect to flying), whereas
the flying ones are X,-abnormal (abnormal as penguins with respect to
flying). A suitable circumscription will require that we first minimize X,-
abnormality, and only then minimize X, -abnormality.

According to the reconstruction, the premises are:

15 Where M is such a model, there will be open formulas A such that v, (A&~ A) = 1
and v, (A&~ A) = 0. However, for all open and closed formulas 4, vM.}(EI(A&—- A)) =
vy (H(A& ~ A)) » and hence M is an APIL2-model of (7.1).
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(11.2) (Vx)(Bx > Fx), (Vx)(Px > Bx), (Vx)(Px >~ Fx), Pa, Bb, Pc, Fc

The preferences will obviously be assigned thus:

P1 Pa, Bb, Pc, Fcand (Vx)(Px> Bx)
P2 instances of (Vx)(Px >~ Fx)
P3 instances of (Vx)(Bx > Fx)

with P1 > P2 > P3.
The APIL2-consequence set contains the following atoms:

(11.3) Pa, Ba, Fa, ~ Fa, ~Pb, Bb, Fb, Pc, Bc, Fc, ~ Fc, ~ Pa
(forall e CuV-{a}.

As before, inconsistencies will be minimal in APIL2-models and we only
have to eliminate the two inconsistencies that occur-in (11.3). This will
give us four (sets of) models associated with an APIL2-model of (11.2), for
which I list only the atoms and the significant (instances of) generaliza-

tions:

M,
True: Pa, Ba, Fa, Bb, Fb, Pc, Bc, (Vx)(Px> Bx), Pao~Fa
forall e CuV—{a}, BaoFa forallaeCuV-{c}

False: Pa forallaeCuV—{a, ¢}, Fc, Pa>~ Fa, Bc>Fc

M,

True: Pa, Ba, Bb, Fb, Pc, Bc, (Vx)(Px > Bx), (Vx)(Px >~ Fx),
Ba>oFo foralaeCuV-{a, c}

False: Pa forallaeCuV-{a, ¢}, Fa, Fc, Bco Fc, Ba> Fa

True:  Pa, Ba, Fa, Bb, Fb, Pc, Bc, Fc, (Vx)(Px>Bx), Pa>~Fa

forall e CuV—-{a, c}, (Vx)(Bx> Fx)
False: Po forallaeCuV-{a, ¢}, Pa>~Fa, Pco~ Fc

True: Pa, Ba, Bb, Fb, Pc, Bc, Fc, (Vx)(Px> Bx), Pa>~Fa
forallceCuV-{c}, BaodFa forallaeCuV-{a}
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False: Pa forallaeCuV-{a, ¢}, Fa, Pco~Fc, Ba>Fa

First, M, and M, are eliminated because a wff with the highest preference
is false in them, viz. Fc. When we come to wffs with preference P2, M, is
eliminated in favour of M, because {Pa >~ Fa} c {Pa >~ Fa, Pco~ Fc}.

Remark that the above argument is representative for all consistent mod-
els associated with (11.2); for any APIL2-model of (11.2), we obtain a set
of models that correspond to M,- M, and the one corresponding to M, will
be selected. The wffs true in all selected consistent models associated with
(11.2) are the CL-consequences of {Pa, Ba, ~Fa, Bb, Fb, Pc, Bc, Fc,
(Vx)(Px 2 Bx), (Vx)(x#c>(Px>~ Fx)), (Vx)(x#a>(Bx> Fx))} —
remark that (Vx)(Px 2 (x =av x =c)) is a CL-consequence of this set.

If the last example is reformulated with one abnormality predicate only,
circumscription does not enable us to derive either Fa or ~Fa. The same re-
sult obtains under the present reconstruction. Remark that we have to posit
P2 = P3. In this case, the set of selected consistent models associated with
(11.2) contains M, as well as M,. Fc is true in each of them, but neither
Fanor ~Fa is.

A proof that the reconstruction is accurate in general has to be postponed
to another paper. Still, I hope it will be quite clear to logicians that fol-
lowed the argument that such proof is within reach (and that the recon-
struction of some other mixed non-monotonic logics is within reach as
well). Let me adduce some evidence for this claim .

Let the premises I' be given as the union of n+1 non-overlapping sets I"
=Tyl u..Ul . The members of T'; do not contain any abnormality
predicates. The members of the other n sets contain wffs of the form
(Va)((A&~ X_”O!)DB).M ', contains the wffs in which occur the ab-
normality predicates that are first circumscribed, say X,,, X,,, etc. ; T,
the wffs in which occur the abnormality predicates that are next circum-
scribed, say X,,, X,,, etc.; and so on.!7 For the reconstruction, we start
from T'yul'.u..ul',, where T, contains (Va)(A>B) for each
(Vo) ((A&~X}.a):>BAz_e I',,. The members of I'j obtain the highest
preference PO, those of ' , the next highest preference P1, etc.

16 Whether & does or does not occur free in A or B is immaterial. This restriction on T"
is justified in view of the application of circumscription as a mixed non-monotonic logic'.
Circumscription itself is a much more general mechanism, and a rather wild one, viz. a
mechanism with rather unpredictable effects.

171 disregard formulas in which occur several abnormality predicates.
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Circumscription considers CL-models only. Let A be the set of wffs true
in all models of T" in which the abnormality predicates have been circum-
scribed in the correct order. Let A =C'nCL(l"O) obviously A, c A. Let

1]
E v A abbreviate any formula of the form (X o V.. vX

F LI+ i j+n j+n
VA(n21). A€A,, iff there is Z, such that 2, vAeCn, (T u..UT
and there is no E, such that E v ~AeCn, (1"0 u...ul"l.ﬂ). Let A=A, .
Let me somewhat explain the recursive definition. First remark that each
A, is consistent and that A C A c..cA . Next, suppose that
S VAeCng (Tyu..ul,) If AgAgu..UA, and ~AeA U...UA,
then there is a E, such that E.v~AeCng (Fou...ur‘m) and hence
A¢A  and ~AeA, . If there is no E_  such that
EmV~AeCng (Tyu..Ul',,) — hence ~AgAyu..UA, — then
A€, and ~AgA,, . IfA, ~Ag A jU...UA, and there is E | such that
EiaVv~A€Cngy (Tyu..Ul,, ) thenA, ~AgA

The present reconstruction starts from APIL2-models. The APIL2- con-
sequences of I' LT, LT, U...Ul"  may be characterized in two steps.
First we define, with respect to I" (the formulas in which the abnormality
predicates occur), a sequence of sets O, ©, ..., © as follows:
®,=Cn,, (T,)and Ac®©_ iff there is a =, such that E vAe

nPIL r u. ul" Agam 0,20, c.59. . Next we defme O as
Wit (]G) By thlS closure under AP|L2 we rule out any further incon-
sistencies: if Ae©@and ~A¢®, then ~A>Be® for all B, and hence
vy(A) =0 for all PIL-models of @ (except for the trivial model, which is
not an APIL2-model of T')UT | U, U...UT"  anyway). Incidentally,
the non-trivial PlL-models of ® are the APIL2-models of
r,our,ull,,u..Ul' . Defining the consistent models associated with
Four,ul,,u..ur' | from the APIL2-models of I'yuT, UTI,,
u...UT,,, we obtain CL-models that maximally agree with some APIL2-
model of I'y UI' , U, ,L...UI", | and moreover contain a coherent selec-
tion from the inconsistencies in ©. The subsequent selection of consistent
models associated with I' ) T, U, L...UI" _ warrants that (i) all mem-
bers of ', are true in all selected consistent models, and (ii) if
~A¢g C”cj@)m) — hence ~Ag CnCL(E)f) — then A€ (@m) warrants
that A is true in all selected consistent models. And as all selected consis-
tent models are CL-models, all CL-consequences of the wffs true in each of
them are true in each of them.
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The preceding paragraphs do, as announced, not constitute a proof. Yet,
they make it plausible that what is lost by allowing for inconsistencies, is
regained by eliminating them according to the preferences.

12. Concluding remarks and open problems

What does my proposal come to? As I promised, rules with exceptions are
seen as rules that may lead to inconsistencies for which we have a fixed
elimination procedure. Given an inconsistent set of premises, paraconsis-
tent logics such as PIL lead to an inconsistent but non-trivial consequence
set. By moving to APIL2, we minimize the inconsistencies with respect to
the premises, thus arriving at a richer consequence set than if we apply PIL.
This is the first selecting move, the purely logical one. It actually is a very
important step, and I return on it below.

Our next step was to define, from the set of inconsistent APIL2-models
of the premises, a set of consistent models. This step too was completely
determined on logical grounds; preferences do not play any role in it. Not
only the deductive aspect, but also the definition of the consistent models
associated with the premises from their APIL2-models, is independent both
of the preferences and of the way in which these are handled: the way in
which preferences of sentences are turned into a selection of the consistent
models. Only this very last aspect, settling the preferences and selecting
amongst the consistent models in terms of them, is what the discussion be-
tween mixed non-monotonic logicians should be about.

To see the importance of the first and second step, reconsider circum-
scription for a moment. Circumscription minimizes (the occurrence of) ab-
normality predicates in a certain order. The minimization of the abnormal-
ity predicates itself corresponds to a purely logical step in the reconstruc-
tion: the restriction to APIL2-models minimizes inconsistencies. The order
in which abnormality predicates are minimized corresponds to the step
where preferences come in: the selection of the (associated) consistent
models. The last paragraph of the previous section shows the way in which
APIL2-models take care of minimizing abnormality predicates, and the role
of preferences to determine that order.

The procedure I sketched was somewhat complicated. From a philosoph-
ical point of view, this is quite unimportant. The gain is that the two com-
ponents of mixed non-monotonic logics are separated. In other words, that
rules with exceptions are shown to be special cases of facing inconsisten-
cies in our belief system. What is special about them is that we have a
ready way out: the preferences are known.

As for the practical side of the enterprise, I hope that the examples show
the procedure to be rather expeditious in concrete cases. So, even before
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tableau-methods and similar tools are articulated, the approach allows one
to tackle the ordering of the preferences on statements and the way to de-
rive from them a selection of the consistent models. The solution of this
difficulty (the real task for students of mixed non-monotonic logics) is by
no means trivial. Anyone who looked at mixed non-monotonic logics from
a formal point of view, rather than from a couple of examples, knows that it
is easy enough to create problems by the dozen. Consider, for example, the
assignment of preferences in terms of the generality of the rules. It is by no
means clear whether the notion of generality should be understood exten-
sionally or intensionally, and messing up the rules by means of some ele-
mentary logical transformations ruins the whole approach. So, from a prac-
tical point of view, the reconstruction presented in this paper offers the
possibility to study the preference ordering within a transparent formal
framework. This would not only lead to an ordering of the field, but would
also enable one to decide which approaches are specific cases of others,
and which are simply inadequate as tools of some generality.

It is extremely important that the present reconstruction does not require
that preferences be attached to premises. If we use some general criterion
— such as the generality of the rule — rather than a given set of prefer-
ences, we may apply the criterion directly to APIL2-consequences of the
premises rather than to the premises themselves. This is why we are able to
reconstruct circumscription by the present approach (as opposed to a
Rescher-like approach), for circumscription operates on the abnormality
predicates, not on premises. With respect to the use of a general criterion
for determining the preferences, the present approach is even more
promising than circumscription. The same abnormality predicates may oc-
cur in general statements of different generality, whereas the present ap-
proach does not use any abnormality predicates and hence a general crite-
rion may be applied to statements as they are derived.!8

A rather different advantage of the present approach is that it opens up a
number of perspectives. Recently, non-monotonic logicians finally were
sensible enough to start considering cases where not all inconsistencies are
eliminated. Within the present framework, this is easy to handle. As the or-
der in which inconsistencies are eliminated does not matter to the procedure

sketched above, not eliminating some inconsistencies is fully unprob-
lematic.

18 This does not entail that the present reconstruction of circumscription-based mixed
non-monotonic logic might be inadequate. The reconstruction presupposes indeed that the
order in which the abnormality predicates are circumscribed is given. But the present
approach will be more friendly towards a general preference criterion than circumscription.
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Even more remote from the mixed non-monotonic enterprise, but pre-
sumably more important for the philosophy of science, is the possibility to
first analyze, in terms of APIL2, the inconsistencies involved, and then to
fix preferences in view of these results, possibly after gaining more infor-
mation — and the analysis of the inconsistencies will suggest which infor-
mation to look for. In this respect I already referred to Meheus 199+. That
paper is directed to understanding creative processes. Actually, one such
creative process concerns the very development of non-monotonic logics
itself. The forerunners in the field, viz. those who approached the matter
computationally, had to start analyzing the very simple examples, still well-
know today, to find out how they might be dealt with.

To conclude this paper, I mention some open problems. First and fore-
most, it is quite apparent that the present approach demands and deserves
some more work at the meta-theoretic level. To make the reconstruction
more practicable, tableau-methods should be worked out and the connected
metatheorems proved. And, most importantly, general proofs should be
presented to show that the reconstruction of a specific mixed non-mono-
tonic logic is adequate.

Variations on the present enterprise suggest themselves. The first con-
cerns the use of adaptive logics based on other substructural logics. A host
of those logics is available. Although I am pretty convinced that APIL2 is
an excellent choice for the present purpose,!9 a logical study based on a
single system is manifestly too restricted. Not just other logics, but other
types of logics suggest themselves in this respect — see, e.g., Joachim Van
Meirvenne 199+, who considers indexed adaptive logics. Such variations
would clearly lead to new mixed non-monotonic logics, but they would do
so independently of the discussion on the way in which to deal with prefer-
ences. So, the field will be extended further, but the discussion of the alter-
natives will be much more transparent than it is today, thanks to the fact
that the present reconstruction separates the different aspects. If such prob-
lems were tackled, the study of mixed non-monotonic logics would change

rather dramatically and —as I hope to have convinced the reader — quite
for the better.

Universiteit Gent

19 For example, many paraconsistent logics validate Contraposition (and hence Modus
Ponens). But it is easily seen that, in the present context, each of these merely involves
complications, viz. spreading inconsistencies.
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