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MODALITIES IN SUBSTRUCTURAL LOGICS
Greg RESTALL
1. Logics

Logic is about valid deduction. One central result in logic is the deduction
theorem.

A, ZtBifandonlyif ZFA— B

This result ties a fact from the metalanguage (that B follows from A, in the
context of X)) to a fact in the object language (A — B, in the context of Y).
This connection is very important, because it shows how the properties of
the conditional in a logic depend on the way premises are collected to-
gether — represented here by the comma. Standard brands of logics, like
intuitionistic and classical logic, allow for all sorts of rearrangements in
premises. They have structural rules like these:

T4 4)-8 Contraction (WI) T@Apc Weakening (K)

T(A)FB I'(B, A)F-C

T'(A (B, C))+ D -

LB le (M) (4 (8,¢)) Commuted Associativity (CB)
I'(A A)F B I'((A C) B)F D
I'(A (B C)+D . , .

( ( )) Associativity (B) M Commutativity (CI)
((A, B), C)-D I'(B A)FC

In a substructural logic, one or more of these rules are rejected. This means
that our premise collections have more structure than would otherwise be
the case. The number of premises, their order, their bracketing, or what isn't
a premise, matters. Relevant logics, linear logics, and logics like BCK and
fuzzy logics are all substructural logics, because these logics keep track of
premises in ways that logics with all the structural rules don't.

However, even if we reject certain structural rules in general, by adopt-
ing a substructural logic, we may be interested in cases when substructural
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rules do apply. We may not think that all premises commute — but there
may be a small class of premises which do commute, and this may be im-
portant. Similarly, we may not be able to contract all premises — but some
might contract validly. So, it is interesting to see how we can keep track of
structural rules with a limited applicability. That is the topic of this note.
We will take our cue from Girard, and add modalities to our logics to re-
gain structural rules [2].

It is easiest to give our account of modalities in substructural logic if we
use an algebraic presentation of the formal systems. This will make the
theorems easier to prove than would otherwise be the case. So it is to this
that we will turn.

Substructural logics (like any) can be modelled by propositional struc-
tures. Think of the elements of these structures as propositions, and the op-
erations as ways to form new propositions out of old.

Definition 1 A basic propositional structure is a 5-tuple (P; <, e, =)
where
* P is a nonempty set of propositions.
* < is a partial order on P, representing entailment between propositions.
* The binary operation - on P, called fusion. This represents premise
combination. Fusion preserves the entailment ordering. If a<a’ and.
b<b'thena-b<a'-b'.
* The element e € P is a right identity for fusion. This means that for all
a€ P, a-e=a. Because of this, e represents logical truth.
*The binary operation = on P residuates fusion. For all a, b, ce P,
a-b<c if and only if b <a=>c. This means that = is our conditional
operation on P. (Recall the deduction theorem, tying the conditional to
valid deduction. This condition is the deduction theorem in algebraic
form.) If a<b then by residuation and identity, e<a=b. So, if a en-
tails b, then the conditional a=> b is a logical truth. This is a desirable
connection between entailment, logical truth, and the conditional.

If we wish to model conjunction and disjunction, we require that < be a lat-
tice order. In these structures, conjunction is the greatest lower bound, and
disjunction, the least upper bound.

Definition 2 A basic propositional structure with conjunction and disjunc-

tion is a basic propositional structure where the underlying entailment or-
dering is a lattice.

Definition 3 A basic propositional structure with a distributing conjunction
and disjunction is a basic propositional structure where the underlying en-
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tailment ordering is a distributive lattice.

If we wish to model negation, we can add a unary operator — on P, with
suitable conditions.

Definition 4 A basic propositional structure with an intuitionistic negation
is a basic propositional structure equipped with a unary operation — such
that for each @, b, ce P,a-b<—c ifand only if c-b<—-a..

This condition provides us with contraposition in the form
a=>—b = b = —a, and double negation introduction, a<-—a.

Definition 5 A basic propositional structure with a de Morgan negation is
a basic propositional structure with an intuitionistic negation — such that
in addition, for each ae P,a=—-—a.

We use propositional structures to model valid deduction in the usual way.
Take a propositional language with connectives —, o and ¢ and any of
A, v and — as desired. We define the interpretation h(A) of a formula A in
a propositional structure P recursively, from arbitrary assignments to
atoms, using these clauses:

h(t)=e h(AoB)=h(A)-h(B) h(A— B)=h(A)= h(B)
h(AAB)=h(A)Nh(B) h(Av B)=h(A)Uh(B) h(—A)=—h(A)

Take a class X of propositional structures. We say that a formula A is
X-valid if for each structure P € X and for each interpretation # into P, we
have e <h(A). We write this ‘4 A.” For largely uninteresting historical
reasons, the class of all propositional structures with a de Morgan negation,
conjunction and disjunction is called LDW, and its cousin which contains
only those structures in which disjunction and conjunction distribute is
called DW.

One interesting propositional structure which illustrates our definition is
BN4. Belnap [1], Meyer, Giambrone and Brady [3] and Slaney [4] all extol
its virtues. The structure is simple.
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T T BNF =|T BN F -
T|T T NF 1|T FN F T|F

B N ¢e<B|T B NF B|T BN F B|B
N|N N FF N|T NTN N|N

K FIF F FF F|T TTT F|T

Conjunction and disjunction are given by greatest lower and least upper
bounds on the lattice ordering — which is indicated here by the Hasse dia-
gram. This structure has a number of notable features: not least being the
fact that negation has two fixed points, B and N. This shows that a de
Morgan negation need not satisfy the usual classical conditions.
Furthermore, premise combination is associative and commutative, but not

idempotent. So BN4 satisfies some of the structural rules we've seen, but
not all. It is helpful to catalogue structural rules in algebraic form, like this:

WI a<a-a
K b-a<a
M a-ala

B (a-b)-c<a-(b-c)
CB (a-c)-b<a-(b-c)
Ci a-b<b-a

We can tack selections from these onto our basic logic to make all sorts of
interesting formal systems. Given a class of propositional structures X, the
class X + Y is the subclass of X of all structures which satisfy condition Y.
Girard's original linear logic (without exponentials) is then given by LDW
+ B + CI. So, in linear logic premise combination is associative and com-
mutative. The contraction-free relevant logic C adds distribution to linear
logic, so it is given by DW + B + CI. The relevant logic R is given by DW
+ B + CI + WI. We elide the distinction between classes of propositional
structures and logics, so we will say things like R = C + WI from time to
time.

Now to round this section off we'll prove an important result which
shows that we can restrict our attention to propositional structures of a par-
ticular kind, when using them to model a logic.

Definition 6 A propositional structure P is said to be complete if for every
X ¢ P, the join and meet \/X and /\X exist.

Fact 1 Any propositional structure can be embedded as a substructure in
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a complete propositional structure.

Proof. Take a propositional structure P. We take the elements of the com-
pletion of P, P* to be the ideals of P. A subset X c P is an ideal if for each
x€X,if y<xthenye X too. If P is equipped with disjunction, we require
that x, y € X only if x € X too.

Conjunction in this structure is simply intersection of ideals (the inter-
section of any set of ideals is an ideal). So, arbitrary meets exist in this
structure. This means that containment, <, is the ordering in the new
structure.

If disjunction is present in P, then the disjunction XUY is the set
{z: Ddy(xe X, yeYandz< xUu}. Otherwise, we can define disjunc-
tion as union of ideals. (If ideals are merely downwardly closed sets, then
the union of two ideals is an ideal.) Arbitrary joins exist in this structure
too. If disjunction is simply union, then ideals are closed under infinite
unions. If disjunction is defined in terms of disjunction in P, the definition
is a little more complex.

\/{X.:iel}={zforsomei,...i, e I and x, €X,,...x, €X,,

sz,-lu...ux,.u}

Fusion, the residual, e* and negation (if present) are defined in similar
ways

X-Y={z:3xEIy(xeX, yeYand z< xoy)}
X=>Y={z:E|x3y(xEX,yeYanszx—>y)}
e ={xx<e}
—X={z:3x(xeXansz—x)}

It is simple to check that the conditions on propositional structures are sat-
isfied in the completion P*, so P* is a propositional structure. The original
structure P lives in P* in the guise of its principle ideals. The map
f:x> {y:y < x} is an injection of P into P*.

If our original structure P satisfied a structural rule, then it is clear that P*
also satisfies that rule (check the definition of fusion). <

This result shows us that complete propositional structures are enough,
when it comes to modelling logics. The class of validities in all R propo-
sitional structures is the same as the class of validities in all complete
R propositional structures, because any counterexample to validity in an
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incomplete structure survives as a counterexample in the completion of that
structure. This fact is important, because we will need to assume that
structures are complete in one result coming up.

Note that in complete propositional structures P, /\ P <x for any xeP.
So, complete propositional structures have a least element. In what follows,
we will use ‘0’ to denote the least element in a propositional structure.

Excursus This embedding result also motivates a short polemical point
about conjunction and disjunction. The result has a simple corollary that
any structure without conjunction and disjunction can be extended to in-
clude conjunction and disjunction in a natural, painless way. Furthermore,
in this extended structure, conjunction distributes over disjunction. This is
especially important for devotees of linear logic. In linear logic, additive
conjunction does not distribute over additive disjunction. Our result shows
that this is not a feature of the substructural nature of the logic — rather, it
is a bare fact about the additive connectives. Since it is quite hard to inter-
pret additive disjunction in linear logic, it is quite hard to see what a failure
of distribution amounts to. Unless some interpretation for disjunction can
be found, in such a way that motivates the failure of distribution, there is
little reason to favour linear logic over its distribution-added cousin C. [

Leaving polemics about distribution aside, we will assume from now, that
all logics come equipped with disjunction and conjunction (whether they
distribute or not) because this will make the modal conditions simpler to
state.

2. Modalities
There are a number of ways to introduce modalities to substructural logics.
This note will focus on extremely popular modalities in the vicinity of S4
and S5. In our context, an 54 necessity satisfies the following conditions.

T, 0A—A A, DAAOB— o(AAB)

4, cA—> oA —, 0(A— B)—>(cA > oB)
N, If - A thent oA

If a de Morgan negation is present, and if the S4 necessity also satisfies

5, A->o—-o—-A

it is said to be an S5 necessity. These necessities have interesting properties
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in substructural logics.
Fact 2 All 54 necessities satisfy + o(cA v oB) & cAvoB

Proof. + o(cAvoB)— 0AvoBby T,. For the other direction, we have
FoA—ocAvoB, soby N, o(oA - ocAvoB), and -, with 4, gives,

F oA — o(pA v oB). Similarly we have 0B — o(oA v aB).so we have our
result, using the lattice properties of v. <

We'll call a proposition N a necessitive if and only if for some A,
F N <> 0A. Itis simple to show that if o is an S4 necessity, that N is a ne-
cessitive if and only if + N «> oN.This fact means that necessitives are
closed under disjunction (where present). Necessitives are also closed un-
der fusion.

Fact 3 In logics with fusion, all S4 necessities satisfy
F o(cAeoB) & nA-oB.

Proof. Clearly, +o(nAeoB)—oAooB. For the converse, we have
F oB— (oA — 0A«oB). So, F ooB — o(oA — nA o oB). This quickly gives
F 0B — 0A — (oA - 0B) and hence FoA o 0B — o(oA o oB) as desired. <

In addition, if the modality is S5ish, then necessitives are closed under
negation.

Fact 4 All S5 necessities satisfy F 0—0A <> —0A.
Proof. Left to right is T, and right to left is given by 4_, 5, and double
negation elimination. <

In propositional structures we can model a necessity by adding a unary
operator on the structure.

Definition 7 In a propositional structure P, a function I:P — P is an S4
interior operator if it satisfies these conditions.

T, I(a)<a n; I(anb)=1(a)nI(b)
4, I(a)=1I(I(a)) v, I(I(a)uI(b))=1(a)uI(b)
e, I(e)=e o I(I(a)-1(b))=I(a)- I(b)

If, in addition, it satisfies

5, asI(-I(-a))
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it is said to be an S5-interior operator. A propositional structure with an
interior operator (whether S4 or-S5) is said to be a modal propositional
structure.

These conditions on [ are forced by the axioms for §4 and S5 necessities.
(For the fusion and disjunction clauses, see Facts 1 and 2). [ is called an
‘interior’ operator on a set of subspaces of a space because of conditions
like 4, and T;.. This has not gone unnoticed in the algebraic semantics of
modalities, and the observation provokes an alternate way of presenting the
semantics of modal operators. Instead of defining an ‘interior’ operator I,
we can restrict ourselves to the class O of ‘open’ elements. The objects a
such that I(a) = a.. That is, the necessitives of our earlier discussion.

Fact 5 In any complete modal propositional structure the class O of open
elements contains e and 0, and is closed under fusion, conjunction and dis-
junction.

Proof: This is simple. T, givesus /(0)<0, so I(0)=0. We have I(e)=e
by e;. The conditions N, U; and -; show that the class O is closed under
conjunction, disjunction and fusion. <

Let's call a class O on a propositional structure a potential open class if it
contains e and 0, and is closed under fusion, conjunction and disjunction.
Then we have another fact. '

Fact 6 A propositional structure P with a class potential open class O is a
modal propositional structure with interior operator I if we define

I(a)=\/ {x:x<aand x €0}
provided that the infinite joins exist.

This proviso is unimportant in practice, because we can assume that
propositional structures are complete, because of Fact 1.

Proof. 1t is simple to show that I(a)e O for each a € P, and that I(a)=a
for each a € 0. It follows that I(/(a)) = I(a) and I(a) < a for each a € P.
We have I(e)=easeeO. Similarly, as O is closed under disjunction (if
present) and fusion, we have I(I(a)uI(b))=1(a)uI(b)and
1(I(a)-1(b)) = I(a)- I(b).

Finally, if conjunction is present, we can note that I(anb)<I(a) and
I(anb)<1(b) gives I(anb)< I(a)nI(b). Conversely, I(a)nI(b)<
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anb and I(a)NI(b)eO gives I(a)NI(b)< I(anb), as desired. <

This is a useful fact, because we can define a modal operator on a propo-
sitional structure merely by specifying its set of open elements. This way of
specifying a modal operator in a propositional structure is much simpler
than defining a function / from scratch. So, in what follows we will define
our interpretations of modalities by specifying the set of open elements.

This set of open elements provides an interesting structure inside the
larger propositional structure. We can pick out these elements in our lan-
guage by using the modal operator o. Whatever the formula A is evaluated
as, we knowe that 0A will be evaluated as an open element. This is where
adding modalised structural rules becomes interesting. We can add a num-
ber of axioms or conditions to our logic, saying that the open elements sat-
isfy structural conditions which are not shared by all other propositions.
Here are some axioms and conditions.

WID 0A > o0AonA ala-a foreachae®
KD OoBonA —» oA b-a<a foreacha be @
M oAeoA —» A a-a<a foreachae @

B: (nAeoB)enC — nAe(oBonC) (a-b)-c<a-(b-c) foreacha b,ce @
CB_(oA°oC)eoB— oAe(oBoaC) (a-c)-b<a-(b-c) foreacha b,ce®
CI_ DAeoB — oBonA a-b<b-a foreacha, be @

These axioms say that necessitives satisfy conditions which propositions in
general, in our logics, fail. The first axiom, WI , ensures that necessitives
contract. In logics like CK, not all propositions contract. We ‘regain’ a
measure of contraction by adding a modality which contracts. Similarly, we
may be interested in modalities which give us weakening, or mingling for
necessitives.

Definition 8 Given a non-modal logic X, we'll call XS4+ C,....C,, the
logic you get when you add an S4 modality satisfying the conditions
Cin to C,;. Similarly for XS5+ C,,...C,..

Adding structural rules to the open elements of a propositional structure
provokes two questions. Firstly, does it do anything to the non-modal struc-
ture of the logic? That is, is the extention conservative?

Definition 9 A logic X is a conservative extension of Y if it extends ¥'s vo-
cabulary, but nothing that is X valid in the old vocabulary of Y isn't also Y
valid.
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Secondly, does the extension do us any good? We will answer these two
questions in the next sections.

3. Conservativeness
Fact7 XS4 and XS5 are conservative extensions of X.

Proof. Suppose A is not X valid. It has a counterexample in the proposi-
tional structure P. P can be made into an S4 or S5 modal structure by defin-
ing the class O of opens on P to be the class of all propositions. <

Fact 8 Any logic X is conservatively extended by XS4 +C,...C,., for any
structural rules C, tot C,.

Proof. This time, on any propositional structure P, take the set of opens to
be {0, e}. This is a sublattice, and it satisfies any added structural rule
Co <

Fact 9 Any logic X satisfying K is conservatively extended by
XS4+C,,...C,., for any structural rules C, to C,_

Proof: In logics satisfying K, {0, e} is closed under negation. Firstly, note
that — 0 = Tand — T = 0 by contraposition, where T is the top element
of the lattice. Then it is sufficient to show that given K, e = T . But this is
easy. Given K, b=b-e<e for all b. So, we have our result, as {0, e} is a
set of opens satisfying all structural rules.

However, the conservative extension results end here. In logics where
—e#0, the class of opens must at least contain e, —e, 0, —0. And in many
logics, —e is not guaranteed to satisfy structural rules. Let f =—¢ Then we
can collate together a number of facts.

Fact 10 Any logic X in which i f — fo f is not conservatively extended
by XS5+ WI_.

Fact 11 Any logic X in which ¥ fo f — f is not conservatively extended
by XS5+ M_or XS5+K_.

Fact 12 Any logic X in which ¥ fo f — fo f is not conservatively ex-
tended by XS5+ CI,.

Fact 13 Any logic X in which ¥ fo(f f)—(fo f)— f is not conserva-
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tively extended by XS5+ B_.

These facts have bite, because they apply to interesting logics. It is not
difficult to show that in linear logic or C, f — fo f. So, these logics are
not conservatively extended by their cousins with a contracting S5 modal-
ity. Similarly, in R, ¥ fo f = f. So, R is not conservatively extended upon
the addition of an S5 modality with weakening or mingling. What is the
significance of these results? It is hard to tell, beyond the fact that it is an-
other reason to prefer S4 over S5. S4 gives us a sublattice of ‘opens’, closed
under fusion. We have sublattices like these at hand which satisfy every
structural rule, in every propositional structure. S5 forces the sublattices to
be closed under negation, and this seems to be a Bad Thing in general.
Only the case of logics satisfying K stands out as an exception.

So much for tracking the effects of adding modalities on the nonmodal
fragment of logics. Now we will see what these modalities can do for us.

4. Embeddings

The substructure of opens in a modal propositional structure has a number
of interesting properties. It is a sublattice, and it is closed under fusion. If
the modal operator is S5ish, it is also closed under negation. However, in
general, it is not closed under implication, and if the modality is S4ish, it is
not, in general, closed under negation. However, we have a number of in-
teresting results in approximating implication and negation in the substruc-
ture of opens.

Fact 14 If O is a collection of opens in a propositional structure P, then for
each a,b,ce€0,a-b<cifandonly if b< I(a=> c).

Proof. If b<I(a= c)then b<a= cand hence, a-b<c. Conversely, if
a-b<cand I(b)< I(a = c). However, b= I(b) and we have our result.<l

From now, let a>b stand for I(a = b). This result means that in the
context of 0 , O residuates fusion. This is an important fact.

Fact 15 If O is a collection of opens in a propositional structure P equipped
with a de Morgan negation —, then for each a, b,c€0,a-b< I(~c) if and
only if ¢-b < I(-a),

Proof. 1f a-b<I(-c)then —I(~c)-b<-a, and hence I(-I(-c)-b) < I(~a).
However, c—I(-c), soc-b<—-I(—c)-b. ButI(c-b)=c-b (as b and ¢ are
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opens), s0 ¢c-b=I(c-b)< I(~I(—c)-b) < I(~a) as desired. <

From now, let ~ a stand for I(—a). This result means that in the context of
0, ~ is an intuitionistic negation. This, also, is an important fact.

Now we get to the payoffs. Let's show how we can embed logics with
structural rules in logics which don't have those structural rules (which, in
case you've forgotten, was the motivating thought behind this work). We
need to define the translation A° of a formula A. It is defined recursively:

p°=op
(AAB)"=A" A B°
(AvB)"=A"v B
(AeB)"=A"oB"
(A- B)’=o(A" - B°)

(—A)° = Dﬂ(AU)

Fact 16 In any modal propositional structure P, a formula of the form A°
is always interpreted as an open element,

Proof: Observe the construction of A®°. Its atomic parts p° are interpreted
as open elements, and any of the original connectives in A are modified in
A° to always map into open elements too. <

Fact 17 A" is XS5+C,...C,,—valid if and only if A is
X+C,...C, —valid..

Proof: If A® is XS5+C,...C, —valid then it is true in all
XS5+ C...C,, structures. Let P be an X +C,...C, structure. It is clearly
an XS5+ C,...C, structure if we take the set of opens to be the set P of
all elements. So, A°® will come out true in this structure by our assumption
that it is XS5+ C,...C,, —valid. However, A° and A have the same in-
terpretation, because I is the identity operation (as © = P). This means that
Ais X+C,...C, —valid as desired.

Now let A be X+C,...C, valid. We wish to show that A° is
X85+ (... C,n —valid. But this is simple. Take a XS5+ C,...C,, struc-
ture in which A° is invalid. Let 4 be an interpretation which sends A° to
an element x * e in P. The class of open elements 0 in P isa X +C,...C,
structure, as we have seen, where we take D to be the residual of fusion.
We can define an interpretation h' into @ by setting

h'(p)=I(h(p))= h(op). In this interpretation, h'(A)= h(A“) by construc-
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tion, and so, we have a counterexample to A in this structure. But we as-
sumed that A has no counterexamples in X+ C;...C, structures, so we
couldn't have a counterexample to A” in P. This means that A° is
X85+ C,....C,, —valid as desired.

Fact 18 A is XS4+C..C,—valid if and only if A° is
X +C,...C, —valid, provided X is negation free.

Proof: Just like the proof in the previous fact. We can get away with using
an 54 style modality because we have no need to show that the structure ©
of opens is closed under negation. What about negation and $4 modalities?
Is there anything else we can say? There is, but it is incomplete. For now, if
X is a logic, let JX be the corresponding logic given by ‘liberalising’ the
negation laws to allow an intuitionistic negation. Then, we have the follow-
ing result.

Fact 19 A is XS4+C,...C,, —valid (where X has a de Morgan negétion)
if A" is JX+C,...C, —valid.

Proof: Just as before, but we note that the negation operator ~ on O satisfies
the conditions for an intuitionistic negation, by Fact 15. So, the resulting
substructure © inside an original modal stucture P is a JX +C,...C, struc-
ture. _ <

It is a lot harder to prove the converse, because we would have to show
that every JX +C,...C, structure can be embedded within a XS4C,_...C,,
structure. This is difficult, because we need to construct a de Morgan nega-
tion and a modality from ‘thin air’ while ensuring that they interact in the
desired way (satisfying ~ a = I(—a) for each a €0). This is a difficult task,
and one I must leave for another occasion, and for other techniques.

5. Conclusion

We have learned a number of things in these few pages. We have shown
how to model modalities in a general substructural setting, and we have
seen the way that adding structural rules to the necessitives or ‘opens’ may
leave the underlying non-modal structure unscathed — or it may change it.
Finally, we've seen how adding structural rules gives us a translation from
systems with structural rules in general, into systems which contain those
structural rules in a qualified form. This has opened a way to see Girard's
results in modalities in linear logic in a much wider setting.*



38 GREG RESTALL

6. Note

*Thanks to Pragati Jain, Allegra Bencivenni and an anonymous referee for
comments helping me to clarify my presentation. After writing and submit-
ting this paper, I came across Kosta Dosen [2], which covers similar
ground (but not exactly the same ground) to this paper. Anyone interested
in these issues should carefully study that paper.

Australian National University
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