Logique & Analyse 143-144 (1993), 329-342

THE SIMPLEST MEINONGIAN LOGIC
Jacek PASNICZEK

The expression Meinongian logic is rarely used!. However, we refer quite
often to Meinong's views when logical problems of ontology, existence or
inconsistency (paraconsistency) are discussed?. In particular, since the
acceptance of an inflated sphere of nonexistent objects is likely the main
point of Meinong's ontology according to the most popular interpretation,
usually the ideas underlying free logics are associated with the name of this
Austrian philosopher. But certainly the mere toleration of nonexistent
objects is not enough to call a logic Meinongian. As a matter of fact,
Meinong's ontology and especially his theory of objects is highly elaborate
what, after all, makes it susceptible to many misinterpretations and
misunderstandings3. Yet we can point to some distinctive principles which
characterise the ontology more closely. Thus, according to Meinong, every
object is constituted of properties and every set (class) of properties
constitutes exactly one object. The set of properties associated with an
object is interpreted as the Sosein of the object. An object possesses a
property if it is its constitutive property or it is entailed by such a property.
Objects need not exist in order to possess properties (are ausserseiend).
Identical objects are constituted by the same properties. Since there are no
limitations concerning the cardinality and qualitative selection of
properties, objects can be incomplete and inconsistent (roughly an object is
incomplete if for some property it neither possesses this property nor the
complementary property; an object is inconsistent if it possesses con-

! This term was not used even by philosopher who first started to build Meinongian
logics, i.e. Terence Parsons. Probably the only persons who use it frequently are the author
of this paper and D. Jacquette; see his Meinongian Logic. The Semantics of Existence and
Non-existence (to appear).

2 Asa good example we can mention here the monumental work of R. Routley, see his
Exploring Meinong's Jungle and Beyond, Department Monograph #3, Philosophy
Department, Research School of Social Sciences, Australian National University, Canberra
1980.

3 B. Russell strongly criticised Meinong's ontology accusing it of inconsistency. Meinong
reply for that criticism was very unconvincing and perhaps that is why his views have been
forgotten for a long time. Only recently Meinong's ontology was rediscovered and a
formally consistent interpretation of it was provided.
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tradictory properties). Certainly one can gain a better intuitive under-
standing of the contents of Meinong's ontology when one thinks of
Meinongian objects as possible objects of consciousness (such an in-
terpretation helps despite the notorious ambiguity of the phrase “object of
consciousness”).

Recently several philosophers and logicians have made efforts to render
Meinongian views consistent. There have appeared several theories of
objects formalising Meinong's ontology, or, which are inspired by it. Such
theories have been created by T. Parsons, R. Routley, W. Rapaport, E.
Zalta, D. Jacquette, J. Pafniczek?. Some of these theories may be
considered as logics sensu stricto, just as Meinongian logics. The most
developed and known are Parsons' and Zalta's logics. These logics are
strong second-order intensional systems based on a very intricate language
and semantics. As such they are extremely complicated. At the same time,
their deductive side is rather trivial - almost nothing interesting can be
deduced from the axioms what has not already been expressed explicitly in
the axioms themselves. Perhaps that is why the logics are unattractive not
only for philosophers but for logicians as well. There arises the question
whether any logic which accommodates the basic principles of Meinong's
ontology must be necessarily so complicated.

I am going to develop in this paper a quite simple logic - M-logic - which
(despite its simplicity) might be considered as a basic Meinongian logic. I
call M-logic “the simplest” one for the following reasons: (1) it is
extensional in the sense that properties and relations are represented only
by their extensions, (2) it differs slightly from classical first-order logic
(sharing the same alphabet), (3) it is a first order system, (4) it is closer to
the natural language syntax than classical logic. Generally, M-logic has
smaller expressive power than Parsons' and Zalta's logics. However, due to
its naturalness and simplicity, M-logic can be easily extended to stronger
systems, e.g. intensional and second-order ones. These systems fulfil
another principle of Meinong's ontology (besides those mentioned above)

4 Cf. T. Parsons, Nonexistent Objects, Yale University Press, 1982; R, Routley, op. cit.;
William Rapaport, Meinongian Theories and Russellian Paradox, Nou#s 12, 1978;
Nonexistent Objects and Epistemological Ontology, Grazer Philosophische Studien Vol.
25/26 1985; E. Zalta, Abstract Objects: An Introduction to Axiomatic Metaphysics,
Dordrecht: Reidel 1983; Intensional Logic and the Metaphysics of Intentionality, MIT Press,
1988; D, Jacquette, op. cit.; K. Perszyk, Nonexistent Objects. Meinong and Contemporary
Philosophy Kluwer, Nijhoff 1993; J. Paéniczek, Meinongowska wersja logiki klasycznej. Jej
zwiazki z filozofia jezyka, poznania, bytu i fikcji (in Polish: The Meinongian Version of
Classical Logic. Its Relevance for the Philosophy of Language, Knowledge, Being, and
Fiction), M. Curie-Sklodowska University Press 1988.
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which is particularly troublesome for logical treatment - we call it the dual
predication principle. In the second part of my paper I will mention ways
of carrying out such extensions. Curiously enough, second-order versions
of M-logic look almost the same as M-logic itself and the essential
difference lies in relaxing the grammar rules of the formal language.

I

The main problem which we must face when starting to build a
Meinongian logic is the problem of a proper choice of formal language. It
is commonly shared opinion that the logic should be bivalent®. Thus we
cannot express predication in the classical first-order language since in the
case of incomplete and inconsistent objects it would lead to contradiction.
So, how is it possible to render consistently sentences like a is squared, a is
not squared on the ground of Meinongian logic? This can be carried out in
the simplest way by introducing complex predicates correlated
semantically with complex properties; in particular the negation of the
predicate is squared will be the predicate is not squared (or better: is non-
squared). Obviously, the predication involving complex predicates cannot
be generally reducible to the predication involving only simple predicates
together with respective sentential connectives. For the sake of generality,
we should introduce more complex predicates than negations, at least all
those that can be expressed in the language of first-order logic. Usually we
do that by means of the awkward lambda notation®. However the same can
be done by appealing exclusively to the primitive symbols of classical
logic. In particular, the negation of P we express simply by x—Px (instead
of expressing it by [lx—wa]). Generally, any expression of the form xA,
where A is a formula, will be a predicate expression. Subject-predicate
sentences with the subject a will be represented by formulas of the form
axA. For example the following sentences: John is not silly, John is silly
and lazy, John loves himself, John loves Mary, Mary is loved by John, John
loves somebody, Somebody is loved by John will have the following forms
respectively: ax—Px, ax(Px AQx), axRxx, axbyRxy, byaxRxy, ax3yRxy,
JyaxRxy. We see that in this new syntax constants occupy the same places
as quantifiers in the classical syntax. And this is the very idea of the formal
language for our Meinongian logic, call it M-language. So in M-language
constants and quantifiers are of the same category - the term category.
Informally, we consider terms to be semantically correlated with objects. It

5 There is one exception - D.Jacquette claims that such a logic must be three-valued and
he applies Lukasiewicz logic to construct Meinongian logic, cf. op. cit.

6 Cf. Parsons and Zalta, op.cit.
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means that not only constants but quantifiers as well are categorematic
expressions. Perhaps the idea is not very astonishing. Meinong himself
ascribed quantifier objects, i.e. objects such as every dog, some dog, to his
ontology’. Also Frege interpreted quantifiers as objects of special kind:
second-order concepts. Besides, it is commonplace in the contemporary
philosophy of language to treat names and quantifiers as expressions of the
same category. Here we have in mind R. Montague's works and current
semantical analyses of noun phrases by means of the notion of generalised
quantifiers8.
Now let us describe M-logic in some detail.

M-language

As we hinted earlier, the alphabet for M-language consists of the same
symbols as the alphabet of classical logic, i.e.:

(1) sentential connectives: —, O (the other sentential connectives are
introduced by means of the usual definitions).

(2) the universal quantifier symbol: V.

(3) the identity symbol: =.

(4) individual variables: x,, x,, ...

(5) constants: a,, a, ...

(6) predicate symbols: P, P,, ...

(7) brackets: (,).

Let us assume that metavariables s, range over terms, i.e. symbols listed in
(2) and (5); x, y, ¥,, ¥,, ... over variables.

The grammar of M-language is defined as follows: (a) every expression
of the form Py,...y and x =y is a formula; (b) if A, B are formulas, then

71 rely here on Grossmann's interpretation of Meinong, Cf. Reinhardt Grossmann,
Meinong, Routledge & Kegan Paul 1974.

8 Cf. Richard Montague, The Proper Treatment of Quantification in Ordinary English, in:
Formal Philosophy, ed. Richmond Thomason, Yale University Press, 1974. From the bulk
of current literature concerning generalised quantifiers we may recommend two papers: J.
Barwise & R. Cooper, Generalized Quantifiers and Natural Language, Linguistics and
Philosophy, 4 1981; D. Westerstahl, Quantifiers in Formal and Natural Languages, in: D.
Gabbay and F. Guenthner, Handbook of Philosophical Logic, Vol. 1V, 1989,



THE SIMPLEST MEINONGIAN LOGIC 333

—A and (A D B) are formulas; (c) if A is a formula then xA is a predicate:
(d) if T1 is a predicate then ¢IT is a formula®.

M-system

A M-system is defined by the following axiom-schemata and rules of in-

ference:

M1  Classical truth-functional tautologies.

M2  Vx(A>B)>(1xA>xB)

M3 A > VxA, provided x is not free in A.

M4 VxA> A(y|x)

M5 txA>tyA(y|x), where A(y|x) is obtained from A by freely sub-
stituting every occurence of x by y.

M6 x=x

M1 x=y> (A S A(y| x)), where A(y[|x) results from A by freely
substituting every or some occurence of x by y.

MP ift A>Band}, Athent, B

MG if -, Athent, txA and b, —tx—A

Let us list now some selected theorems of M-system.

M3

M9

M10
M11
M12
M13
M14
M15
M16
M17
Mi18

tx(A D B)= (A o txB), provided x is not free in A
—tx—(A D B) = (txA > B), provided x is not free in B
VxA S txA

txA D IxA

tx(txA o A)

tx(A A B) O (txA A txB)

x—ty(x # y) O (1x—A > —txA)

Jxty(x = y) D (—txA D tx—A)

tx—ty(x # y) O (txA A txA D tx(A A B))

—tx—ty(x = y%: (x(AvB)>txA v txB)
—sx—ty(x = y) D (sxA D txB)

9 We can define the set of formulas in the simpler way replacing conditions (c) and (d)
by the single condition: if A is a formula then x4 is a formula.
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M19 wmx(x=y)A-tx(x#y)D (fo =A(y| x)) 10

M-semantics

By a model of a M-language we mean a pair M = [D, I] where D is a non-
empty set called the domain of interpretation, / is a function defined on
terms and predicate symbols called the interpretation:

(a) I(r)c P(D), where P(D) is the power set of D, I(t) # & and
I(t)# {@}; in particular I(V)={D}
(b) I(P)c D", for a n-argument predicate symbol P

10 Proofs of these theorems usually proceed along the same lines as those of classical
first-order logic, although sometimes are quite elaborate. Let us prove for example the

theorem M8. Let xbe not free in A.

1. Ao((A>B)> B) (M1)
2. vx(A>((ASB)oB))  MG)
3 VxA>Vx((A>B)oB) M)
4. AoVx((A>B)> B) (3, M3)
5. Ao (1x(A o B) o> xB) 4, M2)
6. x(A> B) > (A>uB) ()

7. Bo(A>B) (M1)
8. Vx(B> (A > B)) (MG)
9. xB> Ix(A = B) (M2)
10.-A>(A>B) (M1)
11 tx(—~4 > (A > B)) (MG)
12. ~A> x(A > B) (11,6)
13. (AouB)>ux(AD B) o, 12)
14. 1x(A > B) = (A o xB) (6, 13)

From M8 we easily get M10 and M12 (starting respectively from M4 and txA > txA).
An important property of M-system is duality: if we replace in any theorem-scheme the

metavariable ‘r’ by the expression ‘ —r=’, in all places where ‘t* appeares, then the resulting
formula will be a theorem-schema as well. The proof of the duality follows
straightforwardly from the structure of axiomatics for M-system. The property of M-system
allows to obtain theorems dual to theorems already proved. E.g. from M10 we get:

VxA D —x—A, and consequently M11. M9 is “almost” dual to M8, M14 to M15, M16 to
M17.
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An assignment in D is a function V which assigns to every variable an
element of D. Given V, by V7 we mean the function which is just like V
except possibly V) (x)=d. _

In M-semantics truth conditions for atomic formulas, for negation and
implication are the same as in classical semantics. What is new in M-
semantics is the truth condition for predication:

Formula 1xA is true in M with respect to the assignment V iff there exist
(*) X e I(t) such that:
Xc [a’ € D: A is true in M with respect to V ]

In particular, the formula £xPx is true in M iff there exists X € I(¢) such that
X c I(P). Notice also that the condition retains the meaning of the
universal quantifier with respect to the given interpretation.

A formula of M-language is M-valid iff it is true in every M-model with
respect to any assignment. For M-logic completeness, compactness, and
Skolem-Léwenheim theorems hold!!.

It is easily seen that M-logic closely resembles the classical first-order
logic. Axioms M1, M3, M4, M6, M7 and MP rule are usually adopted for
the classical system. The only additional axiom and rule of inference
needed for the complete axiomatisation of classical logic are special cases
of M2 and MG respectively (we mean here the distribution of universal
quantifier and the ordinary generalisation rule). Thus, M-logic turns out to
be an extension of classical logic and an essential extension indeed. Its

1 1t is worth emphasising that the completeness of M-logic easily follows from the
completeness of the classical first-order logic. Compactness and Skolem-Lowenheim the-
orems hold for the same reasons as they hold for the classical logic.

Let us outline the completeness proof. The soundness of M-system can be proved in an
obvious way. Suppose =, A i.e. that A is M-valid. For M-logic there holds a theorem which
is a generalisation of classical theorem on prenex normal form. The theorem says that every
formula is logically equivalent to a formula in prenex normal form. In particular the formula
A will be equivalent to a formula 4y, ..., tnynB such that (1) for every term ¢ occurring in
A, t itself or the term dual to ¢, i.e. the term s = —t— is among /..., tn; (2) B is a term-free
formula (the theorem on the prenex normal form for M-logic follows from the duality of M-
system and from some of its characteristic theorems such as M8 and M9). Thus
E Y.ty B. It means that also the formula 0y, @y B where Q= 3 if
t =dand Q =V otherwise, is M-valid (for if a formula is valid for a constant term ¢ it is
valid for the universal quantifier put in the place of t as well). But Qy...QyBisa
classical formula. Since for such formulas the classical semantics is equivalent to M-
semantics then = .Qv,..,Qy B. And by the completeness of classical logic:
FeQ ... @y, B. As we have mentioned, M-system contains the classical system. So
FyQY, @y B. From M2 and M 10 it follows that F Q]yl, wees @y B

DYoo Inyp B and thus FM’lyl’ .- tyyp B. Applying once again the theorem on the
prenex normal form we get =, A,
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expressive power, especially that concerning ontological matters, far
exceeds everything that can be said on the ground of classical logic. Yet M-
logic remains a first-order logic'2. Perhaps it is worth mentioning here that
M-logic can be considered as a logic of unary monotone increasing
quantifiers!3.

Let us comment briefly on the Meinongian character of M-logic.
According to M-semantics, Meinongian objects are represented in the logic
by sets of sets of individuals what is tantamount to extensionally treating
objects as sets of properties (see the definition of interpretation). A given
object possesses a property iff the extension of the property is equal to or
broader than the extension of some property constituting the object (see the
condition (*)). It is easily seen that inconsistent and incomplete objects can
be available in M-semantics. For example, the round square is such an
object when it is interpreted by the set: {set of circles, set of squares}. The
object in question possesses properties: being round, being a square, being
non-round, bemg a geometrical figure, but does not possess the property of
having 1 m” area and the property of not having 1 m” area. a represents an
inconsistent object if for some predicate P, both formulas axPx and ax—Px
are true; a represents an incomplete object if for some predicate P, both
formulas axPx and ax—Pxare false!4. Generally, for any set of properties

12 As it will be noticed below, in M-logic only individuals are quantified. Besides, M-
logic with respect to its metalogical properties listed earlier fulfils the Lindstrom definition
of first-order logic.

13 The terminology is according to Westerstahl, op. cit.

14 Notice, however, that according to M-logic, no object is strongly inconsistent in the
sense of possessing some inconsistent property; the formula ax(PxA—Px) is always false.
Conversely, every object is weakly complete in the sense of possessing all universal prop-
erties - the formula ax(Pxv —Px) is always true. I think that this perfectly agrees with our
intuitions concerning objects of consciousness. If we think of objects, even if fictional
characters, we do not ascribe them plain contradictions because this would probably mean
that they were devoid of sense. Rather we tend to think of them as being consistent (the
formula ax("'l(P.IA“LPx)) is true of all of them) although they might turn out not to be so
(axPx and ax—Px might be true). While creating fictional characters and ascribing them
consciously some mutually inconsistent properties, we treat intentionally the characters as
consistent (i.e. as possible). The situation of completeness is even more clear. Objects of
consciousness qua objects of consciousness are always incomplete. Because of the fintitude
of our minds, we cannot grasp objects in all their properties. And, of course, we are not able
to create complete fictions. However objects are given to us as complete entities. Despite the
fact that Sherlock Holmes, being a fictional character, is incomplete and probably
inconsistent, yet he is intentionally created as a real person, i.e. as a consistent and complete
entity.
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there will be an object represented in the M-semantics by the set of
extensions of these properties.

Now let us consider some aspects of ontological content of M-logic. First
let us notice that the logic involves two categories of entities: (existing)
individuals referred to by variables and Meinongian objects referred to by
terms (constants). Only individuals are genuinely quantified (in objectual
way). The quantification of Meinongian objects is merely simulated in the
logic - see theorems: M10, M11 which mimic the classical universal
instantiation and the existential generalisation. But we have at our disposal
the means of identifying individuals with some Meinongian objects. The
formula which is the antecedent of the theorem M19, i.e.
ax(x=y)An—ax(x#y), says that the individual x is identical with the
Meinongian object a, consequently the two objects possess exactly the
same properties (although with respect to two different modes of
predication)!3. Thus the formula Iy(ax(x = y) A —ax(x y)) may be taken
as expressing the (singular) existence in M -logic. The notions of
completeness (incompleteness) and consistency (inconsistency) of objects
in their ordinary formulations are second-order notions; however in M-
logic we can define, using only first-order means, even stronger notions.
According to the theorems M14 and M15 the property expressed by
dx—ay(x # y), entails consistency of a and the property expressed by
dxay(x =y) entails completeness of a. The notions which appear in the
next two theorems are even stronger. These are: ax—ay(x#y) - being a
general object and —ax—ay(x=y) - being a particular object. For
example, since Vxdy(x=y) is a theorem then the universal quantifier
object is a general object whereas the existential quantifier object is a
particular object (conversely, since 3xVy(x =y) is not a theorem then the
first object is not particular and the second is not general one, except the
case of one element domain of course). If we consider the theorem M18 we
see that the formula —ax—by(x = y) expresses the relation of being a
subobject (in the sense of possessing less properties).

II

There are many directions to modify M-logic. First let us mention some
weakenings of M-logic.

The simplest one consists in replacing the rule MG by the ordinary
universal generalisation rule: if FA then FVxA . The new logic, say M'-
logic, differs from M-logic in that it remains true in empty domains (it is an
inclusive logic) and it approves two bizarre objects: the object which

15 From the semantical side it holds whenever (a)= {{ V(x)}} .
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possesses all properties including inconsistent ones, and the object which
possesses no properties, even tautologous ones (they are represented by
19} and & respectively - M'-semantics differs from M-semantics only in
that in the former every subset of ?(D), without exception, can be an
interpretation of a term). In particular theorems M10, M11 cease to hold in
M-system!®,

A more important way of changing M-logic leads us to an intensional
version of it. Notice that the logic is not only extensional but also imposes
on objects strong deductive closure conditions - the axiom M2 from one
side and the condition (*) from the other say that an objects possesses every
property which is extensionally equal to or broader than some property
constituting the object. Meinongians frequently insist on a strictly
intensional interpretation of Meinong's theory of objects!7 and, at the same
time, they identify properties constituting objects with properties possessed
by the objects (although sometimes admittin% that there might be an
entailment between the former and the latter!®). For phenomenological
reasons I am deeply convinced that Meinongian objects understood as
objects of consciousness must be in a way deductively closed although this
need not be the sort of the closure embodied in M-logic. So, we may
weaken M2 replacing it, for example, by the rule: if
FyAD Bthen b\ txA S txB which means that predication is closed only on
logical entailment of properties. Intensional objects, contrary to the
extensional ones, would be built of genuine properties not of their
extensions. We might treat extensional objects as extensions of intensional
ones but for the sake of generality, it is more appropriate to reckon both
types to one category of Meinongian entities. Not underestimating the
importance of building an intensional M-logic it is worth stressing that such
a logic must be equipped with highly complicated (algebraic style)
semantics and as such can hardly be counted as a simple Meinongian
logic!®.

16 There hold only weaker theorems in M -logic:
1xB 5 (VxA o 1xA)
—itxB D (txA > 3xA)

17 Perhaps with one exception. M. Luise Schubert-Kalsi's who is a great expert in

Meionog's thought supports the extensional reading of his ontology; personal communica-
tion.

18E g, Zalta. Op. cit.
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M-logic can be equipped with some definition schemata. These schemata
enable us to introduce new terms on the basis of terms already present
(correspondingly: new objects on the basis of objects already present).

DM1  3xA >([xA]xB = Vx(A > B)) (for M-logic)
DM1  [xA]xB=Vx(A> B) (for M-logic),

where A contains at most the free variable x
DM2  ixA=—mx—A (the inversion of term)
DM3  (snt)xA=sxAAtxA (the conjunction of terms)
DM4  (sut)xA = sxA v txA (the disjunction of terms)

New terms JxA], t,(snt), (sut) receive appropriate interpretations in M-
semantics20. Now, for instance the object the round square can be
explicitly defined of the ground of M-language: [roundness] U
[squareness]. Also the existential quantifier can be defined as the inversion
of universal quantifier: V 21,

To describe further extensions of M-logic let us first tell something about
the dual predication principle which is the most intriguing and, at the same
time, one of the most controversial principles of Meinong's ontology. It can
be phrased as follows: for every object, or at least for every non-existent
object, we can distinguish two groups of its properties: internal and
external ones. Internal properties or qualities are those through which an
object appears to consciousness. External properties are those which the
object exemplifies in the status of intentional object qua intentional. It is
hard to explain more closely the exact sense of this distinction since it
relies on some complicated phenomenological descriptions of objects of
consciousness (intentional objects). We hope it will be enough to give

19 When 1 say about an intensional logic I would like to distinguish it from a mere
“strongly extensional logic" which is usually associated with the logic based on possible
world semantics. In the former, two properties may differ even if their extensions are the
same in all possible worlds. Obviously, M-logic can be extended to modal M-logic (based on
possible world semantics) in several standard ways. Perhaps it is worth noticing that,
because of relative richness of M-language, the de re - de dicto distinction is applicable to
all Meinongian objects and not only quantifiers, e.g.: ©x0A and OtxA. What is more, the
transworld identity can be expressed in such an logic.

2 i{[xa])=[d e D: AlstruemenhrespecttoV’],I(!) {X;D an;e@ for
some Y e (1)}, [{(sne))={XUY: X el(s) and Y € I()}, I((s 1)) = (s)U I(2).

2yt s important here that the definitions have the status of axioms, Although, as they
stand, they are not creative with respect to the original axiomatics but they could be so. For
example, in the presence of D M2 it suffices to assume a weaker rule GM: if
F Athent txA. Also, these definition axioms are indispensable when we start to build
higher-order versions of M-logic (see below).
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some paradigmatic examples. Let us mention two famous nonexistent
objects and list some of their internal and external properties. The round
square's internal properties are: being round, being a square, being a
geometrical figure; its external properties are: being impossible, being
inconsistent, being nonexistent, being thought of by J. Paéniczek, etc
Sherlock Holmes' internal properties are: being a detective, being Dr
Watson's friend, and all other properties ascribed to the hero by A.C.
Doyle; its external properties are: being incomplete, being nonexistent,
being a fictional character etc.

An object may be incomplete or inconsistent only with respect to its
internal properties. However with respect to its external properties the
object is complete and consistent like any other existent individual. This is
because objects just as object of consciousness, are in a sense real whether
considered by philosophers as abstract, ideal or merely psychic entities.

Everything that has been said earlier concerns only internal predication
and the subject-predicate formula axA expresses only that predication.
However there is a straightforward way of extending M-language so as to
render in it the external predication as well. Since, as we hinted, the
external predication is always complete and consistent we may simply
adopt for it the classical grammar. Thus we let constants, representing
names of objects, occupy argument places in formulas just like in first-
order language. For example, formulas Pa, 3xRxa express the external
predication with respect to a; analogical internal predication takes the form:
axPx, ay3xRxy

M, -language results from M-language by assuming that constants may
occupy argument places in atomic formulas on a par with variables just like
in the classical language (now metavariables in the definition of formulas
range over variables and constants). M,-system is based on M -system
axiom schemata extended in its apphcatmn to M, -language (axioms
M4,M6,M7). For instance, as a particular case of M4 we now have the
axiom: VxPx > Pa.In M,-logic formulas axPx and Pa are independent of
each other (neither entalls the other or its negation). In the semantics for
M, -logic, constants are interpreted in two different ways corresponding to
the internal and the external predication respectively: one interpretation is
the same as in M-semantics, i.e. /(a) = P(D) and the second interpretation
is the same as in classical semantics for first order logic, i.e. /(a)e D. Also,
the truth condition for Pa is that of classical semantics.

M, -logic is still first-order logic and as such it is relatively poor, although
now object are quantified, but only as subjects of external predication. In
comparison to M, -logic, in Parsons' and Zalta's logics we quantify objects
as subjects of mtemal predication as well. Besides, in these logics like in
ordinary second order logics, properties and relations are also quantified.
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Anyhow there is an extremely easy way to extend the quantification in
M,-logic and get a stronger logic, M,-logic based on M,-language. As
before we need not change essentially the axiomatics but only the grammar
of M,-language. It suffices to let variables occupy term places as well: for
any variables x, y, the expression yxA will be a formula (i.e. now s and ¢
range not only over constants and quantifiers but also over variables).
Doing so we allow objects, taken as subjects of internal predication, to be
quantified. But what about the quantification of properties? Surprisingly
enough, the quantification of objects may implicitly comprise the
quantification of properties. Roughly the idea is that in M,-logic general
objects - as subjects of internal predication - can play the role of properties.
For example, the object a square represented in M-language by
[squareness] (more exactly: [x(x is a square)]) and in M-semantics by { set
of squares} plays the role of property being a square (see DM1 and DM'1).
The following theorem says that for every property, simple or complex,
there exists an object which represents the property:

3xA 5 3y(yxB = Vx(A > B)) (or: I(y= [xA]))

(the theorem is an existential generalisation of DM1). Now the following
can also be proved in M-logic:

txA = tx—[xA]y(x # y)
This theorem has a stronger counterpart in M,-logic:

FuVw(wxA = wx—uy(x # y))
It means that every (closed) formula #xA is replaceable by a formula
containing only terms and logical symbols (the negation and identity):
tx—sy(x # y). Since the structure of the latter formula is fixed we may

write it in short: fes where € will be a kind of ontological relation in
Leéniewski's spirit?2. And this relation can simulate the relation of

22 Actually this relation is stronger than the original Le$niewski's relation, cf. J.Patniczek,
op. cit.
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internal predication. That is why we need in M,-logic only definition
axiom for objects whereas in Parsons' and Zalta's logics there are two

separate definition axioms: one for objects and one for relations23.

Maria Curie Sktodowska University , Lublin, Poland

23 These axioms make the logics very powerful but they cannot be adopted in their full
generality for it leads to the inconsistency of the logics. The same problem pertain M, -logic
but we won't discuss it here.



