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ON THE HARTIG-STYLE AXIOMATIZATION OF UNPROVABLE
AND SATISFIABLE FORMULAS OF BERNAYS AND
SCHONFINKEL'S CLASSES*

Takao INOUE

Abstract

We give Hirtig-style axiomatizations of unprovable and satisfiable
formulas of Bernays and Schonfinkel's classes. The characterization
theorem, in other words, the completeness theorem for them is proved.
We propose the notion of the absolute atomic formula property which
is similar to that of the atomic formula property. The proposed systems
have the absolute atomic formula property as well as the atomic for-
mula property. We show the relation among the proposed property, the
atomic formula property and the subformula property. We also consider
the axiomatization of provable formulas and contradictions of the
classes, for which the subformula property holds. In the last section,
some open problem is given as well as our methodology for further
studies of axiomatizing unprovable and satisfiable formulas.

This paper contains four appendices. In Appendix A, we propose
first-order opposite system without free variables in the style of M. W.
Bunder. In Appendix B, we present Hiirtig-style axiomatizations of
unprovable and satisfiable quantifier-free formulas of classical first-or-
der predicate logic with equality. The Appendix B is a preparation for
the next Appendix C. In Appendix C, we show that Bullock and
Schneider's calculi for finitely satisfiable formulas have the atomic
formula property. Those calculi do not have the absolute atomic for-
mula property. In Appendix D, we give some refutation and satisfac-
tion calculi which have neither the subformula property, nor the atomic
formula property, nor the absolute atomic formula property.

* This paper is dedicated to the late Dr. Diana Raykova. The original version of this paper
was presented at Conference on Philosophical logic (including a workshop: Navigating
Around Inconsistent Structures) which was held at the Department of Philosophy of the
University of Ghent in Belgium during December 15-16, 1994. This paper is the corrected
and enlarged final version of the original.



262 TAKAOQ INOUE

1. Introduction.

Since Shupecki's celebrated work on the (L-)decision problem of the
Aristotelian syllogistics (see [36]), quite a few logicians working outside
Poland have been interested in refutation systems, that is, ones deriving
unprovable formulas. The concept of satisfiablility is not only closely re-
lated to the so-called Entscheidungsproblem for a logical system in general
(see e.g. [18] and [1]), but also especially to that of unprovability, since
they are dual concepts with each other: that is, a formula is satisfiable if
and only if the negation of it is unprovable (see also the third and the fourth
sections of this paper).! We shall use this meta-equivalence as the defini-
tion of satisfiability 2

Let CPL be classical first-order predicate logic without equality. Let & be
the set of all well-formed formulas of CPL which contain neither function
signs nor constants.

Let us introduce Bernays and Schonfinkel's classes F", F ?and F? with
which we shall be concerned thoughout this paper.

Let F" be the set of all the formulas of the form

Vxl...Van(xl, s xn) (n20),

say B, such that (1) A(x], ey xn) € ¥ contains no quantifiers and (in B, free
variables may appear).
Let F? be the set of all the formulas of the form

Elxl...Elan(xl,...,x") (n21),

say B, such that (1) A(xl, vny X ) € ¥ contains no quantifiers and (2) no free
individual variables appear in B.
Let F"? be the set of all the formulas of the form

Vx,...Vx Jy,... ElymA(xl, s Xy Vi e ym) (n21and m=21),

1 Also we can say that validity (Allgemeingiiltigkeit in German) and satisfiability
(Erfiirbarkeit in German) are in a dual relation with each other, since a formula is valid if
and only if the negation of it is not satisfiable.

2 See also Appendix C.
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say B, such that (1) A(xl, sy Xy Bhogonny ym)e & contains no quantifiers and
(2) no free individual variables appear in B.3

Bernays and Schonfinkel [2] gave a solution of the decision problem for
provability of a formula of F", F? and F™, respectively (see e.g. [18]).

In this paper, we shall propose a Hirtig-style axiomatization HC” of a
set {A € F”: Aisnot provable in CPL}, a similar axiomatization HC? of a
set {A € F?: Ais not provable in CPL}, a similar one HC™ of a set

AeF™: Aisnot provable in CPL}, a similar one HCS” of a set

AeFY:— Aisnot provable in CPL (= A is satisfiable in CPL)} a similar

one HCS? of a set {A e F?: = Ais not provable in CPL}.

The characterization theorem, in other words, the completeness theorem
for them is proved. Further we shall propose the notion of the absolute
atomic formula property (for short, abs-a.f.p.), which is similar to that of
the atomic formula property (for short, a.f.p.) introduced in [25]. (The no-
tion of the so-called subformula property (for short, s.f.p.) is stronger than
that of a.f.p..) We shall show that the proposed calculi have the absolute
atomic formula property as well as the atomic formula property.

Every logician knows that conjunctive normal form of a formula is used
for a decision procedure for provability of a formula of classical proposi-
tional logic CP. Hirtig [17] employed the idea for the decision procedure to
give an axiomatization of formulas which are not provable in CP (see also
[22, 25]). In order to derive an unprovable formula, we may conversely
follow the decision procedure of the given formula. This is the very idea
for the axiomatization. In this paper, the same idea will be used with the re-
sults of [2] and [17].

To the best of my knowledge, except for two papers#, there have so far
been no literature on Hilbert-style axiomatizations for a proper subset of
the set of all the unprovable (satisfiable) formulas of CPL. So, the result of
this paper could mean one of first steps toward an uncultivated area of
logic, i.e. axiomatizing unprovable and satisfiable first-order prenex formu-

3 In the terminology of [11], Bernays and Schénfinkel's class F' is that of prenex
formulas with prefixes 3...3V... V. But the essence is the same. For we see that Bernays-
Schonfinkel Class, say BS-Class, in the sense of [11] is solvable if and only if BS-Class has
a decision procedure for satisfiability if and only if F™ has a decision procedure for
provability. That is, 4

4 For finite satisfiability, see Bullock and Schneider [6]; for formulas invalid in some

finite domain, see Hailperin [16]. There is a generalization of [6] to the case with equality by
the same authors with the same idea (see [5]).
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las (note that the decision problem for the full predicate logic is unsolvable
(Church [10] and Turing [44])). There must be still large room to investi-
gate axiomatic systems in the direction of this paper ([1], [3] and [11], for
example, will give us some basics and information for our further study).

In the followingvsecond section, we shall review the decision procedures
for F¥, F? and F™°. In the third section, Hiirtig's refutation calculus HC
for CP will be recalled with the characterization theorem and the atomic
formula property of it. In the fourth section, we shall present a satisfaction
calculus HCS for satisfiable formulas of CP as a dual calculus of HC.

In the fifth section, we shall propose the Hirtig-style axiomatization of
the mentioned sets. In the sixth section, we shall give the characterization
theorem for the proposed systems. In the seventh section, we shall propose
the notion of the absolute atomic formula property (for short, abs - a.f.p.)
which is similar to that of the atomic formula property (for short, a.f.p.) in-
troduced in [25]. Then, it will be shown that the proposed systems have the
absolute atomic formula property as well as the atomic formula property. In
particular, we shall in the same section give the relation among the pro-
posed property, the atomic formula property and the subformula property
(for short, s.f.p.).

In the eighth section, we shall give the axiomatizations P, P? and P”?
for provable formulas of F”, F? and F*°, respectively, and the axiomati-
zations C” and C? for contradictions of F" and F , respectively. We shall
easily see that all the system proposed in this section have the subformula
property. In addition, it will be shown that P¥ and C? have the absolute
atomic formula property.

In the last section, we shall review the methodology of this paper for ax-
iomatization, which would be useful for further studies in the direction of
the paper, as well as we shall give some general comments and some open
problem.

This paper contains four appendices A, B, C and D. In Appendix A, as a
little curiosity, we shall propose first-order opposite system without free
variables in the style of M. W. Bunder.3 In Appendix B, we present Hiirtig-
style axiomatizations of unprovable and satisfiable quantifier-free formulas
of CPL argumented with equality. The Appendix B is a preparation for the
next Appendix C.

In Appendix C, we shall show that Bullock and Schneider's calculi for
finitely satisfiable formulas of CPL (CPL argumented with equality) have
the atomic formula property. Those calculi do not have the absolute atomic
formula property. This means that the notion of the atomic formula prop-

5 This material is so included that a similar idea used in the sixth section below will be
employed in order to prove the main theorem of the Appendix.
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erty is not stronger than that of the absolute atomic formula property. In
Appendix D, we shall give some refutation and satisfaction calculi which
have neither s.f.p., nor a.f.p., nor abs-a.f.p..

2. The decision procedures for F°, F* and F™.

In this_section, we shall review the decision procedures for F, F>
and F"3, which were obtained by Bernays and Schonfinkel [2]. For avoid-
ing possible misunderstandings below, we shall first define the following
concept, absolute distinctness. (We shall below follow the terminologies in
Kleene [34], that is, proposition letter, predicate letter, predicate letter
with attached variables, predicate letter formula.)

Definition 2.1. Let F| (xl, vy xn) be an arbitrary predicate letter with n at-
tached variables of CPL (n>0) and Fz(yl, ey ym) an arbitrary predicate
letter with m attached variables of CPL (m = 0). The atomic predicate letter
formulas Fl(tl,..., tﬂ)and Fz(sv“-’sm) with terms Bovins by 8i5enns 8, ATE
said to be absolutely distinct if they satisfy the following condition: if F,
and F, are the same predicate letters and n = m, then there is at least one
term t,(1<i<n) such that t, and s; are different, otherwise they are said to
be absolutely the same.

We shall give some concrete examples for absolute distinctness. Let F and
G be different predicate letters. Let x, y, z, u and v be mutually distinct
variables. Let ¢ and d be different individual constants. For example, the

following pairs of predicate letter formulas are those of absolutely distinct
ones:

{F. G} {F, F(x)}, {F, F(c)}, {F(x), F(0)}, {F(c), F(d)}, {F(x), F(x, x)},
{F(3). Glx, O {F (5 3) Gl )}, {Fx ). Fla ) {FC 3) R )
{F(c.y) Flc. 2)}, {F(x. y), F(3, x)}, {F(c. 4), F(d, c)} {Gle). G(c, ¢, c)},
{F(x. 3 2), F(x, 3, x)} {F(x, x, x). G(x, x, )} {F(x, v, ¢), F(x, v, x 1
{F(x, y,ie); Flxz x)}.6

6 F and G, that is, predicate letters with O attached variable, are regarded as proposition
letters as usual.
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That is, in other words, absolutely distinct formulas are different as formu-
las. Throughout this paper, “distinct (or different) formulas” are under-
stood as “absolutely different formulas”.

Now, here are the decision procedures for F', F7 and F"":

(I) The case of F". Let A be a formula of FY, say Vx, ... b B(xl, xn)
(n=0). (A may contain free variables.) A is provable (or valid) in CPL if
and only if B(xl, iy xn) is provable in CP (or valid, or an instance of tau-
tology), where all absolutely distinct atomic predicate letter formulas in
Blx,..., xn) are regarded as distinct proposition letters, respectively.

(I) The case of F~. Let A be a formula of F, say dx ... 3dx B(xl, v xn)
(n=>1). (A may not contain free variables.) A is provable (or valid) in CPL
if and only if for some variable y, B(y, ..., y) is provable in CP (or valid, or
an instance of tautology), where all absolutely distinct atomic predicate
letter formulas in B(y, ..., y) are regarded as distinct proposition letters, re-
spectively.

(I11) The case of F™. Let A be a formula of F " say V& e OB e Ty
B(xl, et 5/ Wypwees ym) (n2landm=>1), (A may not contain free vari-
ables.) A is provable (or valid) in CPL if and only if for some finite se-
quence z,..., z, of variables with length m and {zl, — Zm} = {xl, iy }
B(xl, T o zm) is provable in CP (or valid, or an instance of tautol-
ogy), where all absolutely distinct atomic predicate letter formulas in
B(xl, e s zm) are regarded as distinct proposition letters, respec-
tively.

For the justification of the above decision procedures, the reader may con-
sult the excellent exposition in Hilbert-Ackermann [18], which adopts a
certain smart cut-free Gentzen-(Schiitte-)style calculus for CPL so that all
the arguments for the justification of (I), (II) and (III) are kept very simple
and elegant.”

Every formula of F¥ U F>UF" contains neither function signs nor
constants.® This restriction is essential to the application of the above de-

7 For another type of exposition on it, see e.g. [39],
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cision procedures (II) and (II1). We shall explain it now. Let F (‘11) be a
predicate letter with one attached variable and F (‘11' a, | one with two at-
tached variables. Let x and y be distinct variables and ¢ a constant. Without
the restriction, '

3x(F(c) v=F(x)) (1)

and
Vx3y(F(c, x)v=F(y, x)) (t1)

belong to F? and F%, respectively. By applying the decision procedures
(I) and (III) to (%) and (1), respectively, then we immediately know that
they are not provable in CPL. This is not true. The formulas (f) and (1)
are surely theorems of CPL.

3. The Hartig's refutation calculus HC and the atomic formula property of
it.

Let CP be classical propositional logic. We take an arbitrary formulation
for CP and fix it. We shall use v (disjunction), A (conjunction), >
(implication) and — (negation) as the logical symbols of CP. We here take
the same language of the system to be recalled bellow as that of CP.

We shall adopt some notational convention.

Definition 3.1. For any formal system X and any formula A of X,
Fis A(-ix A) means that A is (not) provable in X. For any formula A, < A >
stands for the set of all atomic subformulas of A. For any formula A, we
shall call <A > the atomic subformula set of A.

Definition 3.2. We inductively define ‘subformula’ of a given formula of
CP by the following: (1) If A is a formula, A is a subformula of A; (2) If A
and B are formulas, the subformulas of A and the subformulas of B are
subformulas of A*B for every binary boolean connective *; (3) If A is a
formula, the subformulas of A are subformulas of —A.

8 In a certain formulation of CPL, constants are regarded as function signs with 0

argument. So the distinction between function sign and constant are not necessary in such a
formulation.

9 For the decision procedure (I), the restriction is not necessary. But, for éhe proof of
Theorem 8.1.(4) of this paper, we also take the restriction on the formulas of F " .
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The Hartig-style calculus HC which axiomatizes a set {A: - A}, COnsists
of the following axioms and rules (see [17] ([22, 25])):

Axioms:

(HC1)F,.r for any proposition letter r.
(HC2)F,,.—r for any proposition letter r.

Rules:

(HC3) buct FueB <A>N<B>=0= FoAVB.
(HC4)- _ASB + B=t+ A
cpP HC HC

Theorem 3.1. ([17]) For any formula A of HC, #—HCA = 4CPA.
Here is the definition of the atomic formula property introduced in [25].
Definition 3.3. Let X be a formal system. The system X has the atomic for-
mula property (for short, a.f.p.), if for any formula A provable in X, there is
a proof of A in X which contains only such formulas, say B.B,,..., B that
<B. >C<A> holds for any 1<i<n (we say that such a proof has the
atomic formula property),10

We know the following theorem.

Theorem 3.2. HC has the atomic formula property.

4. The satisfaction calculus HCS and its a.fp..

The idea of the axiomatization for HC is based on conjunctive normal form
of a formula. The same idea with disjunctive normal form can be used to
give a Hartig-style axiomatization for satisfiable formulas of CP. Let us
carry it out with the idea. A satisfaction calculus HCS which axiomatizes a

10 This definition is implicitely for proofs in a Hilbert-style system. But for another type
of systems, e.g. a Gentzen-syle one, we can easily adapt the definition to that of them,
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set { A: 4¢p = A (= A is satisfiable in CP) }, consists of the following ax-
ioms and rules:!!

Axioms:

(HCS1)F,,..s for any proposition letter s.

HCS

(HCS2)F,,.s— s forany proposition letter s.

Rules:
(HCS3)+ B, <A>N<B>=@ =}t AAB.
HCS HCS HCS
(HCS4) FHCSA, I-CPADB:»I-HCSB.

The rest of this section will be devoted to the proof of the characterization
theorem for HCS and to the atomic formula property of it.

For the notational convenience and the descriptive precision, it is recalled
that OP is a Gentzen-style sequent calculus for contradictions of CP (see
[23]). (Of course, we may here assume that the language of OP is the same
as that of CP. For a one-sided calculus equivalent to OP, see e.g. [38, p.
13])

Further we shall also recall the following to make sure.

Theorem 4.1. ([23]) For any formula A of OP, bopA & F A

The following theorem tells that HCS exactly axiomatizes a set {A : A is
satisfiable in CP}.

Theorem 4.2. For any formula A of HCS,F A & 4 A
HCS op

Proof. (<): Let A be a formula of HCS. Suppose ,,A. Take a disjunctive
normal form of A, say B vB,v...vB (k>1) (cf eg [18], [45] and so
on). In view of Theorem 4 1 and the completeness theorem for CP, one of
the disjuncts of it is of the following form:

I The same calculus as HCS with a slightly different form has already used in Bullock
and Schneider [6] as the quantifier-free part of their calculus for finitely satisfiable formulas
of CPL. It is based on the fact that for any quantifier-free formula, it is finitely satisfiable if
and only if it is satisfiable.
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/m\p. A/"\—|pj (mZO,nEO,m+n21),
v=1 v

p=1"

where every number i is different from every number j . Let B, be the
disjunct. It is obvious that

b B, DA,

since A is logically equivalent to the disjunctive normal form of it. (Note
that

<B,>;<A>

holds.) It is easy to prove + HCS s B, . (Furthermore we can easily have a proof

of B, in HCS with the atomic forrnula property.) Now we apply (HSC4) to
B and F, B, > A. Then we obtain I, A.12

(C:>) By mducuon on derivations, it is easy to prove that for any formula

A of HCS, if A is provable in HSC, then A is satisfiable in CP, in other

words, -,,A by the completeness theorem. O

Corollary 4.1. For any formula A of HCS, A -|CP—1 A.

By Theorem 3.1 and Corollary 4.1, we immediately have the following.
Corollary 4.2. For any formula A of HCS, I—HCSA = I—HC—1 A.

We can also prove the above meta-equivalence purely syntactically, for ex-
ample with a similar strategy in [22], using a suitable tableau method. But

we do not here carry it out because it is lengthy.

In [42], [33] and [24], other axiomatizations for satisfiable formulas of
CP are proposed.

Theorem 4.3. The Hirtig-style satisfaction calculus HCS has the atomic
Jformula property.

Proof. Observe carefully the proof of < of Theorem 4.2. O

We remark that my calculus, which is equivalent to HSC, with d-Hintikka
formulas as axioms ([24]) (cf. [32])) also has the atomic formula property.

12 The proof of Theorem 3 of Bullock and Schneider [6, p. 375] is also interesting.
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5. The refutation calculi and the satisfaction culculi.

Let
F:' = {A € F" : A is not provable in CPL},
F; ={AeF”: Aisnot provable in CPL},
F;ﬂ = {A e F™: Ais not provable in CPL},
FSV = {A eFY:— Aisnot provable in CPL},

E = {A € F?:— A is not provable in CPL}. 13

In this section, we shall propose the Hﬁrti%-style axiomatizations
HC", HC?, HC™, HCS" and HCS for ', F2, F" and F?, respectively.

We shall first write down axioms common to all the system to be pro-
posed.

Axioms:

(A FF (xi, xn) for any predicate letter F (al, an) with n attached
variables and for any variables x,..., x (n>0).

(A2) F— F(x sk ) for any predicate letter F(a],..., a") with n at-
tached variables and Tor any variables X X, (n20).

We need some definition for further formulations. First we shall define
‘subformula’ of a given formula of CPL exactly.

Definition 5.1. ([34]) We inductively define ‘subformula’ of a given for-
mula of CPL by the following: (1) If A is a formula, A is a subformula of A:
(2) If A and B are formulas, the subformulas of A and the subformulas of B
are subformulas of A * B for every binary boolean connective *: (3) If A is
a formula, the subformulas of A are subformulas of — A; (4) If x is a vari-

13 For these sets, we assume that no dummy (or vacuous) quantifiers are prefixed for any
formula. This restriction is not an essential one. But it makes our argument below simpler.
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able, A(x) is a formula and ¢ is a term free for x in A(x), the subformulas of
A(?) are subformulas of VxA(x) and 3xA(x).14

We need the following notion stronger than that of subformula, which
will play an important role in this paper.

Definition 5.2. We inductively define ‘absolute subformula’ of a given
formula of CPL by the following: (1) If A is a formula, A is an absolute
subformula of A; (2) If A and B are formulas, the absolute subformulas of A
and the absolute subformulas of B are absolute subformulas of A * B for
every binary boolean connective *; (3) If A is a formula, the absolute sub-
formulas of A are absolute subformulas of — A; (4) If x is a variable, A(x)

is a formula, the absolute subformulas of A(x) are absolute subformulas of
VxA(x) and IxA(x).13

Definition 5.3. For any formula A of CPL, < A > stands for the set of all
atomic absolute subformulas of A. For any formula A of CPL, we shall call
< A > the absolute atomic formula set of A.

We shall give some examples (Ex1)-(Ex7) for the notation <€ > in order to
avoid possible misunderstandings. Let F and G be distinct predicate letters.
Let x, y and z be different variables and ¢, d distinct constants.

(Ex1) Let A be F(x,y). Then < A > is {F(x, y)}
(Ex2) Let A be VxVyF(x,y). Then < A > is {F(x, )

(Ex3) LetAbe F(x,y,z)v F(y,z x)v F(z x, y).
Then < A > is {F(x, y, z), F(y. z x), F(z, x, y)}.

(Ex4) Let A be VxVyVz(F(x, y,2)v F(y, z, x)v F(z, x, y)).
Then € A > is {F(x, y.2), F(y z x), F(z, x, y)}

14 The reader must notice that there are several different definition of subformula in the
literature. Some of them are not suitable to define the subformula property. This definition is
good for it.

15 The definition of an absolute subformula of a given formula of CP of course coincides
with that of a subformula of a given formula of CP.
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(ExS) Let A be Va¥y(F v Gv F(x).2. F(x, x, x) A—F(y)).
Then < A > is {F, G, F(x), F(x, x, x), F(y)}

(Ex6) Let A be 3z(Vx(——G(x, ¢) > G(x, 2)) 2.3yG(», ¢) v G(d, 2))
Then < A > is {G(x, ¢), G(x, z). G(, ). G(d, 2)}.

(Ex7) Let A be Vx(—|F(x) AG(y, 2)A(F(y)v F(c, d))
~r=(G(d, x)> —.F(y))).
Then < A > is {F(x), G(y, z), F(y), F(c. d), G(d, x)}.

Here we remark that for some formula A of CPL, € A > = < A > does not
hold, whereas for any formula A of CP, € A > = < A > holds. For example,
for the A of (Ex1), € A > = < A > well holds, but for the A of (Ex2), < A
> =< A > does not hold, since < A > is

{F(t, 5):t and s are terms such that ¢ is free for x in VyF(x, )}
However, the following proposition holds.

Proposition 5.1. For any formula A of CPL, <€ A ® is a finite subset of
<A>.

Proof. The inclusion <€ A > C < A > is obvious, since for any formula of
the forms VxA(x) or 3xA(x), A(x) is a subformula of them. The finiteness
of <€ A > is obvious, too. O

Definition 5.4. A formula A of CPL is said to be quantifier-free if it con-
tains no quantifiers (in notation, Qf(A)).

Let us now propose some common rules of inference. The following rules
are commonto HC” and HC.

(R3) A FB,Qf(A), Of(B), <K A>N<B>=0=F+AvB16

(R4) b, AD B} B, Of(A), Of(B) = FA.1

16 The criterion to determine whether or not € A » ~ < B » =@ holds is based on the
absolute distinctness (recall Definition 2.1).
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The following rules are common to HCS” and HCS".

(RS3) FA, B, Of (A), Of(B), < A>N<B>=@=+AAB.

(RS4) FA b, AD B, Of(A), Of(B)=+B.
Here we need some preparations for further formulations of the systems.
Definition 5.5. Let A be a formula of CPL. By FV(A) we denote the set of
all free individual variables occurring in A. For any formula A of CPL, by

FV(A):{xl, .y xn}d we mean FV(A)={xl,..., xn} such that x, ..., x_are

distinct. By # FV(A), we denote the number of distinct free individual vari-
able occurring in A.

Definition 5.6. Let A be a quantifier-free formula of CPL such that
FV(A):{xl,..., xn}d (n21). Say A= B(xl,..., xn). Then for any individ-
ual variable z, we define a formula U*(A) of CPL as follows:

Definition 5.7. Let A be a quantifier-free formula of CPL such that
FV(A)={xl,...,xn,yl,..., ym}d(nzl.mzl). Say A=B(x1,...,x

- ym). Then, for any finite sequence z,,..., z of individual variables

n’

with length m and {zl,..., zm}c;{xl,...,xn}, we define a formula

Spec[y1 ¥ Loz Vo, ](A) (for short, Spec[y - z](A)) of CPL as fol-
lows:

Spec[y - z](A) = B(xl, ties Kyp Zypaens zm).
We are now in a position to give the rules specific to each of the systems.
171 (R4), we use “t ., A D B” by abuse of notation. This properly means that A > B is

provable in the propostional part of classical predicate logic. We shall often make use of
such an abuse of notation for the simplicity of descriptions.
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We need the following rule for HC" and HCS".
(RY)F, 0 Ax), #FV(A(x)) 21>k, VxA(x), provided that QAA(Y))

holds or A(x) is a prenex formula with prefix V...V.

We need the following rule for HC®.

(Ra)}-me A, Of(A) #FV(A)21=F  , CI*(A), provided F_ U*(A)
for some variable z, where CI”(A) is the existential closure of A (that s, if
FV(A)= {x, ... x,}’ (n21), then CP(A)=3x,...3x,A).

We need the following rule for HC L)
(R™)F o A OF(A) #FV(4)22= s V% V2, 3.y, A, provided

l'yc"i Spec[yl s T A ](A) for some finite sequence z,..., z, of

variables with length m and {zt,..., zm}c;{xl,...,xn}, where FV(A) =

{xl, roas Koy Ppoeury ym}d(nz L,m=1).

We need the following rule for HCS" .
RSVI)F A Qf(A) #FV(A)21=>t Y(A), i .
(Rs"1) e MO (A) #FV(A) 21t CI7(A), provided + U
(A) for some variable z.

v 3
(Rs 2)%}@r A.Qf(A) #FV(A)22=F  Vx..Vx A provided
I—HCSVESpec[yl—m],..., ym—>zm](A) for some sequence z,..,z, of
variables with length m and {zl,...,zm}r;{xl,..., xn}, where FV(A) =

{xl,..., Xy Yypvons ym}d(nz L, m=>1).

We need the following rule for HCS®.
(RSB) I—HCSS Ar Qf(A), #FV(A) z2l= }_HCS'E Cla(A)

To make sure, we shall repeat the formulation of the above defined sys-
tems.

A refutation caleulus HC” for F, consists of (A1), (A2), (R3), (R4) and
(R").

ﬁg refutation calculus HC? for Ff consists of (A1), (A2), (R3), (R4) and
(RY).
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A refutation calculus HC™ for F” consists of (A1), (A2), (R3), (R4)
and (R™).

A satisfaction calculus HCS" for F:’ consists of (A1), (A2), (RS3),
(RS4), (RS"1) and (RS"?2). : ‘

A satisfaction calculus HCS? for Ff consists of (A1), (A2), (RS3), (RS4)
and (RS?).

It is remarked that a proof of a formula in the systems HC>, HC™, HCS’
should contain exactly one application of the rules ( Ra), (RVB), (RS3 ), re-
spectively. For a proof of a formula in HCY and HCS®, we shall under-
stand it as usual, respectively.

We note that every proof in them, thus, has the quantifier-free part and

the quantificational part as a proof in “extended Hauptsatz” of Gentzen
([13]) (cf. [34, p. 460)).

Here, we shall explain with an example why the rule ( R%) requires the
condition b e U*(A) for some variable z”, although it is clear from the
decision procedure (II) in the second section.

Suppose that the condition is dropped in the rule ( R?). Let F be a predi-
cate letter. Let x and y be distinct variables. So, F(x) and F(y) are absolutely
different. Thus we can easily conclude Fua F (x)v—=F(y). So from it, we
can get by the new ( R?), b EIxEIy(F(x)v —.F(y)).

However, this inference is not correct with respect to HC?, since we
have }-CPLEleIy(F(x)v—,F(y)) : that is, HxEIy(F(x)v-'F(y)) is reduced to
F(z) v —F(z) for any variable z. This is not our intention for HC>. That is
why the condition should be added. With the same reason, RV? requires

).

the similar condition (for example, consider Vx3y(F(x)v — F(y)

In_addition, for the propositional part of the proposed systems HC",
HC?, HC™, HCS" and HCS? in this paper, we may also mutatis mutan-
dis take another type of refutation (satisfaction) calculus, e.g. a system with
Hintikka formulas as axioms in [22, 24] (cf. [32]).

6. The characterization theorem.
In this section, we shall prove the following characterization theorem.
Theorem 6.1.

(1) For any formula A of F¥, we have: FuovA & Hep A
(2) For any formula A of F3, we have: FucrA © Hep A
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(3) For any formula A of F¥3, we have: |y A & Hop; A.
(4) For any formula A of F¥, we have: b0 A & Hpp— A
(5) For any formula A of F3, we have: FucsA & Hep— A

Just before we prove it, we shall prove the following simple lemma.

Lemma 6.1. Let A beda quantifier-free formula of CPL such that FV(A) =
{xl,..., % 3 Yowes ym} (n=0,m=1) holds, say A :A(xl,..., X 5 Wiy ym).
For any sequence z,, ..., z, of variables with length m, we then have:

-!CPLA(xl, s By ypinnas zm) = "chA(xl’ e ym).

Proof. Let A be such a formula of CPL. We write A(}, Wisowsa ym) for
A(xl, sy B Wiy ym) and so on. It is sufficient to show that

I_CPLA(;' Yyginwes ym) = }—CPLA(;’ s 2, )

Suppose I-CPLA(}, ym). Since x,..., X, ¥, ..., y,, are all distinct free
variables occurring in A, from | CPLA(x, y), we immediately obtain

I—CPL‘V’yl...VymA(;, Ypreeor ym)- ™
Since
Vyl...VymA(}, ;) ) A(;, Zpsens Zm)

is a theorem of CPL, we get i A(}, Egin Zm) by modus ponens from the
formula and (*). O

Proof of Theorem 6.1. Below we shall freely (with making no mention of
it) make use of the completeness theorem for the logics in question, if we
need it for the sake of the simplicity of arguments. All the decision proce-
dures to be cited below are those in the second section.

(i) LetAe F”, say A= Vx,...Vx B(x, ..., x,) (n20).



278 TAKAO INOUE

The = of (1): Suppose + _A. We shall prove this by induction on
derivations.!® The basis of the induction is trivial. Let us proceed to the
induction steps. Theorem 3.1 can take care of the propositional part of the
induction steps. (That is, B(xl, xn) is not provable in CP, thus not so in
CPL, either.) If n = 0, then we need to do nothing further. So suppose n > 1.
Suppose that Van(xl, xn) is obtained by the rule (R”). By induction

hypothesis, we have -, B(xl, sy xﬂ). From it by CPL, we obtain 4, A.

The < of (1): Suppose 4., A. By the decision procedure (I),
B{xl,..., x,) 1s not provable in CP. By Theorem 3.1, we get F

HCY
B(x,..., x,). Applying (RV) n times to the formula, we obtain FHC A.

v

(i) Let Ae F*, say A=3x,...3x B(x,, ..., x,) (n=1).

The = of (2): Suppose I—HCBA. We shall prove this by induction on
derivations. By Theorem 3.1, the propositional part of the induction gives
no difficulty.

Suppose that A is obtained by the rule (Ra). By induction hypothesis, we
then have 4, B(xl, xn) and -{CPLU"(B(x], xn)) for some variable z,
that is, 4., B(z, ..., z). Hence, by the decision procedure (II), we obtain
-|CPL3x1...EIan(x,, x").

The <« of (2): Suppose 4, A. By the decision procedure (II), we know
that there are no variable y such that - B(y,...,y) holds. Thus,
A¢py B(2 ..., z) hold for an arbitrarily chosen variable z. By Lemma 6.1, we
get 4CPLB(xI, xn) from 4, B(z, ..., z). By Theorem 3.1, we have from
them, I-HC3 B(xl, asiey xn) and I-HCBUZ(B(xl, xn)). Then we can apply
() toitto obtain + ,3x....3x B(x,, ..., x,).

(iii) Let Ae F*3, say A=Vx...Vx Jy,... EyMB(x], sosi s Mymass ym)
(n=zlandm=21),

such that x,,...,x, y,,..., y_ are all distinct free variables occurring in the
quantifier-free part of A. We shall write B(x, s ym) or B(}, }), for
B(xl, oy Ko Ty vy ym) and so on.

18 Below we shall often take a similar proof with induction on derivations. But we shall
omit the details of it, since it is routine as this proof of the = of (1).
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The = of (3): The proof of it is similar of that of the = of (2), using the
decision procedure (III) and Lemma 6.1.

The <« of (3): Suppose ., A. By the decision procedure (II), there is
no finite sequence z,..,z, of varaibles with length m and
{zl, zm};{xl, xn} such that -ICPLB(;, T e zm) holds. Take such a
sequence z;, ..., Z,,. Then we have

-iCPLB(;, %y o zm). (+)

By Lemma 6.1, we obatin from (+),

e B(X Yy v, ) (+4)

From (+) and (++), we get by Theorem 3.1,

ksl yl,...,ym)andi-H B(x.z,...2,)

HCV; CVE
since B(E, }), and B(}, E) are quantifier-free. By applying the rule (RVH)

to them, we obatin koo A

(iv)LetAe FY,say A= Vxl...Van(x‘, TR Y, e ym)
(n20 and m20),

such that x,..., x , y,,..., ¥, are all distinct free variables occurring in the
quantifier-free part of A. We shall again write B(}, Ypswes ¥,y) OF B(}, ;)
for B Xpeor X Yoo ¥ and so on.

The = of (4): Suppose lhycs" A. We shall prove this by induction on
derivations. By Corollary 4.1, we can easily deal with the propositional part
of the induction. If n = 0, then we do not need to prove further. So assume
n 2 1. First we shall treat the case of m = 0. In this case, + , A 1s obtained
by the rule (RSVI). Then, by Corollary 4.1, we have -{Cfffl Z(—1 B(;)) for
some variable z. By Lemma 6.1, we get 4, U ”(—| B(})) for any variable
w. From this we have 4., C[H(—t B(;)) by the decision procedure (II). This

is nothing but 4, — A. Now we shall deal with the case of m >1. In this
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case, b, A is obtained by the rule (RS" 2). Then, by Corollary 4.1, we
get

-ICPLSpec[)c1 T ——)zn] (ﬂ B(xl,..., X5 Wyoesy ym))

for some finite sequence z,...,z, of variables with length n and
{21’ zn} = {yl, yn}. From it, by Lemma 6.1, we have

-|CPL—' B(w], o W Ve ym)

for any finite sequence w,,...,w, of variables with length n and
{wl, g wn}c; {yl, 5 ym}. Then, it follows by the decision procedure (III)
that

Agpg V¥yere VY, 3%y 32 —.B (xl, oy Xy Yoy ...,ym)

holds. Since x,,..., x,, ¥, ..., ¥,, are all distinct free variables occurring in
B(;, ;), by CPL, we immediately obtain T Xy B, —18(;, ;), from
which 4., — A follows.

The < of (4): Suppose 4., = A. If n = 0, then we can directly apply
Corollary 4.1 to it. So we shall assume n > 1. Suppose m = 0. Then, by
CPL,

CPL=""1

A A 0. 3 —:B (xl, x")

holds. By the decision procedure (II), we get gy Z(—| B(E)) for any
variable z. Take a variable y and fix it. So we have

A U’ (-1 B(})). )

from the above. By Lemma 6.1, from (),
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A B30 3,). 1)

So from (>) and (> D), it follows by Corollary 4.1, that
U"(B(;)) and B(}) are theorems of HCS" . Then we can apply (RSVI) to
them to get l_m:s" A. Next we shall suppose m >1. Then by CPL, we have

Yopy, V¥ VO, .38 = B (xl, O A O ...,ym).

-By the decision procedure (III), we get

Aer— B (ZI""’Z"' yl""’y"')

for any finite sequence gz,..,z, of variables with length n and
{zl, zn} ;{yl, ym}. Then, from this it follows by Corollary 4.1 and
Lemma 6.1 that

I_Hcs"B(xl' - ...,ym) and I-HCSVB (wl, vy W, yl,...,ym)

for some finite sequence w,,...,w,  of variables with length n and
{wl, wn}g {yl, ym}. Then apply ( RS” 2) to them.

(v) LetAe F7, say A= Elx]...EIan(xl, xn) (n21).

The = of (5): Suppose }-HcsaA. We shall prove this by induction on
derivations. As above, the propositional part of the induction is easily
treated. Suppose that A is obtained by the rule (RSB]. By induction hypoth-
esis, —|B(xl,..., xn) is not provable in CPL. By CPL, we have
epi, VX0 VX = B(xl, o xﬂ), which is logically equivalent to
—3x,...3x,B(x,, .., x,) in CPL. So ,,— A holds.

The <= of (5): Suppose 4, — A. By CPL, 4y, V... Vx = B(x,, ..., x, )
holds. By the decision procedure (I), we know that — B(xl, x") is not
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provable in CP. So we have F—HCSB B(xl, ...xn) by Corollary 4.1. Then, ap-
plying (RSE) to it, we obtain the desired FHCSE A. O

7. The absolute atomic formula property of the systems.

We shall propose the notion of the absolute atomic formula property (of
CPL), which is similar to that of the atomic formula property introduced in
[25].1° In this section, we shall see that the proposed systems have the
absolute atomic formula property as well as the atomic formula property.

Definition 7.1. Let X be a formal system. The system X has the absolute
atomic formula property (for short, abs-a.f.p.), if for any formula A prov-
able in X, there is a proof of A in X which contains only such formulas, say
B,B,, ..., B that <B>cC<A> holds for any 1<i<n (we say that such
a proof has the absolute atomic formula property).

So from the above definition and the fact that for any formula A of CP,
< A>»=<A> holds, we immediately have:

Corollary 7.1. The Hdrtig-style calculi HC and HCS have the absolute
atomic formula property.

Proof. By Theorems 3.2 and 4.3. O
Our observations in this section are the following theorems.

Theorem 7.1. The systems HC, HC3, HC™, HCS" and HCS? have the
absolute atomic formula property.20

Proof. It would be enough to give only an outline of the proof. Suppose
that we are given a proof 7 of A in the system in question. The proof 7
consists of a propositional 7, and a predicate-part T, say
m,=A,... A (rnx1) and m,=B,.., B, (m>0). (Note that the whole

19 g [28], a similar notion, i.e. the name variable property (for short, n.v.p.) is
introduced.

230 1513 a stvrict sense, HC', HC" and HCS® do not have abs-a.f.p. since
(R ),(R ), (RS 1) and (RS 2) have the special conditions, respectively, whereas they
have a.f.p. even in the strict sense. It depends on the definition of a proof whether or not
they have abs-a.f.p..
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proof 7 is thus of the form A A", Bl, Bm with A=B if m21, oth-
erwise A= A .)

In view of Corollary 7.1., we can obtain a new proof zr of A . with the
absolute atomic formula property. If m = 0, the proof 7rp i§ a desired one of
A with abs-a.f.p.. Suppose m 2 1. Then we easily see that 7 , By B, 18

p m
a proof of A in the system in question with the absolute atom:c formula

property. O

Theorem 7.2. The systems HC®, HC?, HC™, HCS® and HCS® have the
atomic formula property.

Proof. The proof of Theorem 7.1 can also be mutatis mutandis used in this
case. O

We have just seen that the proposed systems have abs-a.f.p. as well as
a.f.p.. In the Appendix B, the reader will find such systems that they have
a.f.p. but not abs-a.f.p.. We also have to remark that the following state-
ment does not hold: for any formulas A and B of CPL,
<AS>C<B>=<A>c<B>.

A counterexample of it is for example that A=VxVyF(x, y) and
B=YyVxF(x, y), where F(x, y) is a predicate letter of CPL with 2 at-
tached variables. That is, we easily see that <K A>=<B>= {F (x, ¥ }

F(z, x)e<A> and F(z x)& < B> where z is a variable with z # y.

So we cannot, in a straightforward way, get such a meta-implication as
“X has abs-a.f.p” = “X has a.f.p”, where X is a quantificational system.
Thus, we shall give the following open problem.

Open problem. Is there a quantificational system that has abs-a.f.p. but not
afp.?

For the purpose of comparison, we shall define the notion of “has the sub-
formula property” as follows.

Definition 7.2. Let X be a formal system. The system X has the subformula
property (for short, s.f.p.), if for any formula A provable in X, there is a
proof of A in X such that every formula occurring in the proof is a subfor-
mula of A (we say that such a proof has the subformula property).2!

Here we shall show the relation among s.f.p., a.f.p. and abs-a.f.p. as fol-
lows.

21 This definition is good for proofs both in a Hilbert-style system and in a Gentzen-style
one.
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Theorem '1.3. Let X be a formal system such that Definitions 5.1 and 5.2
are meaningful in X. Then we have:

(1) If Definition 3.3 is meaningful in X and if X has s.f.p., then X has
afp.

(2) If Definition 7.1 is meaningful in X, then “if X has s.f.p., then X has
abs-a.f.p.” does not hold.

(3) If Definition 7.2 is meaningful in X, then “if X has a.f.p., then X has
s.f.p.” does not hold.

(4) If Definition 7.1 is meaningful in X, then “if X has a.f.p., then X has
abs-a.f.p.” does not hold.

(5) If Definition 7.2 is meaningful in X, then “if X has abs-a.f.p., then X
has s.f.p.” does not hold.

(6) If X is a propositional system and if Definitions 3.3 and 7.1 are
meaningful in X, then we have: X has abs-a.f.p. if and only if X has
afp.

Proof. The statements (1) and (6) are obvious from the definitions.22

A counterexample of “a.f.p. = s.f.p.” is the Hirtig's refutation calculus
HC, since the rule (HC4) of HC causes a problem for s.f.p..23 We shall give
an example for that below.

Let p be a proposition letter. Then, + Fyc——p holds obvmusly For exam-
ple, a finite sequence p, ——p D p,—p is a proof of ——p in HC with
a.f.p.. We can say that there is no proof of ——p in HC with s.f.p.. All dif-
ferent subformulas of ——p are p, —p and ——p. Suppose that a proof of
—p in HC with s.fp.,, say A, ..., A (n>1) with A = ——p. Because of the
form of ——p, there are mdlces 1< i<nand 1< "< n with i # J such that
A, is an immediate consequence of A and A ; by (HC4) with
A=A :)A orA =A DA. Such A or A are not subformulas of
—|—|p So we have'a confradiction. Thus we have (3).

A counterexample of “abs-a.f.p. = s.f. p " is, for example, the refutation
calculus HC", since the rule (R4) of HC" similarly causes a problem for
s.f.p..24 So we may conclude (5).

22 In order to conclude the same statement for formal systems beyond first-order logic,
and for e.g. Gentzen-style systems, we have to extend and modify the definition of
subformula and absolute subformula, and that of a.f.p. and abs-a.f.p.. But it will easily and
positively be done.

23 The satisfaction caluclus HCS does not have s.f.p. because of the rule (HCS4).

24 The systems HC®, HC™, HCS" and HCS® do not have s.f.p. with a similar reason.
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A counterexample of “a.f.p. = abs-a.f.p.” is the Bullock and Schneider's
BS (see the Appendix C of this paper). Thus, (4) holds.

A counterexample of “s.f.p. = abs-a.f.p.” is LK , one of @ —logics
(for LK , see [14, p. 349 and p. 362]). The cut elimination theorem holds
for it (seé [14, p. 364] or [40, Chapter VIII, pp. 203-204, pp. 207-209]) so
that it has s.f.p., and if we look at the quantificational rules for the logic, it
is obvious to see that it does not have abs-a.f.p.. Hence, we have (2).25 []

Hailperin [16] gave an axiomatization of formulas of CPL which are in-
valid in some finite domain. The quantifier-free part of the system is that
“if A is quantifier-free and non-tautologous, then + A” (see [16, p. 90]).
From the syntactical viewpoint of the present paper, I am not satisfied with
the quantifier-free part of Hailperin's formulation. For such a rule can tell
nothing about syntax and such a property as the atomic formula one.

8. On provable formulas and contradictions of F¥, F? and F*.

With the same idea as the above, axiomatizations of provable formulas of
FY, F? and F™ can be taken care of by the decision procedures (I), (IT)
and (III), respectively. By PY, P? and P*°, we denote the systems for
FY, F? and F™, respectively.

For the common propositional part of F”, F? and F™°, we may mutatis
mutandis adopt an arbitrary, well-known calculus26 for CP. However, we
shall choose a cut-free Gentzen-style system LK®" for it, since it has s.f.p..
So we shall also formulate their quantificational rules in a Gentzen-style so
that the whole systems F°, F>and F™> are Gentzen-style ones. The
propositional system LK”" consists of the following axioms and rules (for
simplicity, we shall take v and — as primitive):

Axioms:

(GPA)
IA— 0, A
Rules:

25 we assume that for this argument for (2), Definitions 5.1, 5.2, 7.1 and 7.2 have been
extended and modified.

26 The applications of the rules of it should be restricted to formulas of CPL which
contain neither function signs nor constants.
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(GP —> v)
I'-06,AB
I'—-6, AvB
(GP v —)
I'A—->0© I,B—>0
I'AvB— 0.
ILA—>©
F—)@,—'lA

(GP = —) For any formula A with Of(4),

I'—-06A
F,—lA—)G)

(All formulas occurring in every axiom of LK”" should contain neither
quantifiers, nor function signs, nor constants. We note that the above I'" and
© are finite sets of formulas (they may be empty). We also note that for
example, a sequent I' > ©, A, B is understood as the abriviation of
r-o0u{A B})

Theorem 8.1. (Gentzen) For any formula A of CPL with Qf(A) such that it
contains neither function signs nor constants, we have:

l-m" A FCPLA.

Let us now specify quantificational rules for the systems.
We need the following rule for PY.

(GPV) For any formula A(x) with # FV(A(x)) 21,
— A(x)
— VxA(x),
provided that Qf(A(x)) holds or A(x) is a prenex formula with prefix
V..V.

We need the following rule for P?.
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(GP*) For any formula A with O (A) and FV(A) ={x,,.... x, }’
(n=1), if - U*(A) for some variable z, then — Jx,...3x A.

We need the following rule for P"

(GPV3) For any formula A with Qf(A) and FV(A) = {xl ,,,,, X,

B ym}d(n 21, mz1), if - Spec[y - z](A) for some sequence

z,, ..., Z, of variables with length m and {zl,. sl } {xl, sy B },
then — Vx,...Vx Jy ...y A

Next we shall axiomatize the set of all the contradictions of F* and F?,
respectively. Again the decision procedures will play an essential role for
that. By C” and C?, we denote the axiomatic systems for F° and F°, re-
spectively.

For the common propositional part of C¥ and C?, we shall choose a cut-
free Gentzen-style system OP?" (see §4 of this paper and [23]) for the op-
posne system for CP, since it has s.f.p.. So we shall again formulate
C" and C? as Gentzen- style systems. The propositional system OP"" con-

sists of the following axmms and rules (for simplicity, we shall again take
v and — as primitive):27

Axioms:
(GCA)
IA—0O, A

Rules:

(GC — v) For any formulas A and B with Of(A) and Qf(B),

I'-0,A I'->06 B
I'-06 AvSB

27 The calculus OP" is a version of OP in [23].
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(GCv —)
I'AB—>©
IAvB— 0,
ILA—>©
F—)@,—|A

(GC — —) For any formula A with Of (A),

r-0A
F,—lA—)@

(All formulas occurring in every axiom of OP” should contain neither
quantifiers, nor function signs, nor constants.)
We note the following.

Theorem 8.2. ([23]) For any formula A of CPL with Qf(A) such that it con-
tains neither function signs nor constants, we have:

F A& 4 A
oPP" CPL

(For OP", we have the same constraints mentioned above for LK”".)
We shall specify quantificational rules for C ¥ and C.

We need the following rule for C”.

(GC™1) For any formula A with Of (A) and FV(A) = {x, ..., x, }*
(n21), if - U*(A) for some variable z, then — Vx,...Vx A.

’

(GC™2) For any formula A with Of(A) and FV(A)={x,,..., x

Yprovos Yy, }d (n=2L,m21) if - Spec[x — z](A) for some sequence

z,, ..., Z, of variables with length »n and {Zv 55 zﬂ} c {yl, o Y },
then — Vx...Vx A

We need the following rule for €.
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d
(GC?) For any formula A with Qf () and FV(A) = {xl, xn}
(n21),

— A
- 3x,...3x A,

289

Summing up, we shall repeat the formulation of the above defined systems.

A calculus P” consists of LK + (G’PV )
A calculus P? consists of LK”" + (GP3 )

A calculus P"° consists of LK + (GP"G )
A calculus CY consists of OP?" +(GCV1)+(GC" 2).

A calculus C? consists of OP?" +(GC3).

We shall prove the characterization theorem for them as in the sixth sec-

tion.

Theorem 8.3.

(1) For any formula A of F¥, we have: I—PVA < ko A

(2) For any formula A ofFa, we have: |_P3 A & FCPLA-

(3) For any formula A of F*°, we have: + A e }_CPLA‘
P

(4) For any formula A ofFV, wehave: + A & "CPL_' A
C

(5) For any formula A of F, we have: - A e ko SA
c CPL

Proof of Theorem 8.3. Below as in the proof of Theorem 6.1, we shall
freely (with making no mention of it) make use of the completeness theo-
rem for CPL (actually CP), if we need it to simplify our arguments. All the

decision procedures to be used below are those in the second section.

(i) LetAe F¥,say A=Vx,...Vx B(x,... x. ) (n20).
1 n 1 n
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The = of (1): Suppose l—Pv A. We shall prove this by induction on deriva-
tions. The propositional part of the induction is obvious by Theorem 8.1.
Suppose n = 1. Suppose that Vx B( xn) is obtained by the rule
(GPY). By induction hypothesis, we have F chB( xn). By the deci-
sion procedure (I), we obtain F cp A fromit,

The < of (1): Suppose F, A. By the decision procedure (I),

B(xl,..., ) is provable in CP. So we have | - B(x],..., ) Thus, }—
B(xl,..., ) holds. Applying (GP") n times to the sequent, we obtam
Y

PV

(ii) Let Ae F°, say A = 3xl...3an(xl, xn) (n21).

The = of (2): Suppose 1— ;A. We shall prove this by induction on deriva-
tions. Again, we do not have any difficulties for the propositional part of
the induction by Theorem 8.1.

Suppose that A is obtained by the rule GP”. By induction hypothesis, we
then have I-CPLU‘(B( ﬁ for some variable z, that is, ., B(z,. . 2]
Thus, by the decision procedure A, wesget-b,, 3x.... Ax B(x

The <« of (2): Suppose FeprA - By the dec:slon procedure (II) we see

that LB( ..., 2) hold for some variable z. Then, by applying ( GP?) to it,
we obtam I- A.

(iii) The proof of (3): The proof of it is similar of the proof of (2),
using the decision procedure (III).

(iv)LetAe FY,say A= Vxl...Van(xl, S 5 N ym)
(n=0 and m >0),

such that x,,..., x,, y,,..., y, are all distinct free variables occurring in the
quantlﬁer-free part of A. We shall write B(x b T ) or B(xl, e X, ;)
or B(x y) for Bg proeis Ky Wises ,ym) and so on.

The = of (4 Suppose F +A. We shall prove this by induction on
derivations. The propositional part of the induction is easy by Theorem 8.2.
If n = 0, then the case belongs to the propositional one, with which we can
easily deal by Theorem 8.2. So we shall assume n > 1.

First we shall deal with the case of m = 0. Then A is obtained only by the

rule (GCVI). So we have — B(z, z) for some variable z. By induction
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hypothesis, we get |, — B(z..., z). By decision procedure (II) (or by
CPL), ¢, 3x,...3x,— B(x,, ..., x, ). This is nothing but F ,,, — A.

Let us now treat the case of m 2 1. Then A is obtained only by the rule
(GC"2). Then kg Spec[x - z] B(x, })) holds for some sequence z,, ..., z,
of variables with length n and {z,,..., zn}g {yl, s ym}. By induction hy-
pothsis, we have F CPL-—B(E, y). By the decision procedure (III), we have
Fep V0 ¥, 3% 3x,~B(x, y). By CPL, we obtain tgy3x,...3x,
— B(x, ). This is nothing but I, = A.

The « of (4): Suppose |, = A. If n = 0, then the case is the proposi-

tional one, which is easily dealt with by Theorem 8.2. So we shall assume n
2 1.

We shall first take care of the case of m = 0. By CPL, we have
Fopy Ao IX, = B(xl,..., xn). By the decision procedure (II),
Fepr— B(2 ..., 2) holds for some variable z. Since it is quantifier-free, we
easily get ko B(z, ..., z) by Theorem 8.2. Apply then the rule (GCVI) to it.

Let us prove the case of m 2 1. As in the case of m = 0, Erops 3% 3%,
—|B(§, y). Since y,,...,y, are all distinct free variables occurring in
3 ulx —.B(;, ;), by CPL, we get k., Vy..Vy Jx..3x = B(}, ;)
From this, by the decision procedure (III), we have F,, — B(Zl' S })
for some sequence z,..,z, of variables with length n and
{zl,...,zn}g{yl,...,ym}. By Theorem 8.2, we obtain
ko Spec[x_—:o_z](B(;, })) Then we can apply the rule (GCV 2) to it.

(v)LetAe F? say A= E]x]...anB(xl, xn) (n21).

The = of (5): Suppose F ca A. We shall prove this by induction on deriva-
tions. The propositional part of the induction can easily be verified by
Theorem 8.2. So suppose that A is derived by the rule (GCE’). Then we
have I—CBB(xl,..., xn). By Theorem 8.2, we get I—CPL—|B(x1,...,x"). By
CPL, we obtain F,, Vx,...Vx — B(xl, xn), from which we immediately
see ko Al
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The « of (5): Suppose },, = A. By CPL, + ., Vx,...Vx = B(xl,..., xn)
holds. By CPL (or by the decision procedure (I)), F epr B(xl, xn) fol-
lows immediately from it. Then, we get I—c3 B(xl, sz xn) by Theorem 8.2.

Apply then the rule (GCa) to the last formula. O
We have to note the following theorem.

Theorem 8.4.

(1) The systems P”, P, P*, C"and C? have the subformula property.
(2) The systems P”and C? have the absolute atomic formula property.

Proof. It is easy to see it since LK”" and OP"" have the subformula prop-
erty. U

Corollary 8.1. The systems PY, P>, P™, CYand C? have the atomic for-
mula property.

Proof. Immediate from Theorem 8.4.(1). |

9. Some concluding remarks.

The classes treated in this paper would be of the simplest cases of first-or-
der prenex formulas being subject to axiomatization of their provable for-
mulas, contradictions, unprovable formulas and satisfiable ones. Our
methodology for the axiomatization was the following: (1) find a system
with a decision procedure for it; (2) check whether we can conversely fol-
low the decision procedure for a possible axiomatization of unprovable and
satisfiable formulas (provable formulas and contradictions) of it. It seems
to me that this methodology would be effective enough in making our fur-
ther study successful.?8

The so-called subformula property (for short, s.f.p.) is a typical one of
cut-free proofs of Gentzen's sequent calculus LK. I think that the property
is in a sense an index of normalization of a proof.2? It seems to me that
a.f.p. and abs-a.f.p. are also related to normalization of proofs, though,

28 Certain refutation and satisfaction systems for monadic predicate logic are proposed in
[26, 27, 29] as an application of this methodology.

29 Another interesting thought is found in [15, p. 259].



ON THE HARTIG-STYLE AXIOMATIZATION 293

probably to a weaker notion of that. We wish to discuss this relation be-
tween a.f.p. and normalization further on another occasion.

The real significance of this paper is, I believe, that we proved Theorem
7.3 which shows the complete relation among s.f.p., a.f.p and abs-a.f.p.,
proposing HCY, HC?, HC™, HCS" and HCS?, as well that we carried out
a case study of the above mentioned methodology for predicate logic. We
also proposed P, Pa, PVH, C" and C? which have s.f.p. in the same line.

We shall here give an open problem which will naturally arise from this
paper. Let us prepare some notations for that. Let

F¥ ={AeF":— Ais not provable in CPL},
F:Jfa = {A eF™:-Ais provable in CPL}.

Here is the open problem.
Open problem. Axiomatize F, :"3 and F:g and their subclasses, if possible.

We hope that this paper will somewhat stimulate the reader to further stud-
ies on the axiomatization of unprovable and satisfiable formulas. In particu-
lar, we know little about axiomatizations of satisfiable formulas of modal
logics.
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APPENDIX
A. Closed opposite system.

The content of this Appendix A is just a little curiosity. Since a similar op-
eration used in the proof of Theorem 6.1, that is, —V...V — 3... 3, will
be employed in order to prove the main theorem (Theorem A.4) of this
Appendix, this material is included in the present paper. The second reason
of the inclusion of it is that the system for contradiction is the extreme case
of paraconsistent logic,30 which was the main theme of the Conference at
which this paper was presented.

Here we shall propose a first-order opposite system (or first-order con-
tradiction calculus) without free variables in the style of M. W. Bunder. In
[7], Bunder proposed a certain classical first-order predicate calculus with-
out free variables, that is, a calculus in which all well-formed formulas are
(universally) closed and which therefore requires no generalization rule. By
BCL, we shall denote his system, which is called closed predicate calculus.
The calculus BCL consists of the following axioms and rule (we assume
that the language of all the logics in this Appendix is that of CPL):

Axioms:

(BCL1) by, Vx,...Vx (AD.BD A), where x,, ..., x, include the free
variables occurrmg in A and B.

(BCL2) V., Vx,...Vx (A:)B:)C:A:)B:)A:JC) where x|,
include the free vanables occurring in A, Band C.

(BCL3) t,, Vx,...¥x (FAD— B.D.BD A), where x,, ..., x, include
the free variables occurring in A and B.

(BCLA) by, Vx,...Vx (VXA D AT ] where x,, ..., x_, x include the free
variables occurrmg in ,and A"is the result obtamed from A by re-
placing all free occurrences of x in A by a term having some or all
of x,..., x, as free variables, x in A however must not be in the scope
of one of the quantifiers Vx,, ..., Vx, 3

30 ee (8, p. 57).

31 The propositional part of BCL, i.e. (BCL1), (BCL2), (BCL3) and (BCLT) are based on
Lukasiewicz's axiomatization for CP (see, e.g. [30]). Unfortunately, the description about
the axiomatic system is not found in [37].
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(BCL5) 0, Vx,...Vx (Vx(AD B)o.A> VxB), where x,, ..., x,, x in-
clude the free vanables occurring in A D B with x being not free in A.

(BCL6) e, Vx,... Vx, (VxVyA D VyVxA), where x,..., x,, x, y include
the free vanables occurring in A.

Rule:

(BCLT) If by, Vx,...Vx (AD B), where x,, ..., x, include the free vari-
ables occurringin A> B,and I, V... Vx A, where x, ..., x; include
the free variables occurring in A, then F _— ka... VxIB, where Hiy sy
include the free variables occurring in B.

We easily see the following theorem.

Theorem A.1. ([7]) For any formula A of CPL, if FepA holds where

X, ..., X, are all the free variables occurring in A, Ihen b gy, Vo Vi A
holds

So immediately we have from the above theorem,

Corollary A.1. For any formula A of CPL, if + ., —A holds, then
Fpep—3x,...3x, A holds, where x, ..., x, are all the free variables occur-
ring in A.

We further see the following, too.

Theorem A.2. For any formu[a A of BCL, say A=Vx,...Vx B, we have:
A o I— B where x,,..., x_are all the free vartables occuring in B.

Below we shall denote the opposite system of CPL in [23] by SC. Then we
know the following theorem.

Theorem A.3. ([23]) For any formula A of SC, we have: Pttt A,

On the basis of Corollary A.1 and Theorem A.2, we shall propose a closed
version of first-order opposite system, which derives all contradictions of
CPL. By BSC, we shall denote the calculus, which is called closed opposite
system (or closed contradiction calculus). The system BSC consists of fol-
lowing axioms and rules:
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Axioms:

(BSC1) koo 3x,...3x (Av A A= A), where x ..., x_ include the free
variables occumng inA.

(BSC2) Fpo.3x .Elxn(B A=(Av B)) where x,, ..., x, include the free
variables occumng in A and B.

(BSC3) Fpo-3x,...3x (Av B.A—(Bv A)), where x,, ..., x, include the
free variables occurring in A and B.

(BSC4) tyo 3. 3x, ( AV B.A(CVB)A ﬁ(Cv B)) where x,,
include the free variables occurring in A, B and C.32

(BSCS) Fpoodx,...3x (V)CA/\—| A ) where x, ..., x,, x include the free
variables occurrmg in A, and A” is the result obtamed from A by re-
placing all free occurrences of x in A by a term having some or all

of x,..., x, as free variables, x in A however must not be in the scope
of one of the quantifiers 3x,, ..., 3x .
(BSC6) Fpyo3x,... 3x, (Vx(AD B)a AA=VB), wherex,, ..., x,, x in-

clude the free varlables occurring in A O B with x being not free in A.

(BSCT) FpeTxnIx (VxVyA A —.VnyA) where x,..., x , x, ¥y in-
clude the free vanables occurring in A.

Rule:
(BSC8) If + BSCEix .3x (A A B), where X, ..., X, include the free vari-
ables occurring in AAB, and F BSCEIx 3. —.A where x,..., x, in-
clude the free variables occurring in A, then | o 3x, .. Elx B wﬁere

X,, ..., X, include the free variables occurring in B
Now we can show the analogue of Theorem A.1 for BSC as follows.

Theorem A.4. For any formula A of SC, if to. A holds, then
FpscIx,...3x, A holds, where x,, ..., x, are all the free variables occurring
inA

32 The propositional part of BSG, i.e. (BSC])} (BSC2), (BSC3), (BSC4) and (BSC8) are

based on Stahl's axiomatization for C{‘A: F cp™ A (see [42]).
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Proof. The proof of it is similar to that of Theorem A.1. ad
Then we immediately see the following.

Theorem A.5. ([23]) For any formula A of BSC, say A=3x,...3x B, we

gave: FpscA S Fcp— B, where X, X _are all the variables occurring in

In the rest of Appendix A, we shall propose another calculus equivalent to
BSC, which is a much more Bunder-like one.
Bunder [8] axiomatized the set of contradictions of CPL with negation, 3

and the binary connective ®,33 which is specified by the following truth
table:

A|B|A®B
T|T F
T|F F
F|T T
F|F F

We can define A ® Bas = AA B interms of — and A.

The Bunder's system N for contradictions of CPL consists of the follow-
ing axioms and rules:

Axioms:

(N)+,A®.BRA.
(N2) }-NA®.B®C:®:A®B.®.A®C.
(N3)F,—~B®—-A®.(~BOA)®B.
(N4) +, 3xA(x) ® A(t), where t is a term of N free for x in A(x).
(N5) F,3x(A®B)®.A®3xB, where A contains no free occurrences
of x.
(N6O)F A+ A®B = + B
N N N
(NT) I-NA = I-NHxA.

33 The original notation in [8] for & is x, but we shall here use ® in place of it.
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For any formula A of N, let 7"(A) be the result from A by rewriting all sub-
formulas of the form B ® C in A by — BA C. Then we easily see the fol-
lowing theorem.

Theorem A.6. For any formula A of N, we have: FNA = l-CPL—nT’e (A).

Proof. (=): Easy by induction on derivations.

(¢): We shall only give an outline of the proof. First formulate and
prove the completeness theorem for N on the basis of an usual technique
for CPL (e.g. Henkin's method). Then, by means of the theorem, we can
easily prove the meta-implication

1A = 4, T (A)

That is, if we have a model AL falsifying A, then in view of the structure of
the translation 7", we can easily construct a model * which makes
—T"(A) false, making use of AL. d

Now we shall propose the mentioned system, which will be denoted by
BN. The system BN consists of the following axioms and rules:

Axioms:

(BN1) Fpo3x,...3x (A®.B® A), where X, ..., X, include the free vari-
ables occurring in A and B.

(BN2) Fp.3x...3x (AQ.BOC:®:AQB.®.ARC), where LN
include the free variables occurring in A, B and C.

(BN3) +p,3x...3x, (- A®—-B.® . B®A), wherex,,..., x_include the
free variables occurring in A and B.

(BN4) k. 3x..3x (HxA ®A"), where x,..., x, x include the free
variables occurring 1n A, and A" is the result obtained from A by re-
placing all free occurrences of x in A by a term having some or all of

Xy, ..., X, as free variables, x in A however must not be in the scope of
one of the quantifiers 3x , ..., dx..

(BN5)  Fpy3x...3x, (3Ix(A®B)®.A®3xB), where x,,..., x , x in-
clude the free variables occurring in A® B with x being not free in A.

(BN6) I, 3x,... 3x, (Ix3IyA ® IyAxA), where x,, ..., x, x, y include the
free variables occurring in A.
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Rule:

(BNT) If Fp\3x,...3x (A® B), where x,, ..., x, include the free vari-
ables occurring in A® B, and + BN':'ix,...ExjA, where x,..., x; include
the free variables occurring in A, then F,, 3x,...dx B, where x,, ..., x,
include the free variables occurring in B.

Probably we do not need to give the proof of the following theorems.

Theorem A.7. For any formula A of N, if +-, A holds, then -, 3x,...3x A
holds, where x,, ..., x, are all the free variables occurring in A.

Theorem A.8. For any formula A of BN, say A=3x...3x B, we have:
FeyA Sy B, where x,..., x, are all the variables occurring in B.

B. Hadrtig-style axiomatizations of unprovable and satisfiable quantifier-
[free formulas with equality.

Let CPL= be classical first-order predicate calculus with equality. We shall

assume that apart from equality, the language of CPL™ is the same as that
of CPL.

As a preparation for the next Appendix C, we shall propose a Hartig-style
axiomatization of satisfiable quantifier-free formulas of CPL=. By HCS=,
we shall denote the proposed system. As above, the well-formed formulas
of HCS™ are quantifier-free ones of CPL=.

Definition B.1. For any formula A, if it contains no equalities, then it is said
to be equality-free (in notation: Ef(A)).

The system HCS™ consists of the following axioms and rules:

Axioms:

(HCS1=) b _F(t,...,t,) for any predicate letter F(a,, .., a,) with n

attached variables and for any terms 1,,..., ¢, (n20).

(HCS2=) P-HCS; - F(t], e tn) for any predicate letter F(al, cees an) with
n attached variables and for any terms z,, ..., ¢ (n20).
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(HCS3=)+  _t=t forany termt.
HCS

(HCS4=)F  —t=s for any distinct terms ¢ and s.
HCS™
Rules:

(ngs= )b ooe B b o B <A> N <B> = Ef(A), Ef(B)= bl
(HCS6= ) If E-HC - A and ¢, s are distinct terms, then I—H _AAt=tand

Cs
F AAn—=t=s.
HCs®

(HCST=) + AF ADB = | B.
HCS™ cp HCS™

Theorem B.1. For any formula A of HCS",F A&+ —A.
HCS* CcPL

Proof. Similar to the proof of Theorem 4.2. O

Theorem B.2. The Hiirtig-style satisfaction calculus HCS= has the absolute
atomic formula property.

Proof. Regarding equality as a binary predicate letter in Definition 5.3, the
proof is similar to that of Theorem 4.3. O

Theorem B.3. The Hartig-style satisfaction calculus HCS= has the atomic
formula property.

Proof. Similar to the proof of Theorem B.2. O

Now we shall propose a Hiirtig-style axiomatization of unprovable quan-
tifier-free formulas of CPL=. By HC=, we shall denote the proposed sys-
tem. The well-formed formulas of HC= are quantifier-free ones of CPL=.
The system HC= consists of the following axioms and rules:

Axioms:

(HC1=) '_Hrf F(tl, tn) for any predicate letter F(al, an) with n
attached variables and for any terms Lnst (20),
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(HC2=) FHC‘ - F (tl, rn) for any predicate letter F (ai, an) with n
attached variables and for any terms ¢,,..., ¢, (n20).

(HC3=)F —t=t for any term t.
HC

(HC4=) chﬂt = 5 for any distinct terms ¢ and s.
Rules:
(HCS=) b, At B <A>N<B>=0, Ef(A), Ef(B)= AV

(HC6=)If + _A andt, s are distinct terms, then b _ Av —f=tand
HC HC
l-H Avi=s.

(HCT=) v _ADBF+F B =+ A.
cp HC™ HC™

Since we can similarly prove them as above, we shall omit the proof of the
following theorems.

Theorem B.4. For any formulaAof HC=, + A & 41 A

HC cPL
Theorem B.5. The Hdrtig-style refutation calculus HC= has the absolute
atomic formula property.

Theorem B.6. The Hirtig-style refutation calculus HC= has the atomic for-
mula property.

The systems HC= and HCS= do not have the subformula property, since
they have the rules (HC7= ) and (HCS7=), respectively.

C. Bullock and Schneider's calculi for finitely satisfiable formulas and their
afp.

In this Appendix C, we shall recall Bullock and Schneider's calculus for
finitely satisfiable formulas with or without equality (see [6, 5]).

By CPL we shall here again denote classical first-order predicate calculus
without equality. Let CPL= be classical first-order predicate calculus with
equality. Here we assume that the language of all the calculi treated in this
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Appendix contain no function symbols. However, we assume that it may
contain constants.

For the convenience of the reader, we shall repeat some model-theoretic
terminologies and notations which were used in [6]. If M is a model struc-
ture, by || we denote the universe of M. For any formula A of CPL
(CPL7) we write M = A(al, an) if the assignment of a e LMJ to variable
x, satisfies A, where x,, ..., x_ are all the free variables coccurring in A. If
there is a model structure M and a,...,a, € M such that M =
A(al, an), then A is said to be satisfiable,3* and if [M| has exactly k el-
ements, A is said to be k-satisfiable.

A formula A is said to be finitely satisfiable if it is k-satisfiable for some
positive integer k.

Now we shall recall a series of definitions due to [6].

Definition C.1. Let A be a formula of CPL (CPL=). If ¢, ..., ¢t are terms
(that is, variables or constants) and s,,..., s, are terms not occurring in A,
then we denote by A[tI I8 1 sn] the formula obtained from A by re-
placing each free occurrence of ¢, in A by s, forany 1<i<n.

Definition C.2. Let A be a formula of CPL (CPL™). Let X, .0s X, be the se-
quence of all variables occurring free in A, let y, y,,... be the sequences
containing all variables not occurring in A, and let d,...,d_be the se-
quences of all constants occurring in A. Then the closure A*of A is defined
by:

A = 3xl...3xn3yl...3ypA[dl /Vpond,/y, ]

Clearly, the closure of a formula has neither constants nor free occurrences
of variables.

Definition C.3. Let A be a formula of CPL (CPL= ). The k-transform A* of
A is inductively defined as follows.

(1) A* =A for any atomic A.

2) (- B)* =— B,

(3) (BAC) =B* A C*.

34 In classical logic, this definition of satisfiability is equivalent to the definition adopted
in the Introduction for satisfiability.
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4) (VxB)k = (B{x/cl]),c A A (B[x/ck ])k wherec,, ..., ¢, are distinct
constants.

The Bullock and Schneider's calculus BS for finitely satisfiable formulas
without equality consists of the following axioms and rules:

Axioms:
(BS1) +pcA for any atomic A.

Rules:

(BS2) For any atomic B, if + A, QOf(A) and Be<A>, then
l— AAB and I" A/\—|B

(BS3) I-BSA, I-CPA OB = I-BSB.
(BS4) +,,A™ for some positive integer k => b s

Theorem C.1. ([6]) For any formula A of CPL, A is finitely satisfiable if and
only if ;. A holds.

The Bullock and Schneider's calculus BS= for finitely satisfiable formulas
with equality in [5] consists of the following axioms and rules:

Axioms:
(BS17) }-Br A for any equality-free atomic A.

Rules:

(BS2=) For any atomic B with Ef(B), if - A Of(A) and Bg<A>,
then i— AABandé- A/\—:B

(BS3= ) For any distinct terms ¢ and s, if k- Aand Of(A), then
}-B Ant=t and I— AA—|t—s

(BS4=)F AF_ADB = + B.
BS™ CP

(BS5=) F A™ for some positive integer k = F A.
BS™
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We should here remark that the rule (BS5= ) must be used at most once in a
proof B,..., B, of a formula A(= BnS (n=1) of BS= and if it is used in the
case of n = 2, then A must be the immediate consequence from
B(l<i<n-1) by (BS5%).

Theorem C.2. ([S]) For any formula A of CPL=, A is finitely satisfiable if
and only if l-Bf A holds.

The purpose of the Appendix C is to prove the following theorem.
Theorem C.3. The systems BS and BS™ have the atomic formula property.

We need some preparation for the proof of Theorem C3.

Let HCS™ be the propositional part of HCS" . So the well-formed for-
mulas of HCS?? are assumed to be quantifier-free ones of CPL. Then, by a
similar consideration as in Appendix B, we have

Theorem C.4. For any formula A of HCS™, A e 4 A

Hes™ CPL
Theorem C.5. The Hirtig-style satisfaction calculus HCS“? has the abso-
lute atomic formula property.

Theorem C.6. The Hrtig-style satisfaction calculus HCS® has the atomic
formula property.

Let BS“ be the propositional part of BS and BS“® the propositional part
of BS™. Now it is easy to prove the followmg theorem by induction on
derivations. (The well-formed formulas of BS™ ( BS“?~) are assumed to
be quantifier-free ones of CPL (CPL=).)

Theorem C.7.
1) F la A of BS%, b
(1) For any formula A of l_ss"f? A& p— A
2) F la A of BS“%, ;
(2) For any formula A of lhss"9= A= i_HCS" A

Proof. We shall only prove (1). In a similar way, (2) is also easily proved.

The proof of = of (1): It is obwous smce the rule (RS4) of HCS™ is
generalization of the rule (BS2) of BS“

The proof of « of (1): Let A be a formula of HCS“. Suppose that we
have a similar proof of A in HCS? as in the proof of A in the proof of <
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of Theorem 4.2. Then we observe that the proof of A in HCS can easily
be transformed to that in BS% O

Theorem C.8.
(1) The system BS™ has the atomic formula property.

(2) The system BS“® has the atomic Jormula property.

Proof. The proof of (1): Let A be a formula of BS“?. Suppose + 2
Then by Theorem C.7, we have + qesie A Then there is a proof 7 of A in
HCS™ with a.f. p. by Theorem C.7. Without loss of generality, we may as-
sume that the proof 7 is obtained similarly as the proof of A in the proof of
<= of Theorem 4.2. Then we easily see that 7 can be transformed to that in
Bs™® keeping the atomic formula property.

The proof of (2): For (2), we have a similar proof as the proof of (1) on
the basis of Theorems B.3, 4.2 and C.7. O

Now let us prove the main theorem of this Appendix.

Proof of Theorem C.3. For (1), it is immediate from Theorem C.8, since
every proof of A in which (BS5= ) is at least once used can be easily trans-
formed to a proof of A in which the rule is employed only once at the end
of the proof. For (2), we may just apply Theorem C.8 for it. O

It is obvious that BS and BS= do not have the absolute atomic formula
property, looking at their rules for quantifiers. This means that the notion of
the atomic formula property is not stronger than that of the absolute atomic
formula property. We also mention that BS and BS= do not have s.f.p. be-
cause of (BS3) and (BS3=), respectively.

D. Some refutation and satisfaction calculi which have neither s.f.p., nor
a.f.p., nor abs-a.f.p..

In this Appendix D, we shall give some refutation and satisfaction calculi
which have neither s.f.p., nor a.f.p., nor abs-a.f.p.. Let p be a proposition
letter of CP and fix it. The language of the calculi treated below is that of
CP.

The refutation calculus CPR for CP in [36] consists of the following ax-
iom and rules:

Axiom:
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(CPR1) b, p for the fixed proposition letter p.

CPR

Rules:
(CPR2) b o(A) = ke & Where 0 is a uniform substitution.

(CPR3) }-CPA:JB, PCPRB = l—CP A.

R

Theorem D.1. ([22]) For any formula A of CP, },.A & Eapg-

We shall show a satisfaction calculus CPS for CP in [33] consisting of the
following axiom and rules:

Axiom:

(CPS1) F ., p for the fixed proposition letter p.

CPS

Rules:
(CPS2) F s 0(A)=F ., A, where 0 is a uniform substitution.

(CPS3) b epsA b pAD B>t B.

CPs*7 ' CP

Theorem D.2. For any formula A of CP, + csA L e A

Proof. Easy by induction on derivations. (It is easy to give a purely syntac-
tical proof of it.)

We note that CPR and CPS are finite axiomatizations of the set of un-
provable and satisfiable formulas of CP, respectively.

Theorem D.3. The systems CPR and CPS have neither s.f.p., nor a.f.p., nor
abs-a.fp..

Proof. We shall first show that they do not have a.f.p.. Take a proposition
letter g with g # p. It is obvious that - ,.g and I cpsq hold. Every proof of
g in CPR must contain the axiom p and so is every proof of ¢ in CPS.
Hence, CPR and CPS do not have a.f.p.. So, they do not have s.f.p.. For
classical propositional logic, the notion of a.f.p. coincides with that of abs-
a.f.p. so that CPR and CPS do not have abs-a.f.p.. O
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