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1. Introduction

The purpose of this paper is to give semantically sound and complete
axiomatizations of all members in a certain infinite hierarchy of systems
of dyadic deontic logic [logics of conditional obligation and permission, if
you prefer]. In the semantics of any such system there is, in addition to a
family of relations of “deontic accessibility” among possible worlds, a
weak preference relation ‘is at least as ideal as’ on the set of such
worlds [as in Hansson (1969)]. Using that preference relation, we are
able to distinguish various “levels of perfection” in the models of our
systems, and each level of perfection will be represented in the object-
language of the systems by a so-called systematic frame constant. The
truth conditions and axioms governing any such constants will be seen
to play a highly important, characteristic role in our axiomatization.

The plan of the paper is as follows. After having presented the syntax,
semantics and axiomatic proof theory of an infinite sequence G*m [m =
1,2,...] of dyadic deontic logics in Section 2, we introduce the notion of a
canonical G*m-structure in Section 3, where we also prove four lemmata
on such structures. These lemmata suffice to establish, in Section 4, the
desired completeness of each system G*m. In Section 5, finally, we con-
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sider two weaker logics of conditional obligation, for which the complete-
ness problem remains open. With respect to one of those logics, how-
ever, there are excellent reasons for believing that the result of adding to
it a so-called “infinitary” rule of proof [i.e. one having an infinite number
of premisses] is complete relative to our proposed semantics in at least
a certain weak sense.

Some technical and historical remarks to round this introductory sec-
tion.

In the completeness proof we use the familiar Henkin technique of
maximal consistent sets of sentences (formulas), as transferred to
modal logic in Makinson (1966) and Lemmon & Scott (1966). Our
method for modelling logics of conditional obligation is somewhat special
in that it treats the connective for conditional obligation fundamentally as
what Chellas (1975) calls a sententially indexed modality [see Section 2
infra and Chellas (1975), Note 14]. As to the technique of systematic
frame constants adopted here, it seems to originate, as far as deontic
logic is concerned, with my Aqvist (1984) and iqvist (1987). In §23 of
the latter contribution a not very successful attempt was made to deal
with the completeness problem for the two systems discussed in Section
5 below; but, in the light of the present paper, it was certainly on the
right track. Some further insights into the potentialities of this technique
were later gained in two papers by the present author on discrete tense
logic, Aqvist (1991) and (1992).

Finally, we observe that the need for logics of conditional obligation
and permission was realized at quite an early stage in the development
of modern deontic logic: thus, the dyadic deontic logic of von Wright
(1956) was proposed as a reaction to the Prior (1954) Paradoxes of
Commitment (“derived obligation™), and that of von Wright (1964) as a
reaction to the Chisholm (1963) Contrary-to-Duty Imperative Paradox.
In fact, the main interest of dyadic deontic logics may be said to consist
in their capacity to deal with the phenomenon of reparational
[“secondary”, “contrary-to-duty”] obligations arising in cases where a
primary obligation has been violated. Moreover, the topic is interestingly
related to Conditional Logic as well as to Preference Theory, as wit-
nessed by its later history. See again my Aqvist (1984) and (1987),
where a number of additional useful references can be found. In Section 8
of those two contributions, however, we argued, like van Eck (1981),
that the dyadic approach a la Hansson (1969) appears unable to handle
certain interesting problem areas, which strongly indicate the need for a
successful combination of deontic and temporal logic [this point was in-
deed made already by Spohn (1975) in his excellent examination of the
Hansson (1969) dyadic deontic logic DSDL3, of which the systems dealt
with in the present paper are straightforward extensions].



COMPLETENESS IN DEONTIC LOGIC WITH FRAME CONSTANTS 179

Nevertheless, in the opinion of the present writer, this circumstance
does not in any way detract from the interest of studying Hansson-style
logics of conditional obligation as such. As appears from the combined
dyadic-deontic-temporal logic DARB of Aqvist & Hoepelman (1981) and
Aqvist (1991a), the situation is rather the opposite one.

2. The systems G*m: syntax, semantics and proof theory

The language of the systems G*m (m any positive integer) has, in addi-
tion to an at most denumerable set Prop of propositional variables and
the usual Boolean sentential connectives (including the constants verum
and falsum, i.e. Tand 1), the following characteristic primitive logical
connectives: O (for conditional obligation), P (for conditional permis-
sion), N (for universal necessity), M (for universal possibility), and a
family {Q,. }(1 <i<w) of systematic frame constants, which are indexed
by the set of positive integers. We take the Q, to represent different
“levels of perfection” in the models of our systems, as explained below.

The set Sent of well formed sentences (formulas) is then defined in the
straightforward way. We note that there are no restrictions as to itera-
tions of dyadic deontic operators or modal ones. Moreover, we write OgA
[PpA] to render the ordinary language locution “if B, then it ought to be
that A” [“if B, then it is permitted that A”]. We prefer this style of
notation to the current one O(A/B)[P(A/B)|, because (i) it is paren-

thesis-free, and (ii) the reading goes from left to right, and not the other
way around.

Let us next turn to the semantics for the systems G*m. By a G*m- struc-
ture we understand an ordered quintuple

p=(W,R2,m,V)
where:

(i) W# O [W is a non-empty set of “possible worlds”].
(i) R: Sent — Pow(W X W) [R is a function which assigns to
each sentence a binary relation of deontic accessibility on W].
(i) 2 € W X W[2 is a binary, weak preference relation on W1].
(iv) m is the positive integer under consideration.
(v) V:Prop — Pow(W) [V is a valuation function which to each
propositional variable assigns a subset of W].
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We can now tell what it means for any sentence A to be true at a point
(“world”) x (€ W) in a G¥m-structure U [in symbols: U, x = A],
starting out with obvious clauses like

U, xF piffx € V(p) (for any p in the set Prop)
H.xE T
not: U, x= L

and so on for molecular sentences having Boolean connectives as their
principal sign. We then handle sentences having the characteristic G*m-
connectives as their principal sign as follows:

H,xF= OpA iffforeveryyinWwithxRpy: U,y A
H,xFE PgA iffforsomeyin WwithxRgy: i,y A
H,x= NA iffforeachyinW: y,yE A
H,xE= MA iffforsomeyinW: u,ykF A

Finally, we have to provide truth conditions for the frame constants Q;. In
order to do so, let us first define a denumerably infinite sequence opt; (i
= 1,2,...) of subsets of W by the following recursion:

{x e W: (foreachy e Wyx 2y}, ifi=1
o, = {x e W- (optlu ) optf_l): (foreachy e W -

(optl U optl__l))x 2 y}, ifi >1

Intuitively, opt; is the set of “best” (i.e. =-maximal) members of W as a
whole, opt; is the set of best members of W-opt; (the “second best”
members of W), opts is the set of best members of W - (opt; U opty);
and so on. The truth condition for the Q,is then the following:

H,xFE Q. iffx € opt;, for all positive integers i.

We now focus our attention on a special kind of G*m-structures called
“G*m-models”. By a G*m-model we shall mean any G*m-structure U,
where R, 2, and m satisfy the following additional conditions (for each A
in Sent and any x,y in W):

e xR, yiff U,yF Aandforeachzin W:
if £,z A, theny 2z
Trans. 2 is transitive in W.
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LimAss. Every non-empty subset of W has at least one >-maximal
element, in symbols:
(VX ¢ W)(X#: @>{reX:(VyeX)x2 y}# @).

Exactly m Levels of Perfection. This condition requires the set {opt],
opty, ..., opty } to be a partition of W in the familiar sense that

(a) foralli,j withl Si#j<m:opt; N optj= D, and
(b) opt; V.. Uopt, =W

Finally, we require our opt-classes to satisfy

(c) foreachiwithl <i <m: opt; # &, and
(d) for each positive integer i with i > m: opt; = @.

Our definition of the notion of a G*m-model is thereby complete. As
usual, we say that a sentence A is G*m-valid iff i, x = A for all G*m-
models U and all points x in W. And we say that a set " of sentences is
G*m-satisfiable iff there exists a G*m-model U and a member x of W
such that for all sentences A in I': 1, x = A. Clearly, for every positive
integer m, A is G*m-valid iff the singleton { —A} is not G*m-satisfiable.

It is now time to consider the proof theory of the systems G*m. Thus, for
any positive integer m, the axiomatic system G*m is determined by the .
following rule of inference, rule of proof, and axiom schemata (where we
use ‘i’, j° as variables over the positive integers):

Rule of inference

A, A—>B
mp (modus ponens) —B—

Rule of proof

o A
nec (necessitation for N) F—

[For the distinction between a rule of inference and a rule of proof, see
e.g. Sundholm (1983)].

Axiom schemata

a0  All tautologies over Sent

al PpA & -0 —-A

a2 Op(A = C) — (0pA - 050)
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a3 OpA — NOpA

ad NA — OpA

a5  S5-schemata for NM (i.e. MA & =N —A, N(A — B) = (NA
— NB), NA — A, NA = NNA, MNA — A)

a0 N(A & B) = (04C & 050

01 O4A

22 0,,;C 2 OB =0

Q3 MA — (O4B — P4B)

04 P4B = (04(B = O = 0,,;0)

o5 Q > g foralllSi#j<m

06 PpQ,—> (QV..Vv Q) —> —B)foralliwithl<i<m

a7l O > (0gA > (B > A))

o8 (QAOpAABA —A) 5 Pp(Q V..VvGyforl<i<m

a9 O v.. vO,

al0 MO A ... A MO,

a1l =@, forallisuchthat m <i < @.

As usual, the above axiom schemata and rules determine syntactic no-
tions of G*m-provability and G*m-deducibility as follows. We say that a
sentence A is G*m-provable [in symbols: ., A]iff A belongs to the
smallest subset of Sent which (i) contains every instance of a0, ..., a5,
a0, ..., 11 as its member, and which (ii) is closed under the rule of in-
ference mp and the rule of proof nec. Again, we say that the sentence A
is G*m-deducible from the set I (< Sent) of assumptions [in symbols:
I" k., Al iff there are sentences By, ..., By in I', for some natural num-
ber k 2 0, such that F;,,,(B1 A ... ABg) = A

Moreover, letting I" S Sent, we say that I" is G*m-inconsistent iff "
Fgem s and G*m-consistent otherwise. Finally, we say that I" is max-
imal G*m-consistent iff I" is G*m-consistent and, for each sentence A,
either A € T" or —A € T'; where this latter condition is known as
requiring I" to be negation-complete.

We leave to the reader the task of verifying the following result, in the
absence of which our axiomatic theories would be pointless:

Soundness Theorem.
Weak version: Every G*m-provable sentence is G*m-valid.
Strong version: Every G*m-satisfiable set of sentences is G*m-con-
sistent.
Both versions are to be established for any positive integer m.
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3. Canonical G*m-structures: some basic results

Definition.

For any positive integer m, let WG*m be the set of all maximal G*m-
consistent sets of sentences. Let w be a fixed element of WG*m. Define
the canonical G*m-structure generated by w as the quintuple

u=(W,R2mYV)

where:

(i) W={x € WG*m for each sentence A,if NA € w, then A € x}.
(ii) R = the function from Sent into Pow ( Wx W) such that

for each B in Sent and all x,y in W:

x Rpyiff for all C in Sent, if OgC € x, then C € y.
(iii) 2 to be defined in a moment.
(iv) m = the positive integer under consideration.
(v) V=the valuation function such that for all p in Prop:

Vip)={x € W:p € x}.

We still have to define 2; to that purpose we appeal to the following
preparatory result:

Justification Lemma.
Let W be defined as in clause (i) supra. Then, for each x € W there is
exactly one positive integer | with 1 </ < m such that Q€ x.

Proof.
Existence. Since x is maximal G*m-consistent [x € W]and F Qy Vv ... v
Om [by 9], the disjunction @1 V ... V @ € x, so that at least one of
its disjuncts Q.[1 <i < m] must be in x, as desired.
Uniqueness. Immediate by the fact that every instance of o5isinx. [

On the basis of this Lemma, we define a “ranking" function rfrom W
into the closed interval [1, m] of positive integers as follows: for each x
in W,

r(x) =the i, with 1 <i < m, such that Q. € x.

We now supply the missing clause (iii) in the definition of the canonical
G*m-structure generated by w:
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(iii) 2= the binary relation on W such that for all x,y in W:
x 2 yiffr(x) < ny).

Our desired completeness result for the systems G*m (m = 1,2,...) can
then be seen to follow from three Lemmata on canonical G*m-structures,
to which we must now pay attention.

Saturation Lemma.
Let u” be defined as above. Then W is such that for all A, B in Sent, all
x in W, and all positive integers { with 1 < < m:

(i) NA ex iffforallyin W,A €y.

(ii) MA ex iffforsomeyinW A €y.

(iii)) OpA € x iffforallyin Wwith x Rgy, A € y.
(iv) PpA e€x iffforsomeyin WwithxRpy, A € y.
(v) Qex iff x € opy;

Proof.

Ad (i)-(iv). The non-trivial parts of these clauses can be established by
an application to G*m of Lemma 3 in Makinson (1966) p. 382; in that ap-
plication we appeal to our axiom schemata a2-a5, the rule of proof nec
(for N), and the easily derived rule of proof A/OgA.

Ad (v). We begin by verifying the useful facts that Orx) € x, and that
Q. € xiff i = r(x) [forall x, i at issue].
The proof of (v) then proceeds by the following induction on i.

Basis. i = 1. We are to show that Q € xiff x € opr. Starting with the
“only if" direction, we observe that the counterassumption [Q € x, x &
opt1] implies, by our useful facts and relevant definitions, both that r(x)
= 1 and that n(x) > 1. Contradiction. As for the converse direction, the
counterassumption [x € opt;, Q) € x] implies, by our second useful fact,
that r(x) > 1. Again, by axiom schema 10, we have MQ; € x [x maxi-
mal consistent], so that, by clause (ii) of the present Lemma, Q; € y for
some yin W, whence r(y) = 1 by our second useful fact. Hence, for some
yin W, r(x) > r(y) , but this result contradicts the assumption that x €
opt| [see the definition of opt; supra and that of 2 in the canonical
structure f“].

Induction Step. i > 1. Assume the inductive hypothesis to the effect that,
forallyin Wand alljwith 1 <j <i-1, @ e yiffy € opt;.

We first deal with the left-to-right direction in clause (v), and make the
counterassumption that Q. € x whilst x & opt;. Then, by our useful facts,
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r(x) =i and, by axiom schema &5 together with the inductive hypothe-
sis, 0; € xand x & opt; for all j with 1 < j < i-1. Hence, by the definition
of opt;, there must be in W a y such that y belongs to none of the sets
opty, ..., opt;.1, and with r(x) > r(y). But the former condition implies, by
the inductive hypothesis and our useful facts, that n(y) cannot be among
the numbers 1, ..., i-1, while the latter condition precisely implies that
r(y) must be among those numbers, since n{x) = i. Contradiction.

For the right-to-left direction in clause (v), make the counterassump-
tion that x € opy; whilst Q. & x. By the definition of opt; we obtain that x
€ opt) and ... and x € opt; | so that, by the inductive hypothesis, & € x
and ... and ;| € x, whence, by our useful facts, r(x) # 1 and ... and r(x)
# i-1. Since Q. & x and r(x) # i, we conclude that n(x) > i. Also, by
axiom schema /10, we have M Q, € x [x maximal consistent], whence,
by clause (ii) of the present Lemma, there is in W a y such that Q.€y,
ry) =i and, by a5,Q; & yforj=1, ..., i-1. Hence, by the inductive hy -
pothesis, there is a yin W-(opt; U ... U opt;.1) with r(x) > r(y), which
result contradicts the initial assumption that x € opt; [just check the rel-
evant definitions]. O

Coincidence Lemma (to the effect that, as applied to any sentences, the
notions of truth and membership coincide with respect to the points in
generated canonical G*m-structures).

Let w be any fixed maximal G*m-consistent set of sentences, and let
u* = (W,R,2,m,V) be the canonical G*m-structure generated by w.
Then, for each A in Sent and each x in W,

1Y, xEAiff A € x.

Proof. By induction on the length of A.

The most exciting case in the induction basis is the one where A is
some systematic frame constant Q with 1 <i < @. Assume first that 1
< i < m. Then we have the following chain of equivalences:

p", x = Qiffx € opy; iff O, € x.

Here, the first “iff” holds by virtue of the truth condition for @, and the
second “iff” by clause (v) of the just established Saturation Lemma,
whence the desired result. Assume next that m < i < @. Then we easily
verify that x & opt; and Q, & x for any such i and any x in W; use clause
(v) again as well as axioms 9 and a11.

As for the interesting cases in the induction step, they go through
nicely by virtue of clauses (i)-(iv) in the Saturation Lemma.
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Verification Lemma (where a number of remaining points are verified).
As defined, the canonical structure y" is a G*m-model.

Proof. Leaving the somewhat complicated condition y° for the moment,
we observe that the transitivity in Wof 2 is immediate by the definition
of 2 in canonical structures. By the same definition, the satisfaction of
LimAss is immediate as well. We consider next the conditions (a)-(d)
listed under Exactly m Levels of Perfection.

Ad (a). By clause (v) of the Saturation Lemma, the counterassumption
to (a) implies that, for some i,j with 1 < # j <m and some x in W, we
have both Q, € xand Q; € x. But, by axiom schema @35, this contradicts
the consistency of x.

Ad (b). The interesting task is to show that W is a subset of opt; U ...
U opt,,. Suppose it is not. Then, for some xin W, we have x & opt; and
..and x & opt,,, whence, by clause (v) of the Saturation Lemma, Q; € x
and ... and Q,, € x. Hence, by the maximal consistency of x, we get —Qy
A ... A Oy, € x, which is impossible by the fact that a9 [Q Vv ... Vv
O] is in x.

Ad (c). Use axiom 10 together with clauses (ii) and (v) in the
Saturation Lemma!

Ad (d). By the definition of opt;, the counterassumption to (d) implies
that W is not included in opt; U ... U opt,,. But this is impossible by our
argument for (b) above.

We still have to verify that the characteristic condition 7°, relating R to
2, is satisfied by pu". The proof will inter alia illustrate the usefulness
of the axiom schemata &1 and 6- 8. In the proof we shall use &, O,
V, 3, etc. as metalinguistic shorthands with their familiar meanings and

L L

use ‘x’, ‘y’, ‘2’ as variables over W. We are then to establish:
Y . xRy yiff ",y A & Vz(u",z2= A Dy 22).

Left-to-right: Assume for any A in Sent and any x,y in W:

1. xRpy hypothesis

Then:

2. VO 0sCex>DCey) from1 by the definition of Rin u"
3. O4Aex o1, x max cons since x € W

4 A€y 2, 3, universal instantiation, mp

5. Jz(A € z& n(y)>r(z)) hypothesis (to be reduced ad absurdum)
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6. A €z& r(y)>r(z) hypothesis for existential instantiation
(1 =1n(y), n(z) <m,since y,z € W)

Letr(y)=iandr(z)=j(1 <ij <m):

7. Qey& Qez&i>j useful facts, 6

8. PpQ.€yor mP4Q,€y y maxconssincey € W

9. Py Q'. €y hypothesis (= first disjunct in 8)

10. PAQ.€ 2 from 9 by the fact that - P4B — NP4B,
whence NPy Q. € y;z€ W

L.PAQS(Q V.. VQ,)— —A) €z ab6zeW,i>lby7

12. QVvV.veo)>—-Adez 10,11,z e W

3. v.. v €z from the second and third conjuncts in 7,
whence j € {1, ...,i-1}

14, —mA €z 12,13,z e W

15. Contradiction by the first conjunct in 6, 14

16. =P, Q. €y hypothesis (= second disjunct in 8)

17.04 Q. €y 16,al,y e W

18. NOy -~ Q. €y 17,23,y e W

19.04 ~Q €x 18, x e W

20. ~Q. €y 2, 19, univ inst and mp

21. Contradiction from 20 and the first conjunct in 7

Thus, discharging 16, 9 and 6, the hypothesis 5 is reduced ad absurdum.

Hence:

22. Vz(A € z D r(y) £ r(z)) by negation introduction and some trivial
transformations

Then, 4 and 22 yield the desired conclusion by the Coincidence Lemma
and the definition of 2.

Right-to-left: Assume for any A in Sent and any x,y in W:

1. not: xRy y hypothesis

Then [we want to derive the negation of the right member of 7° ]
2. dC(04Cex& Cey) from 1 by the definition of R in p*

3. O4Cex&Cey hypothesis for existential instantiation

Letr(y)=k[l <k <m]:

4. rey useful facts

5. k=1 hypothesis

6. A€y hypothesis

7 QL €y 4, 5, logic of =

8 —Cey second conjunct in 3, y max cons since y
EW

9. O 2 (0AC>A>0O) €y al,ye W

10.Cey 04C € y by 3, a3 and clause (i) of the

Saturation Lemma; 6, 7and 9, y € W
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11. Contradiction 8, 10

122Ae¢y from the deduction 6-11, discharging 6

13.A ¢ yor 3z(A € z& n(y) > r(2)) from 12 by disjunction
introduction

13 is “almost” our desired conclusion in this case of k= 1. Again:

14. k> 1 hypothesis

15A ey hypothesis

16.(Qr AOJCAA A QO EY 04C € y as in step 10;
4,8,15

17.P4(Q V.. VO1) €y 14,16, a8,y e W

18. PAOy € yor...or PoOp1 €y immediate from 17 by
P4 being distributive
over Vv

Consider any j such that j € {1, ..., k-1} and assume:

19. PAG €y hypothesis

20. Jz(y Rpz & Q) € 2) from 19 by the Saturation Lemma: (iv)

21. 3z(Aez& Q e2) from 20 by the definition of R and a1

22. 3z(A €z & H{y)>r(2)) ry)=k>j=nz),21

Now, since the deduction 19-22 goes through for all j € {1, ..., k-1}, 22

follows from 18 by a step of disjunction elimination, where all the k-1 hy-

potheses 19 are discharged. Hence:

23.A ¢ yor dz(A € z & rn(y) > r(z)) from the deduction 15-
22 by conditional proof,
discharging 15 etc.

Then, 13 and 23 yield the desired conclusion by the Coincidence Lemma
and the definition of 2: we discharge the hypotheses 5 and 14 by another
step of disjunction elimination and the hypothesis 3 by existential in-
stantiation.

This completes the proof of the right-to-left direction in the verification
that yo holds in u", as well as that of the Verification Lemma as a
whole. a

4. Completeness of the axiomatic systems G*m [m = 1,2,...]
Weak version: Every G*m-valid sentence is G*m-provable.
Strong version: Every G*m-consistent set of sentences is G*m-sat-

isfiable.

Proof. As the weak version is immediate from the strong one, let us con-
centrate on the latter.
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Let I' be any G*m-consistent set of sentences. By Lindenbaum's
Lemma I" has a maximal G*m-consistent extension, call it I',. Form
the canonical G*m-structure generated by I, i.e. the structure ,ur” as
defined supra. By the Verification Lemma, u “ is a G*m-model. By the
Coincidence Lemma, we obtain in particular that for each sentence A:

e, T EAiffAeT,

since I", clearly belongs to the “universe” Wof 1" [S5 for N]. Hence,
since T’ < T, we have u'*, T, = A for every A € T. In other
words, assummg I' to be any G*m cons1stent set of sentences, we have
constructed a G*m—model viz. ", such that for some x in its universe
W,viz. T, ,u ,x= A for each A in T'; i.e. we have shown I to be
G*m-satisfiable. a

5. Two weaker systems: G* and G

We close the present paper by considering two axiomatic systems, for
which the completeness problem remains open.

The first of these systems, called G* simpliciter, has the same lan-
guage as any of the G*m, the same rule of inference mp, and the same
rule of proof nec (for N). Moreover, the axiom schemata a0-a5, o0- a4,
and a7 remain untouched in G*, whilst the proviso on @5 now reads:
“forall i,j with1 <i # j < @”, and the proviso on a6 and 8 reads:
“forall i with 1 < i < @”. [Clearly, these schemata, with provisos thus
extended, were provable already in any G*m, due to o11]. Finally, the
axiom schemata 9, 10 and 11 are dropped altogether from the
present axiomatic G*.

The second system, called G, is even weaker than G*, because there
are no systematic frame constants Q.in its primitive logical vocabulary
at all. Hence, the axiom schemata of G are just a0-a5 and @0- a4, ie.
what remains after we have dropped every schema in any G*m contain-
ing occurrences of frame constants. The rules of inference and proof re-
main in G.

The main intuition behind these weaker systems, especially G*, is the
following: we don't want to assume any longer that there are exactly m
levels of perfection [“opt-classes”] in every model of the system; in-
stead, we want to allow for variation in the number of perfection-levels
in such models. This leads to the following tentative semantics for G*,
First of all, we drop the index m in the definition of a G*-structure. The
truth definition relative to G*-structures remains as given above. In the



190 LENNART AQVIST

definition of a G*-model, the essential changes pertain to the conditions
(a)-(d) listed under Exactly m Levels of Perfection:
we keep (a) in the form

(a') forall i,j with 1 <i # j< ®: opt; N optj = D,

and drop (b)-(d) altogether.

Now, although we could safely assert a moment ago that the com-
pleteness problem remains open for the systems G* and G as just de-
scribed, there is an additional remark concerning G* to be made here.
Perhaps we dropped axiom @10 and the matching semantical condition
(c) too hastily, i.e. without trying to find adequate substitutes for them.
For, according to the semantics of G* just sketched, the following condi-
tion (c") apparently holds in any G*-model by the construction of the
classes opt; (i = 1,2,...) together with LimAss:

.\ opt, 20D
(c’) opt; # & implies opt,_, # @, for all i with 1<i< @

This condition suggests that in the axiomatics for G* we replace schema
10 by the following:

10! MQ
10" \MQ, - MQ, , for all i with 1 <i < @

Clearly, ar10' was provable already in any G*m; in like manner, (c') held
in every G*m-model, forany m = 1,2,... .

Given the present amended formulation of the axiomatic system G*,
can we claim it to be complete with respect to the present semantics for
it? I think the answer is: almost, but not quite. More precisely, I think
the following is a reasonable conjecture:

Let G*inf be the result of adding this infinitary rule of proof to G*:

I—Q’_ — A for all positive integers i

in
f FA




COMPLETENESS IN DEONTIC LOGIC WITH FRAME CONSTANTS 191

This rule of proof may be characterized as a sort of deontic analogue of
the Gabbay (1981) irreflexivity rule in tense logic. My present conjecture
is then to the effect that G*inf is weakly complete in the sense that ev-
ery G*-valid sentence is provable in G*inf. The detailed proof of this
claim must be deferred to another occasion, however.

Department of Law, Uppsala University, Sweden
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