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CAN THE BEST OF ALL POSSIBLE WORLDS BE A RANDOM
STRUCTURE?

Wim MIELANTS

Abstract.

Leibniz defined the best of all possible worlds as this one which max-
imises symmetry and the variety of substructures. There exist many
mathematical theories with a unique countable model with this property,
and in many cases this is also the countable random model. So the idea

that the best of all possible worlds (in the sense of Leibniz) could be a
random structure is not absurd.

1. Introduction

Let A be a set of axioms on a first-order language L, and let T be the theory
generated by A or the set of logical consequences of A. By the complete-
ness theorem of Gdodel this is also the set of modeltheoretic consequences
of A, and if T is consistent there are models of T. Also if not all the models
of T are finite, then by the theorem of Lowenheim-Skolem there are always
countable models of T.

We consider the set A of axioms as a set of natural laws, and the class of
all countable models of T as the class of possible worlds for which these
natural laws hold.

If the language L is a finite relational language and if the finite models of
T form an amalgamation class, then by a theorem of Fraissé there exists up
to an isomorphism a unique countable infinite model of T which is homo-
geneous and universal. This model is called the Fraissé limit of 7. We shall
give arguments why this Fraissé limit can be considered as the best of all
possible worlds in the sense of Leibniz for which the natural laws in A
hold, and also why the theorem of Fraissé can be considered as the mod-
eltheoretic analogue of the principle of composability of Leibniz. We will
prove (using topological and probabilistic arguments) that some properties
of these Fraissé limits are modeltheoretic analogues of some metaphysical
statements such as: "almost any possible world is isomorphic with the best
of all possible worlds", and: "the best of all possible worlds is also the most
probable of all possible worlds, or it is a random structure".
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2. Leibniz's principle of composability.

In his work : "De rerum originatione radicale" Leibniz writes: "Since there
is something rather than nothing, everything which is possible tends to ex-
ist" (Omne possibile habeat conatum ad Existentiam). But not everything
that is possible exists, since two possibilities together are in general no
longer a possibility. The principle of composability of Leibniz says that the
real world is that possible world which realises the maximal number of
possibilities, and this is only the case if this world has the highest possible
perfection and harmony. For this reason Leibniz calls the real world the
best of all possible worlds.

3. Homogeneous models

Let L(R, R,, ..., R,) be a finite relational first-order language. We denote
the arity of the relational symbol R;(1<i<m)by n(i). Each model of
L(R,..., R,) is called an L-structure (or a relational structure on the
language L). If S, =(Q R, R;,...,R)) and (Q% R, R},..., R) with
R ¢ cart"Q" and R'c cart")Q* are two L-structures with universe Q'
and Q?, respectively then a map f:Q'— Q? is called an L-morphism if
R,-'(xl, Xy, ees u(i))H R,-2(f(x1), I8 Yooy f(xn(,.))). If f is injective we call
it an embedding, if fis bijective an isomorphism. An isomorphism of an L-
structure S to itself is called an automorphism or a symmetry of S. We de-
note the symmetry group (or automorphism group) of S by AutS. A map
f: Q' = Q? so that R,-l(xl, ; — xn(t.))—) R,.z(f(xl), F(x3) .., f(x"(,.))) is
called a weak morphism.

The class of all L-structures which can be embedded in a given L-struc-
ture § is called the age of S and we denote it by Age S.

The class of all finite L-structures (with a finite universe) of Age S will
be denoted by F Age S.

Definition 3.1. A relational L-structure S is called homogeneous if, given
any isomorphism f:A — B between two finite substructures A and B of S,
there is an automorphism g € AutS, whose restriction to A is f. This is the
strongest symmetry condition we can impose on a L-structure. An easy ex-
ample of a homogeneous relational structure on a countable universe is Q.
where Q is the set of rational numbers and < is the usual order relation.
Indeed, whenever x, <x, <...<x,andy <y, <...<y,, there is an auto-
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morphism (or order preserving permutation of Q) x such that
m(x;)=y,(1<i<n). ‘

This can be done by linear interpolation of the intervals (x;, x;,,) and at
the two ends by appropriate shifts.

Property (A). 1f A, Be FAgeSandf:A— B,h: A— S are embeddings,
then there is an embedding g: B— S such that fg=h. It suffices to require
this when B has only one point more than A.

It is easy to prove that if S is a homogeneous model, property (A) will be
true. In particular, it holds in a trivial way for Q_. But conversely, if S is an
L-structure on a countable universe so that property (A) is true, then S is a
homogeneous relational structure. This can be proved using the classical
back and forth argument of model theory {4,11}

So, a relational structure on a countable universe is homogeneous if and
only if property (A) holds.

Since we consider only finite substructures it is possible to translate
property (A) by a countable (but recursive) axiom system in the language L

11}.

These axioms are also called "Alice's Restaurant Axioms"{16)} because
they assert that you can get anything you want, as we shall see later on.

Using property (A) and the back and forth argument it is also easy to
prove that two homogeneous L-structures S, and S, with FAgeS, = FAgeS,
are isomorphic.

4. N,- categorical models.

A theory T on a first order language L is called N,-categorical if and only
if any two models on a countable universe are isomorphic. A countable L-
structure § is called an N, -categorical structure if and only if its theory in L
is N,-categorical, or if any countable L-structure S’ elementary equivalent
with § is isomorphic with S. For instance, Cantor has proved that Q_ is an
No-categorical structure {5}. In 1959 Ryll-Nardzewsky, Engeler and
Svevonius have proved that a countable L-structure S is N,-categorical if
and only if AutS is an oligomorphic permutation group on the points of the
universum, this means that AutS has a finite number of orbits in its natural
action on the n-tuples of points and this for all n e N. In particular Aut Q,
has exactly n! orbits in its natural action on the set of n-tuples of rational
numbers. So, there are limits for first order languages in making complete
descriptions of countable structures. This is only possible if this structure is
very symmetrical, more precisely if and only if its group of symmetries is
oligomorphic.
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Since L is a finite relational language also each homogeneous L-structure
will be N -categorical. Of course, if the axioms (or the natural laws) gen-
erate an N, -categorical theory there is (up to an isomorphism) only one
possible world. '

5. Universal models.

If D is a class of L-structures, then an L-structure S is called D-universal if
and only if for each S'e D there exists an embedding f:S'— S (or if
D c AgeS). If Se D, then S, is a universal element of the class D. If S is
D-universal and if for each S'e D there exist an embedding g: S'— S such
that each symmetry of g(S') can be extended to a symmetry of S, then we
call S symmetrical D-universal. If D is the class of all finite models or the
class of all countable models of a first of order theory T on L, then we call a
model S of T which is D-universal finite T-universal or countable T-univer-
sal respectively. If S’ is an L-structure we say that S’ is younger than S if
and only if AgeS'c AgeS. We denote the set of all L-structures which are
younger than S by Young S.

We call an L-structure S Cameron-universal if and only if it is (Young S)
- universal. Young § is in fact the maximal set D of L-structures for which
S can be D-universal. From property (A) follows that each countable ho-
mogeneous relational structure is Cameron-universal (one needs only a
forth argument). One can also prove that each N,-categorical structure is
Cameron-universal, but this proof is more difficult (one has to use Koénig's
Infinity Lemma for trees) {3}. In particular, if D is the class of all possible
worlds and if the real world § is a symmetrical universal element of D, then
in fact each possible world is realised as a substructure of the real world
with its complete group of symmetries as "real" symmetries (or as symme-
tries of S).

6. The amalgamation property.

A class D of finite relational structures on a finite relational language L has
the amalgamation property if, whenever we have structures A, B,, B, of D
and embeddings f;: A — B;(i =1, 2) then there exists a structure C and em-
beddings g;:B, - C(i=1,2) so that g, f, = g, f,. So, any two finite struc-
tures of D with a common substructure can be jointly embedded so that
their intersection contains at least this common substructure. If S is homo-
geneous, then by property (A) FAgeS is an amalgamation class. In particu-
lar, the class of all finite L-structures where L is a given finite relational
language satisfies (in a trivial way) the amalgamation property. This is also
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the case for linear graphs, m-coloured graphs, n-uniform hypergraphs, m-
coloured n-uniform hypergraphs, systems of m-dimensional subspaces of
projective spaces with countable dimension on a finite field and many other
structures {4, 11}. For quasi-orderings (or reflexive and transitive relations)
and for posets (or antisymmetrical quasi-orderings) the amalgamation
property is no longer trivial but still easy to prove ({11}). If (Xd) is a met-
ric space and D=1Imd-{0}, then we can associate with it a relational
structure ((X, R )i e D) where Ri(x,y) > d(x, y)=i. If D R*is a given
finite or countable set of distances, it depends on properties of D if the class
of all finite metric spaces with Imd — {0} D is an amalgamation class or
not. Sufficient conditions are given in{11}. In particular, if D is the set of
positive rational numbers, or positive real algebraic numbers, or positive
Turing computable real numbers, or &, or {1, 2, n} with n e Y, then the
amalgamation property is true.

In general, topological spaces cannot be described by finite or countable
relational structures, but finite topological spaces can. If Q(x) is in the in-
tersection of all open sets containing a point x, then the binary relation
R(x, y) & Q(x) < Q(») is a quasi-ordering which describes completely the
topology. This can be generalized for infinite topologies with the property
that each transfinite intersection of open sets is open. These topologies are
called Alexandrov topologies and it is well known{15} that there exists a
covariant bijective functor between the category of the quasi-orderings with
the relational morphisms and the category of the Alexandrov-topologies
with the open continuous functions as morphisms. Since the finite quasi-
orderings form an amalgamation class, this will also be the case for the
class of finite topologies.

7. The theorem of Fraissé.

We know that if S1 and S7 are two homogeneous countable L-structures
with FAgeS] = FAgeS) = D then S1 and S7 are isomorphic. So, if D is a
class of finite L-structures, then D = FAgeS for at most one homogeneous
countable L-structure S. What are the conditions for D so that such a ho-
mogeneous countable L-structure exists? This is answered by the theorem
of Fraissé.

Theorem of Fraissé. If D is a class of finite L-structures, where L is a finite
relational first order language, then there exists up to an isomorphism ex-
actly one homogeneous countable L-structure S with FAgeS = D if and
only if:
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[1) D is closed under isomorphisms (or, if Ae D and f: A — B is an
isomorphism then Be D)

[2) D is closed under taking substructures (or, if AeD and Bis a
substructure of A then Be D)

[3) D contains only countable many non-isomorphic members

[4) D is an amalgamation class.

We call S the Fraissé-limit of D and denote it by F(D).

For the proof of this theorem we refer to {4} or {7}. It is a constructive
proof, starting with D a complete construction of F(D) is given. In general,
the Fraissé-conditions 1), 2) and 3) are trivial and only the amalgamation
property had to be verified. Since L is a finite relational language, F(D) is
also N,-categorical and so Cameron-universal. Hence, if D is the class of
all finite models of a first order theory T on a finite relational language L
which is an amalgamation class, then the other Fraissé conditions are satis-
fied and we call the Fraissé limit of D the Fraissé limit F(T) of this theory
T. Then F(T) will be countable T-universal (since it is finite T-universal and
Cameron universal). If T is the first order theory of linear graphs, m-
coloured graphs and n-uniform hypergraphs respectively, I have con-
structed models of the Fraissé limit F(T) which show that F(T) is also
symmetrical countable universal {11}. So, if T is a first order theory on a
finite relational language which satisfies the amalgamation property and if
the countable models of T are the class of all possible worlds, then F(T) is
the unique possible world which is homogeneous and countably T-univer-
sal. Therefore, the Fraissé-limit F(T) is the unique model which has the
highest form of symmetry or harmony since it is homogeneous, and which
has also the richest possible variety of substructures since it is countably
universal. So, F(T) can be considered as the best of all possible worlds in
the sense of Leibniz. The theorem of Fraissé can also be considered as a
model theoretic analogue of the principle of composability of Leibniz.
Indeed, if the finite models of the theory T form an amalgamation class,
this means that any two finite models of T can always be embedded to-
gether in a finite model of T even if it is required that they had to have an
arbitrary substructure in common.

Therefore, if this is the case, the maximum number of finite configura-
tions of finite substructures can be realised together. By the theorem of
Fraissé they will then be the class of all finite substructures of the best of
all possible worlds, namely the Fraissé limit F(7).

However, it is not true that N,-categoricity and finite universality imply
homogeneity. In the case of linear gralphs, for instance, Macpherson, H.D.
and Droste, M. have constructed 2™ non-isomorphic countable linear
graphs which are all N -categorical and which have all finite linear graphs
as finite substructures. But the Fraissé limit of the class of finite linear
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graphs is the unique linear graph of this class which is also homogeneous

{6}.

8. The tree of an age, the Cantor topology and residual properties.

Using topological arguments we prove that if T is a first order theory on a
finite relational language whose finite models satisfy the amalgamation
property, then almost any countable model of T is isomorphic with the
Fraissé limit F(T). This is the model theoretic analogue of the metaphysical
statement that almost any possible world is isomorphic with the best of all
possible worlds.

In a complete metric space (X,d) a subset A C X is called residual if its
complement is meagre or is a set of the first category which means that this
complement is a countable union of nowhere dense sets {15}. In a com-
plete metric space, A will be residual if and only if A contains a countable
intersection of open dense sets. By the Baire category theorem a residual
set in a complete metric space is always dense (and so, in particular, never
empty). Residual sets in complete metric spaces are regarded as "very
large”. If there is no measure theory, these residual sets replace in fact the
subsets with measure 1. s

If the set of all points of a complete metric space which have a certain
property P form a residual set, then one says that almost any point of this
metric has property P, or that the property P is "forced in category" in this
metric.

For each model of the theory T with n points we take [n] = {0, 1, 2, ...,
n-1} as universe and we denote this set of models by F,.

We make the class of finite models of T into a tree #(7) in the natural
way: the nodes at level n are the elements of Fp, and a node @, € F,is adja-
cent with a node B, ., € F,,, if and only if the restriction of the structure
B..1 to [n] is a,. So, we obtain a tree with the trivial model  on {0} as
base point. Since L is a finite relational language, the valence of each node
or the number of edges adjacent with each node is finite. For each count-
able model of the theory T we take N as universe. If M is a countable
model of 7, it defines an finite path in the tree #7) starting with the base
point: {w, &, @, ..., @,, ...} where a, is the restriction of M to [x].

Conversely, every infinite path of this tree #7T) with o as starting point
defines a countable model of T on N.

The infinite paths with w as first node are also called the points at infinity
of the tree #T) with w as base point. So, there is a 1-1 correspondence be-
tween the points at infinity of (#7T),w) and the countable models of T. If M
and N are two countable models of T on the set N, then we define the dis-
tance d(M,N) = 27" if and only if the associated infinite paths with base
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point w agree to level n but no further. Or if the countable models M and N
correspond with the paths (@, 0, @, ...) and (@, By, B,, ...) of (¢(T), ) re-
spectively, with o, = B;(1<i<n)but et,,, # 8,.,.

This defines an ultra metric on the class of countable models of T for
1<i<n, smce for any three models M, M, and M, d(M,, M;)<
ma d(Ml, M,), d(My, M;)}.

this metric each open sphere is also closed and if two spheres are not
d1s101nt then one of them contains the other. This metric is called the
Cantor metric, and it is complete since a Cauchy sequence of paths has the
property that its members agree on longer and longer initial segments, so
these initial segments define a path of (#(7T),@) which is then the limit path
of this Cauchy sequence.

The associated topology is the Cantor topology which can be character-
ized as the unique topology which is metrisable, totally disconnected, per-
fect and compact {15} In particular, the topology of any compact metric
space is a continuous 1mage of the Cantor topology.

Is s a (V, 3)-sentence in the language L, then the set of points of infinity
of ((T),w) or the set of countable models of T for which s is true is always
a countable intersection of open dense sets in the associated Cantor topol-
ogy {4, 11} and so this set is residual. The Fraissé limit F(T) of T is com-
pletely characterized by the property (A) which translated in the first order
language L gives a countable recursive set of (V, 3)-sentences, the so
called Alice's Restaurant axioms. Since a countable intersection of residual
sets is again residual, and since each countable model of T which satisfies
the Alice's Restaurant axioms is isomorphic with F(T), we have that the
class of countable models of T on N which are isomorphic with the Fraissé
limit form a residual set in the natural Cantor topology on the set of count-
able models of T. Hence, almost any countable model of T is isomorphic
with F(T), or the property of being isomorphic with the Fraissé limit of T is
forced in category {3, 11}.

9. The theory of almost true sentences of a given theory, zero-one laws and
countable random models.

Let T be a theory on a finite relational first order language L. The number
of models of T on a universe of n points is then finite and we denote it by
A(n). If s is a sentence of L, we denote the number of models of T on n
points for which the sentence s is true by B(n,s) and we call

B(n, s)

Prob,(s,T)=————= A
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the probability that the sentence s is true in a model of T on n points. If
lim Prob, (s, T) exists, then we call this limit the asymptotic probability of

n—oo

the sentence s in the theory 7 and we denote it by Prob(s,T). We say that a
sentence s of L is almost true in the theory T if and only if Prob(s,T) = 1
(this idea comes from Carnap). We denote the set of all sentences in the
language L which are almost true in the theory T by T*. Of course, if
BeT*ands | tthen teT* and so T* is also a theory. We call T* the
theory of the almost true sentences of the theory T. If the theory T* is
complete (i.e. s & T*=>~s5eT *), then we say that the theory T satisfies the
zero-one law (the asymptotic probability in T of each sentence of L is 0 or
1). Each sentence of L is then almost true or almost false. Any model of T*
is called a random model of 7. In the case that the theory T* is not only
complete but also X -categorical, there is up to an isomorphism a unique
countable model of T* which we call the countable random model of T and
we denote it by R(T). In the case that T is the theory of the L-structures (for
an arbitrary finite relational first order language L), Faggin has proved that
T* is N,-categorical and that R(7) = F(T){7}. In this case the unique
countable random model of T is isomorphic with the Fraissé-limit of the
class of finite models of T. The same is true if T is the first order theory of
linear graphs, of m-coloured graphs, and of n-uniform hypergraphs. These
proofs are easy and use only elementary probabilistic arguments {7}. The
result R(T) = F(T) is the model theoretic analogue of the metaphysical
statement that the best of all possible worlds is also the most probable of all
worlds or that it is a random model.

When is R(T) = F(T), in other words when is the Fraissé-limit of a first
order theory isomorphic with the countable random model of this theory?

So, we have to consider a theory T on a finite relational first order lan-
guage L such that the finite models of T form an amalgamation class and
such that the theory T of all almost true sentences of T is N,-categorical. If
we denote the set of the Alice's Restaurant axioms by A(T), then the theory
generated by T'U A(T) is always X, -categorical since the axioms A(T) (or
property (A)) are exactly what is necessary to apply the back and forth ar-
gument. But, in general, TU A(T) is not consistent, this will be the case if
and only if the finite models of T form an amalgamation class and then
F(T) is the unique countable model. If A(T)c T *or if the Alice's restau-
rant axioms are almost true, then the unique countable model of 7L A(T)
or F(T) had to be the unique model of 7* or R(T) and conversely. So, F(T)
= R(T) if and only if Alice's restaurant axioms are all almost true or have
asymptotic probability equal to 1. As an example take for T the theory of
linear graphs or irreflexive symmetric binary relations. So, L is the first or-
der language with binary relation symbol R and T is the theory generated
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by the axioms: ng~ R(x, x)) and VxVy((R(x, y)&R(», x)) v(~ R(x, y)
(~ R(y, x))) Now for linear graphs property (A) is equivalent with the
following property (B): If A, and A, are two disjoint finite sets of vertices
(or points), then there exists a vertex z which is adjacent with all vertices of
A, and with no vertex of A, But property (B) is also equivalent with the
following countable set of axioms C,(neN).

C, says that if A and A, are two disjoint sets of vertices each of cardi-
nality at most n, then there is a vertex z outside A, U A, which is adjacent
to every vertex of A but not to any vertex of A,. Now C, can be translated
in the language L :Vx,Vy,Vx,Vy,...Vx,Vy, z(&R(xl, 2)& R(x,, 2)&...
&R(xn, z)&~ R(yl,z ~ R(yz, z)&...&~ R yn,zjv LEWRVXH= Y,V
VX, =YV VX =Y, m >2n, what is Prob(C,, T)? We denote the set
of vertices by X,. Let ze X, —(A UA,); then the probability that z is
adjacent to all vertices of A, and to no vertex of A, is 27" and so the
probability that it is not the case is 1-2'2”). So, the probability that for
the two disjoint sets A, and A, C, is not true, or that there exists no vertex
z€ X, —(A UA,) with the required property is

(l - 2'2”)"'-2". Therefore, the expected number of bad pairs (4, 4,) is at

most (m)(m_n)(l = )m_h which approaches zero as m — oo. This

2n n

means that Prob(C,, T)=1(for all n e N).

So, the Fraissé-limit of the first order theory of linear graphs is the unique
countable random model of this theory and this graph is called the count-
able random graph.

For models and interesting properties of this graph we refer to {2, 4, 11}.
For a model of the countable random graph which proves that it is also
symmetrical T-universal see, for instance, {11}.

However, there exist counterexamples of theories on a finite relational
first order language L for which F(T) and R(T) exist but are not isomorphic.
For instance, if T is the first order theory of posets (or reflexive, anti-sym-
metric and transitive relations). In this case TU A(T) and T* are both X,-
categorical theories, but they are different or F(T)# R(T).

Here Alice's Restaurant axioms say, in fact, that for any three disjoint sets
A,B and C each of size at most n, such that no element of B lies above any
element of A or below any element of C and no element of A lies below an
element of C, there is any element z which lies below every element of A,
and above every element of C while being incomparable to everything in B.
The unique countable poset satisfying these axioms (or F(7)) is of course,
homogeneous and countable T-universal, but it is not the countable random
poset. Indeed, these Alice's Restaurant axioms are in this case almost false
(i.e. they have asymptotic probability 0)! {16, 11}. However, the theory T*
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of almost true sentences in T is also N,-categorical and R(7) is a certain
graded poset of heigth 3 which is certainly not universal, since graded
posets of heigth greater than 3 cannot be embedded, and which is certainly
also not homogeneous since the symmetry group has exactly three orbits on
the points. For a complete description of R(T) we refer to {9}. Of course,
the class of countable posets which are isomorphic with the Fraissé limit
F(T) remains residual in the Cantor topology but residuality and probability
or measure do not always agree. So, for the class of posets the best of all
possible worlds is not the most probable of all possible worlds.

10. Random symmetry and universality.

For many first order theories T on a finite relational language there exists a
unique countable random structure R(T) which is isomorphic with the
Fraissé limit F(7) and this random structure is very symmetric since it is
homogeneous, and also each countable model of T can be embedded in it,
therefore it is also very universal. In many cases R(7) is also symmetric T-
universal. Since R(T) has a large group of symmetries whose order (as for
each oligomorphic permutation group) is 2*°, each finite or countable
model of T appears infinitely many times in it as a substructure including
the whole structure itself. For instance, for the countable random graph not
only each sphere but also each finite intersection of spheres satisfies
property (B) and so it is isomorphic with the whole random graph again.
Therefore, in these cases the best of all possible worlds contains all possible
worlds including itself infinitely many times and so each possible world is
in fact realised.

This idea is not new; for instance, Whitehead describes in his book
"Process and Reality: an essay in cosmology" how in the fullness of time
all possible worlds will exist (see {14}). Whitehead's cosmology is, broadly
speaking, the same as the "chaotic inflationary" models developed recently
by A. Linde in which the visible portion of the universe is just one of an in-
finite number of bubbles in an overall chaotic random universe. (see {1D.

On a sufficiently large scale, the universe is pictured as chaotic, for as-
suming global chaos obviates the problem of assuming certain initial condi-
tions. Also the Many-Worlds interpretation of quantum theory gives a
world model which allows evolution to occur on a global scale while simul-
taneously allowing all possible universes to exist (in the Hilbert space of
realised possibilities) {1}.

As we have seen, such universal possible worlds which contain all possi-
ble worlds can be random structures.

But these best of all worlds are not only universal but also homogeneous
and so highly symmetric. Not only as a permutation group AutF(T) de-
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scribes the highest possible symmetry for a countable model of 7, also as
an abstract group it has very rich properties. For instance, Truss {13} has
proved that the symmetry groups of the countable random m-coloured
graphs (and for m = 2 this is the countable random graph) are all simple
groups not belonging to the class of simple groups of Lie type, so they are
in fact sporadic simple infinite groups!

Symmetry plays an increasingly important role in modern physics (the
standard model, Yang-Mills theory, supersymmetry theories, string theory
and so on ...).

But already in the time of Newton it was a problem how high forms of
symmetry have appeared in the world (see, for instance, the second half of
the book "Natural Theology" of William Payley {12}).

From our examples in model theory it follows that it is possible that in an
infinite world high forms of symmetry are simply the result of a random
process.

So, for many classes of models, no God is necessary to choose out of the
class of all possible worlds the best one. Almost certainly, any random
choice will do this. However, this has nothing to do with the ontological
argument of Leibniz about the existence of God.

On the problem "why not nothing?" one could answer that the empty
model is not a random model. But, of course, the real problem is why some
possible world is a real world.

University of Ghent
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