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FLEXIBLY STUCTURED PREDICATION (*)

Barry TAYLOR & A.P. HAZEN

1. Motivation

Frege required that each predicate of his formal language should be of a
given fixed degree or adicity; i.e., that for each such predicate F there
should be some fixed number n such that exactly n terms are needed to
combine with F to form a formula. But, in “The Logical Form of Action
Sentences’ ([1966]), Davidson confronted the fact (previously emphasized
by Kenny), that natural-language action-predicates apparently flout the
Fregean requirement in being what Leonard and Goodman [1940] called
‘multigrade’—i.e., in apparently possessing the capacity to combine with
an arbitrary number of terms to generate a formula. Of course, Davidson
went on to propose an elegant analysis which, if correct, showed the mul-
tigrade character of these predicates to be merely apparent, inasmuch as the
underlying truth-relevant structure of action-sentences was to be displayed
in a language all of whose predicates remained steadfastly Fregean. Still,
though compelling, his analysis did not find universal acceptance; and
anyway there remain apparently multigrade predicates of ordinary language
(e.g. r... are collinear, r... live together) which fall outside its scope.
In later work, Richard Grandy ([1976]) and Adam Morton ([1975]) urged
and inaugurated a serious study of non-Fregean formal languages with
multigrade predicates, both in order to illuminate these and similar features
of natural languages and also because they think there is scope for deploy-
ment of multigrade resources to technical ends, such as the forging of truth-
theories for languages containing Quinean predicate-functors (Grandy), or
the investigation of Goodman’s calculus of individuals (Morton).
Postponing for the time questions of the soundness of these motivations,

() A predecessor of this paper, ‘Articulated Predication and Truth-theory’, was written
by Taylor for a Festschrift for Donald Davidson which never appeared. The present paper
is a considerably rewritten version of that original. Hazen is primarily responsible for the
sections on proof-theory and on Russell (the latter being part of further ongoing work), and
for improvements to other formal details. Each author blames the other entirely for all faults
which remain.
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let us begin by considering in some detail the formal properties of languages
containing multigrade predicates. We shall not, however, form these lan-
guages simply by adding multigrade predicates to classical languages already
containing Fregean predicates, thereby treating multigrade predicates as a
sort of generalization of their Fregean brethren, as most of the previously-
mentioned writers have done (though we should acknowledge the beginnings
of some finer discriminations in the original paper by Leonard and Goodman
[1940], p. 53). Instead, our languages will contain what, for want of a better
name, we call flexibly structured predicates, or just flexible predicates for
short —generalized Fregean predicates of which both classical Fregean
predicates and multigrade predicates are special cases.

The basic idea of a flexible predicate is that such a predicate has, like a
Fregean one, a fixed number of argument-places; but that each such ar-
gument-place, rather than being occupied by a single term, can be occupied
by a number of terms varying between specified limits. More precisely, let
a place-limitation £ be a pair [i;«], where i is a natural number and « is an
ordinal such that i<a<w; i is called the lower limit set by {, and « the
upper limit it sets. Then a type for a flexible predicate F of degree n is a
sequence (£,... £,) of place-limitations; and formulae come from F by putting
in its i-th argument-place any finitely-long sequence of terms whose length
lies improperly between the lower and upper limits set by ¢,. Multigrade
predicates as standardly conceived are thus 1-place flexible predicates of
type {[O;w]); a Fregean predicate of degree 3 is a 3-place flexible predicate
of type ([1;1][1;1][1;1]). (Alternatively, we might consider regarding it as
a l-place flexible predicate of type ([3;3]); but a reason against this constru-
al will emerge below.)

Clearly, there are flexible predicates which are neither multigrade nor
Fregean; so our framework employs a more powerful generalization of the
traditional conception than the minimum necessary to allow predication to
be multigrade. This in itself would count for little, were it not for the fact
that the gain in power is not idle, but can be used to mark some intuitive
distinctions. Thus, Grandy in his [1976] found evidence of multigrade
constructions in ordinary language in verbs which, like rcooks™, can be
used both transitively and intransitively, and hence which can apparently
be combined optionally with either one or two terms to form a sentence;
whilst Morton in the paper already cited took as his favoured vernacular
candidates for multigrade treatment predicates like our earlier rare col-
linearn and rlive together, which can combine with (almost) any number
of terms in sentence-formation. Now whatever the ultimate merits of these
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examples, there are clear intuitive differences between them which are
obscured by lumping cases of both kinds together into a single class of
multigrade predicates. In fact, neither seems to be best treated as a genuine
multigrade predicate —a 1-place flexible predicate of type ([0;w])— at all.
Morton’s rlive together™ comes close, but is better treated as of type ([2;w])
to make the point that it needs to be combined with two terms at least (a
point Morton perforce glosses over, since his apparatus will not convenient-
ly handle it); whilst Grandy’s rcooks™ is best viewed as a 2-place flexible
predicate of type ([1;1][0;1]). So the framework of flexible predicates,
allowing as it does for predicates which are neither Fregean nor in the strict
sense multigrade, seems better able to handle the intuitions which the friends
of the multigrade prize than can an account which simply welds multigrade
predicates onto a Fregean base.

Moreover, in many applications of multigrade predication, it turns out to
be useful to employ non-Fregean analogues of Fregean predicates; thuse.g.,
where F is a 1-place Fregean predicate, it is useful to have on hand a mul-
tigrade predicate F* whose meaning is systematically related to that of F in
such a way as to guarantee the equivalences

F*(a)eF(a); F*(ab)eF(a)&F(b); F*(abc)eF(a)&F(b)&F(c); ...

But, when F is a many-place Fregean predicate, it is difficult to state a chain
of equivalences which intuitively generalizes the above, unless it can be
assumed that F*, though non-Fregean, is nevertheless a predicate to which
the concept of degree applies, and which applies moreover in such a way
that it has the same degree as F. So Morton, whose only non-Fregean
predicates are multigrade ones and who accordingly lacks degree-possessing
predicates of the appropriate sort, is led into a quite counterintuitive charac-
terization of F* for many-place F, one for which no natural analogue of the
given chain of equivalences holds. But within a framework of flexible
predication the problem is easily solved. For then we can say that where
F is a 2-place Fregean predicate, F* will be of type ([1;w][1;w]), and the
chain of equivalences it sustains can be given thus:

F*(a,;a,)»F(aa,); F*(a,b,;a,b,)eF(a,a,)&F(b,b,);
F*(a,b,c,;a,b,c.)oF (a,a,)&F(b,b,)&F(c,c,); ...

(Semi-colons are used in these formulae to divide the argument-places of
non-Fregean flexible predicates.) Similarly, if F is a 3-place Fregean predi-
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cate, F* will be a flexible predicate of type ([1;w][1;w][1;w]} with a meaning
guaranteeing the equivalences

F*(a;;a,a,)eF(aa,a;); F*(a,b,a,b,a;b;)oF(a,a,a,)&F(b,b,b,);
F*(a,b,c;;a,b,c0ab,c)oF (a,a,a,)&F(b,b,b,)&F(cccy); ...

In thus permitting a natural generalization of Fregean predicates F to their
analogues F*, the framework of flexible predicates scores once more over
a rival treatment acknowledging only Fregean and multigrade predicates.
But note that the generalization is a natural one only when e.g. a 3-place
Fregean predicate is taken as being of type ([1;1][1;1][1;1]) rather than of
type ([3;31), the latter account suggesting no obvious analogous method of
generalization; this is the ground previously promised for preferring the
former construal.
Consideration of the predicates F* does however suggest the need for one
refinement of our framework. Take, for example, the generalized identity
predicate "=*7 . Our treatment so far would assign this to type ([1;w][1;w]),
thus allowing it to be flanked on either side by any non-empty finitely long
sequence of terms. But it seems natural to require further that these sequen-
ces should be of the same length, so that whereas e.g. ra,b,=*ab,” and
rab,c,=*abc; will be well-formed (and equivalent respectively to
ra,=b,&a,=b,; and ra,=b,&a,=b,&kc,=c,’), a formula like
ra,b,=*a,b,c;” will be ruled out as ungrammatical. This can be achieved
by redefining a predicate-type for a flexible predicate of degree n as consis-
ting not merely of a sequence of n place-limitations, but also of a symmetri-
cal and transitive relation of covariance defined over the place-limitations
in the sequence, with the proviso that place-limitations [i;«] and [f;8] can
be covariant only if i=j, =g, and i #«. Formation rules can then be ad-
justed to require that covariant argument-places should always contain equal
numbers of terms. We might informally represent the covariance relation
graphically by linking specifications of covariant argument-places with a
double-headed arrow. Then the predicate =* will be not merely of type

([1;w][1;w]), but more precisely of type {[1;w][1;w]). And in general, when
F is of degree n, F* will be of type ([1;0][1;w] ... [1;w]).

~

n times

And, of course, if in the sequel we specify a type without mention of a
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covariance relation, it should be taken that the covariance relation intended
is the trivial null relation { ), which imposes no restriction on the way in
which argument-places may covary in their number of terms.

An additional refinement suggests itself. This is to adapt a suggestion
made by Morton, and to allow that the language of flexible predicates
should also contain special variables, capable all by themselves of filling any
argument-place of a flexible predicate, and subject to binding by quantifiers
in the standard fashion. Dearly though we would wish to call these plural
variables, in honour of their semantic role, we must yield place to George
Boolos ([1984]), who beat us to the name. So we will christen them after
the syntactic shape we choose for them, call them vector variables, and
write them as "x7, ry™, etc. They will take as their substitution instances
finitely-long sequences of ordinary variables and singular-terms, subject to
the restriction that the length of the substituted sequence should be ap-
propriate to ensure the well-formedness of the substitution instance. Once
flexible predicates are introduced, the accompanying extension of quan-
tificational apparatus to enable the binding of their argument-places is en-
tirely natural, and as Morton points out it is apparently required to express
the plural quantification involved in such sentences as rAll the Mortons live
together™, which becomes expressible in terms of flexible predicates and
extended quantification as

Vv (Morton*(x }-Live together(x )).

A further natural extension of this same device would allow vector varia-
bles to stand alongside other variables (even other vector variables), or other
singular-terms, within a single argument-place. Then we could e.g. render

rAdam, Bernard and all the Mortons live together™ as

V?(Morton*(;)—-Live together (ab}.));
and rAll the Mortons and all the Goodmans live together would become
V}.V}-(Morton*(;)&Goodman*(}-)—rLive together(?t. }.)).
Accordingly, this is an extension we shall adopt. Since it will turn out (see
below) that taking this further step —we shall call it the adoption of con-

catenation terms— has significant consequences for the proof-theory of the
symbolism we are developing, it is a step worth motivating further, by
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pointing out how it leads to an increase in desirable expressive power of the
projected formal language. For with its aid, we obtain the pleasing ability
to characterize the properties of the quasi-logical notion of starred identity,
the postulates for which will include at least these:

[=*] vxx=*x
[=*II) V}.V;VxVy(}.x}- = *?y}.—-x =y).

The second of these would be unstatable without the adoption of con-
catenation terms. Note that the adequacy of this statement depends upon
vector variables being interpreted, as we do, as capable of taking a null
value.

So much for motivating intuitions and preliminaries. Now for a more

precise description of the formal properties of a language with flexible
predicates.

2. Formalization
A. Syntax

A type for a flexible predicate of degree n is a pair ((¢, ... £,),C), where
each ¢, is a place-limitation, and C is a covariance relation, as these notions
were defined in the preceding section. The primitive symbols of a language
£ with flexible predicates are the following:

(1) afinite number of flexible predicates, each with a specified type. (We
use "F7, rG", etc. as metalinguistic variables over such predicates.)

(2) denumerably many ordinary variables x, Ty, 27, X, 7y,
Z;7, ... ; the order which has just been indicated being their alpha-
betic ordering. (We use ™", as a metalinguistic variable over these
ordinary variables, and generate further metavariables as required by
using primes and subscripts.)

(3) denumerably many vector variables r?chﬂ, "3;" , rzo . r?,", "3;,1,
rz,", ... ; metalinguistic variable Tv7, possibly decorated with
primes or subscripts .
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(4) logical constants ~", &
(5) universal quantifier ~v
(6) punctuation devices ~(», Ty, .

(We exclude individual constants, function symbols etc. from £ purely to
avoid extraneous complications.)

The wifs of £ we specify as belonging to two levels, the first comprising
just wifs without vector variables and the second those in which vector
variables occur. Let a term-sequence be any finitely-long sequence of or-
dinary variables of £. Then

(1) If Fis a predicate of £ of type ((¢, ... £,),C), and £, ... £, are term-
sequences, then "F(¢,:...;¢, ) is an atomic wff of & of level 1, pro-
vided that for each i and j where 1 <i<j<n,

(a) 11(£,) <Ing(¢) <ul(¢,) (where Ing(¢) is the length of £,, and 11(¢,)) and
ul(¢;) are, respectively, the lower and upper limits which are set by
£);

and

(b) if £,CE;, then Ing(£)=Ing(£).

(2) If A and B are wffs of & of either level, then these are wffs of the
same level: T~A", r(A&B), TvvA".

These two provisions between them specify all the wffs of level 1. Define
the notion of free occurrence of ordinary variables in a level 1 wff in the
usual way, and say that an occurrence of a term-sequence in a level 1 wff
is free iff every variable-occurrence within the sequence-occurrence is a free
one. Then the second-level wffs can be introduced:

(3) If A" is a level 1 wff, and A° comes from A’ by replacing some free
occurrences of term-sequences £, ... £, by vector variables v, ... v,
then 4° is a wff of level 2. (Note that we allow the term-sequences £;

to be subsequences of longer term-sequences; and, as a limiting case,
to be empty.)
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(4) If A is a level 2 wif, so is "V vA".

Let a concatenation-term of £ be a sequence of its ordinary or vector
variables. Then it follows from these formation rules that every wff of &£
is either a simple wff, having the form rF(r,...;7,)» for some predicate F
of degree n and concatenation-terms 7,,...,7,; or else can be constructed out
of simple wffs using logical connectives and quantifiers. This fact is exploit-
ed in the definitions to come.

B. Semantics

A model for £ is a pair (D,¢), where D is a nonempty set and ¢ is a func-
tion assigning, to each predicate F of £ of type ((¢, ...{,),C), a set of n-
tuples (g, ...q,) meeting these conditions: for each i and j where 1 <i<j<n,

(a) each g, is a finitely-long sequence of elements of D;
(b) 11(¢) <Ing(o)) <ul(£);
(c) if £,C¢;, then Ing(g)=Ing(a;).

(And in particular, to explicate an informal notion of the last section, ¢
should assign, to the analogue F* of a Fregean predicate F of degree n, the
set of all those sequences (o, ... o,) meeting these conditions:

(1) for each i and j where 1 <i<j<n, Ing(o)=Ing(c);

(2) for each k<Ing(ay), {(o,(k) ... 0,(k))E ¢(F) —where ok) is the k-th
member of ¢,.)

A dividing function is a partial function f whose domain is an initial
sequence of the positive integers, and whose value for any such integer i
is a pair of positive integers (m,n) such that m <n; we call m the f~-lower
bound of i (fi(i)), and n its f-upper bound (f* (i)). We count the null se-
quence () as a trivial case of an ordered pair of integers, and so allow for
the case f{i)=(); and further require of dividing functions f that they should
be strictly monotonic, in the following sense: if i and j are both in the
domain of £, f{i)#(), and j is the least integer greater than i for which f(j)#(),
then f*(i)+1=f4 (j). Further, where f is a dividing function, and o is a
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finite sequence of length Ing(o), we say that f dissects o (Diss(f,0) iff
J¥(i)=1 and f*(j)=Ing(o), where i and j are respectively the least and
greatest integers for which f yields non-null values. (Intuitively, then, if f
dissects o and f is defined up to n, then f divides the integers up to Ing(o)
into n adjacent divisions (fi (1)=1, ... ft (1)), (FL 2)=ft(1)+1, ... f1(2)),
ooy (FY (m)=f1 (n-1)+ 1, ... ft (n)=Ing(c)); with the complication that some
of the divisions may be empty.)

We now define some model-theoretic semantic notions relative to two
finite sequences o, and o, of elements of D and to a dividing function f.
Though stated for dividing functions generally, the primary and intended
case is that in which fis a dividing function which dissects o,. The restric-
tion to finite sequences involves a few tiresome complications which resort
to infinite sequences would avoid, but will have a point in the discussion
of applications in the next section.

Let 7 be a concatenation-term of ££. Then either 7 is null, or else 7 is
i ... §', where each ¢; is either an ordinary variable or a vector variable.
We define the value Val,(7,0,,0,, f) of 7 on M relative to g,, 0,, and f. If
7is null, Val,(7,0,,0,, f) is (). In the nontrivial case it is to be obtained by
concatenating certain sequences, to be defined as the denotations of the
variables {; on M relative to g,, 0,, and f: Val,(7,0,,0,, f) = Den,({,,0,,0,,
S)* ... * Deny(,,0,,0,, f). As for denotation: if v is the ordinary variable
occupying the i-th place in the alphabetic ordering of such variables, then
the denotation Den,(v,0,,0,, f) is the unit sequence of i-th element of o,,
if such i-th element there be (and is undefined otherwise). And if v is the
vector variable occupying the i-th place in the alphabetic ordering of such
variables, then Den,(7,0,,0,, f) is that subsequence of ¢ which¢lies between
o’s f4 (i)-th and f* (i)-th elements (if such subsequence there be; otherwise
Deny(7,0,,0, f) is undefined). So, for example, if 0,=(a, ... ag), f¥(2)=2,
andf? (2)=4’ then DenM( ry'\ ’Gl’azsf)___(az ad)

We say that sequences o, and o, and dividing function f are suited to a wff
A of £ on M (Suit,(4,0,,0,, f)) iff the following conditions hold:

(1) if the i-th ordinary variable occurs in A, then Ing(s,) = i;

(2) if the i-th vector variable occurs in A, then f is defined at least up to
i

(3) f dissects o,;
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(4) for every simple subformula B of A, if B= rF(r,,...;,7,)" and F is of
type ((¢, ... £,),C), then for each i and j where 1 <i<j<n,

(@) 11(¢) <Ing(Valy(7;,0,,0,, f)) <ul(f)

(b) if ¢,C{;, then
lng(VBJAAT;,GI,GZ, f))zlng(valﬂl(":i’al’ab f))

Next comes the crucial notion of what it is for a wff A to be satisfied on
M relative to 0y, 0,, and f (Sat,(4,0,,0, f)); again, we define the notion
generally, but in the primary case of interest o,, 0,, and f are suited to a A.
The clauses governing the nonquantificational cases are straightforward
enough:

(D If A is simple = rF(r,...,7,)", then Sat4,0,,0,, f ) iff
(ValM(TJ’UhaZ’ f) L2 ValH(Tmo.lsO-Zs f))ed’(}?)p

(2) If Ais "~A", then Sat,(A,0,,0,, f) iff not Sat,(B,0,,0,, f);

(3)If A is (B&C), then Sat,(A,0,,0, f) iff Sat,(B,0,,0,, f) and
SatM(C!ahazy f)

For the quantifier clause for ordinary variables, we need the notion of two
sequences ¢ and ¢’ being similar save perhaps at i (Sim(i,0,0'), meaning
that ¢ and ¢’ have the same length and the same elements in all places save
possibly the i-th; and require

(4) If A is rvvB" where v is the i-th ordinary variable, then Sat,(A,0,,0,,
[) iff for each o," such that Sim(i,s,,0,), Sat,(B,s,’, f).

To state the final quantifier clause for vector variables, we need a more
complex notion of sequence similarity: that of sequence ¢ as dissected by
S being similar to sequence ¢’ as dissected by g save possibly at point i of
dissection (Sim#(i,0, f,0',8)). Intuitively, this relation holds if ¢ and ¢’ are
alike save at the subsequence of ¢ which fidentifies as the value of the i-th
vector variable (i.e., save perhaps over that portion between o’s f4 (i)-th and
JS1 (i)-th elements), where ¢’ may contain some other subsequence, perhaps
of different length instead; and where f and g are so related as to extract
from ¢ and o' the same subsequences as values for all vector variables save
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perhaps the i-th. We can capture the relevant notion by requiring that
Sim#(i,o,f,0',g) shall hold just when (a) f and g are defined over the same
initial segment of the integers; (b) fik)=g(k) for k<i; (c) for some possibly
negative constant integer ¢, fik)=g(k)+c for k> i;(d) g dissects ¢'; and (e)
sequences ¢ and ¢’ are identical up to their /'t (n)-th element (where n is the
greatest integer up to i, if such there be, for which fhas a nonnull value),
and from their f4 (m)+c-th elements on (where m is the least integer after
i for which f'is nonnull, again if such there be). Then we can state the final
quantifier clause:

(5) If A is *v'v B" where V is the i-th vector variable, then Sat,(4,0,,0,,
S iff for each ¢’ and g such that Suity(B,0,,0,’,g) and Sim#(i,0,,
ﬂaz'n g): SatM(B,o-l,oz's g )

A formula A is true on a model M (Tr,(A)) iff Sat,{(4,0,,0,, f) for each a,,
0, and f such that Suit,(4,0,,0,, f). Finally, A4 is valid (=A) iff Tr,(A) for
each model M.

C. Proof-theory

It is an old result that first-order logic supplemented with merely multigrade
predicates is trivially axiomatizable, in the sense that any complete proof-
procedure for first-order logic is complete also for first-order logic with
multigrade predicates. For different-grade occurrences of a single predicate
can be assimilated, in an extensional semantics, to occurrences of different
single-grade predicates; and the standard completeness theorems are in-
dependent of the number of predicates in the language. (We know of no
published source for this result, but it amounts to a corollary of Terence
Parsons’s completeness theorem for first-order logic with predicate modi-
fiers, in an unpublished manuscript circulated in the early 1970’s with the
title The Semantics of English.) The problem would appear to be equally
trivial for languages which contain flexible predicates like ours, and com-
bine them with vector variables, but which do not permit vector variables
to share an argument-place with other variables, vector or ordinary—that
is, which do not permit concatenation terms. For now differently-structured
occurrences of a single flexible predicate can be assimilated to occurrences
of different Fregean predicates, so that by the previous argument the logic
of the language can be treated as conventionally first-order—though this time
as a many-sorted first-order logic, to allow for the different sorts of varia-
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ble. (Note that occurrences of vector variables whose contexts impose
different length requirements for well-formedness must, for this purpose,
be treated as variables of different sorts.)

But the introduction of concatentation terms complicates matters to the
extent of rendering the underlying logic (with identity) of our languages
unaxiomatizable, a disadvantage offset by the way it adds sufficient expres-
sive power to allow illuminating axiomatic characterization of some interes-
ting concepts relative to the unaxiomatizable underlay. (Compare the exis-
tence of categorical axiomatizations of, e.g., the natural number system, in
unaxiomatizable second-order logic.)

To see how this situation arises, consider first a language &, with flexible
predicates including "=*" and the Fregean identity predicate, and also
containing an individual constant 0", (Fregean) arithmetical function
symbols for the operations of addition and multiplication and for the succes-
sor function ( respectively +7, .7 and rsucc?). Then we can encap-
sulate the basic properties of these fundamental arithemetical notions in the
finitely-many axioms of Robinson’s Q. Suppose further that £, contains a
flexible predicate ~Seg™ of type ([1,w]) with the intuitive meaning r... form
an initial segment of the natural number sequence™ . Then we can axiomatize

Seg with ‘positive’ axioms to guarantee that all genuine initial segments
of the natural numbers fall within its extension

Seg(0)
V}'vay(Seg(Yx)&y=succ(x)—-Seg(3&ry)
together with ‘restricting’ axioms to exclude all nongenuine segments
VxV}'(S eg (x_x.)—»x =0)
V-foVyV;(Seg(;xy}.—-y =succ(x)).
Finally, we can express the principle —definitive, in the context of the
axioms of Q, of the standard model for arithmetic— that every natural
number has only finitely many predecessors, by adding the axiom

vxax Seg(xx).

Thus £, allows a finite categorical characterization of arithmetic. By stan-
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dard arguments, therefore, its underlying logic is not axiomatizable, even
(because the characterization is finite) in the weak sense that all its valid
formulae are provable. (True, £, with its function symbols and individual
constants is not quite a language meeting the formal specifications of the
preceding sections. But by routine techniques we can recast the axiomatiza-
tion into a language £, using Fregean predicates (including identity) in place
of function symbols and individual constants, so the result carries over to
the logic of languages which satisfy our specifications to the letter.)

It might be objected that this result is simply an artefact of a decision to
take the semantic values of vector variables to be finite sequences, which
might be avoided by adoption of some alternative construal. As we shall see
in the next section, the extent to which the semantics we have adopted really
does commit us to the view of vector variables as taking finite sequences
as “values’ is tendentious. Accepting the terms in which the objection is cast,
however, it can be met by pointing to the implausibility, upon examination,
of the alternatives to which the objector appeals. For what alternatives are
there?

A first idea might be to take w-sequences rather than finite sequences as
the values of the vector variables. That will, however, immediately plunge
us into the problem of explaining how only an initial segment of the varia-
ble-values is relevant to determining the truth-value of predications, and of
finding some artificial way of coding the lengths of the initial segments
relevant in various contexts. Supposing that problem can be overcome, there
will be the further difficulty that a concatentation term containing a vector
variable as other than its last component will not take as value a sequence
of the same type as do vector variables themselves.

A second thought might be to regard vector variables as taking finite-or-w
sequences as values. But then we can, within a language like £, (with
vector-variables reconstrued) distinguish the finite values from the w-long
values by the definition

Fin(x 3y z(x=*yz).

By restricting the vector variables of the old axiomatization to finite values
we can thus rewrite a finite categorical axiomatization of arithmetic within
the new &,.

A final try might be to take the values of the vector variables as sequences
which are finite in a nonstandard sense —as ‘internally finite’, in the jargon
of the non-standard analysis, i.e. as sequences of individuals of the order-
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type of the natural numbers up to any given number in some nonstandard
model of arithmetic. But a sequence of one of these nonstandard order types
may be identical to one of its own proper initial segments. As a result, it
appears that this proposal will be inconsistent with our earlier attempt to
axiomatize ~=*, since on any model with more than one individual in the
domain the formula

3?51x3y3§( ~x=y&xXy = *'J-c-y}‘)

will be true, flouting [=*II] of the second last paragraph of §1.

3. Application

As we indicated in the first section, proponents of multigrade apparatus have
advocated its use not just to illuminate the structure of ordinary language,
but also as a tool for the forging of philosophical theory. We conclude with
two examples of the use of flexible apparatus, both for the sake of further
illustration, and to set up a final objection we need to confront.

Our first example comes from the history of philosophy. A number of
themes that keep recurring in the various incarnations of Bertrand Russell’s
philosophy in the first two decades of this century —notably, the desire to
‘Quine’ propositions, the substitutional account of propositions, and the
extremely fine-grained ramified theory of logical types found in Principia
Mathematica— can be fitted into a moderately harmonious whole if we
permit ourselves the use of flexible predication in a rational reconstruction
of his position. The ‘multiple relation’ theory of judgement of [1913] will
serve as a case in point.

As Russell conceived of them, propositions, the (purported) objects of the
propositional attitudes, have constituents; he regularly spoke of them (and,
confusingly, of many other things) as ‘complexes’, and insisted against
Frege that even Mt Blanc, with all its snowfields, can be a part of a proposi-
tion. In addition to such concrete particulars as Mt Blanc (or, to take a later
example, the white sensum that lasts for the second or so that I stare at a
chalk mark), propositions also have universals as constituents —properties
in the case of propositions which are monadic predications (if there are any
such), relations in other cases. On the nature of these, later commentators
(amongst them Quine) can be misleading. For Russell did not identify
universals and propositional functions (the values of higher-order variables).
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The domain of propositional functions (of a given type) must be closed
under at least some logical operations if higher-order logic is to be of any
mathematical utility, yet for Russell it was (often) an open, indeed empirical
question whether, for example, a given universal has a complement. Again,
universals being genuine entities, we include them all when we quantify over
absolutely all things; but propositional functions must, on pain of paradox,
be stratified into types. On a correct account, Russell’s ontology of univer-
sals is a sparse one. There are universals; with some of these (those which
can figure as constituents of propositions we can genuinely conceive) we
are acquainted; others we can come to know only by description; but just
which ones there are is a matter for empirical, not logical, investigation.
To any genuine universal a propositional function corresponds, but beyond
these the domains of propositional functions are padded out by including
others with the dubious status of logical constructions.

Thus far, our exposition has accepted uncritically that there must be such
things as propositions, the objects of the attitudes. But Russell did not. Some
of the objects of the attitudes are false: people judge wrongly, hope in vain,
and so on. On an ontology that accepted propositions as genuine entities,
these commonplace facts would require that the furniture of the universe
include real falsehoods, and this offended Russell’s famously robust sense
of reality. Others are less sensitive in this respect, but our present task is
not to evaluate Russell’s scruples, but to expound the multiple relation
theory of judgement to which they led.

This arises entirely naturally: if propositions are to be rejected, we can
use their constituents —or, more precisely, the things which would be their
constituents, were they to exist— in their place. After all, even if there were
propositions, a subject standing in an attitude toward one of them would,
by simple composition of relations, also stand in some relation to the un-
doubted entities out of which the proposition was composed. When proposi-
tions are rejected, then, the attitudes can be reconstrued: to say a subject
§ judges (or whatever) that p is to predicate, not a dyadic relation of § and
the pseudoentity p, but some polyadic (‘multiple’) relation of § and the
however-many-there-are constituents of p. In a certain sense, this reduces
propositions to their constituents, but the standard objections to such a
reduction —that the existence of the constituents does not suffice for the
truth of the proposition, and that the same constituents can compose quite
different propositions— are avoided, because the specifically propositional
connexions between the constituents can be taken to be implied in the poly-
adic relations corresponding to the attitudes: S may be acquainted severally
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with R, a, and b without its being the case that Judge(S,R,a,b), and, since
a polyadic relation is not required by logic to be commutative with respect
to any of its argument places, § can judge that Rab without judging that Rba
(i.e., Judge(S,R,a,b) is logically independent of Judge(S,R,b,a)).

For our purposes, the important thing to note is that the polyadic relations
which supplant the attitudes must be flexible. For we may judge that a
particular has a property, or that two particulars stand in a relation, or that
three particulars stand in a triadic relation, ...; or, for that matter, that some
subject judges that we judge that ... . So it appears that the judgement
relation (and other attitudinal relations) must be of some such type as
([1,1][2,w]), so we can write

Judge(S,F,a)

Judge(S,R,a,b)

Judge(S,R’,a,b,c)

Judge(S;Judge,S',F,a).

Of course, the theory needs extension, to cover nonatomic propositions.
Russell himself provided no such further development in detail, though there
are hints in his writings which reveal one possible shape the extension might
take. In any case, even in the context of the partial theory to hand, it is
clear that Russell will need not just flexible predicates, but also the other
mainstay of our apparatus, vectorial quantification. For to say that there is
some proposition which Ottoline accepts but Colette rejects is to say

3F3x(Judge(Ottoline; F,x)&Deny(Colette;F,x))
or, perhaps,

aRx3y(Judge(Ottoline;R,x,y)&Deny(Colette; R, x,y))

or, perhaps, ...

The infinity (recall iteration!) of possible disjuncts means that we can ex-
press the idea in finite terms only with the aid of vector variables:



FLEXIBLY STUCTURED PREDICATION 391
ax (Judge(Ottoline; x )&Deny(Colette; 1 )).

Our second example of the use of flexible apparatus for philosophical
purposes comes from the philosophy of logic. Consider a modal language
LN, formed by adding a modal operator r[]" to a first-order language L.
To the standard Kripkean model-theory for LN there corresponds a truth-
theory which generates statements of truth-conditions for the sentences of
LN phrased in terms of an apparatus of worlds, an accessibility relation
between them, and world-relativized correlates of LN’s predicates. But the
(philosophical) interpretation of these truth-conditions is, of course, a famili-
ar bugbear, and the whole approach poses a problem: are modal locutions
autonomously intelligible, or rather, as the theory seems to suggest, ul-
timately accessible only through world-relativized reconstrual?

Concerned in part with the latter problem, Christopher Peacocke ([1978])
investigated the problem of constructing a new, homophonic truth-theory
for LN. His initial ploy is the obvious one: to deal with modal sentences by
adding to the Tarskian theory of satisfaction for unadorned L the clause

Sat, ( "0A" ,0)e[1Sat,(4,0).

But—after turning a well-known objection to this approach by Wallace
([1972])—Peacocke finds himself faced by a nasty obstacle posed in conver-
sation by Kit Fine.

Suppose LN to contain an existence-predicate "E~ , and consider the Fine
Jormula

¢y~ O (EM&E(®)).

This formula asserts the actual existence of an element x and the possible
existence of an element y which do not possibly coexist. As such, it is
intuitively true. But on Peacocke’s theory, that truth requires the possible
existence of a sequence containing both x and its incompossible companion
Y as elements; and if sequences are sets, and granted the plausible postulate
that no set can exist in a world unless its elements do (Fine [1977] p. 126),
the very truth of the Fine formula precludes the possible existence of any
such sequence. (The Fine formula poses a problem for the Kripkean truth-
theory too, but one which that theory can perhaps avoid, by making use of
its accessibility relation. For the truth of the Fine formula by Kripkean
lights bars the coexistence of x and y only in worlds accessible from the
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actual world, and so can allow their coexistence, and the existence of a
sequence containing them both, in worlds not so accessible.)

Omitting frills, Peacocke’s response, rendered into the present framework,
is to reconstrue the satisfaction predicate of his truth theory as a flexible
one, of type {[1,1][0,w]); and to use vector variables in place of variables
over sequences. Thus the critical clause in the account of satisfaction be-
comes

Sat,( "0A", x)yeSat, (4, %)

and, freed from its commitment to existence of sequences as satisfiers, the
truth-theory slides past its difficulty with Fine’s formula.

Clearly, the success of Peacocke’s manoeuvre stands or falls with an utter
contrast between flexible predicates, and Fregean predicates of sequences;
and correlatively, between vector variables and variables over sequences.
The same point holds for our Russellian application; construing rJudge"
as a Fregean predicate with a sequence as second argument-place would
reintroduce the propositional objects which it is the whole point of the
multiple relation theory to avoid. But, it may be objected, flexible predicates
are not ultimately intelligible save as predicates of sequences, nor vector
variables save as variables over sequences—a fact born out by the semantics
offered in the last section, which manifestly treated flexible predicates and
vector variables in precisely such terms.

The objection is manifestly a crucial one. But the apparent support which
it gains from the semantics of the last section is illusory; for, by taking a
leaf out of Peacocke’s book and transporting flexible apparatus into our set-
theoretic metalanguage, we can recast the whole of our semantics in a way
which avoids the explicit invocation of sequences which beset our first
attempt. Thus we will replace the sequence variables of the original with
vector variables, and its Fregean predicates of sequences by flexible predi-
cates of appropriate type. (It will be handy too, though not essential, to
extend our flexible apparatus a bit, so Fregean function symbols can be
replaced by flexible ones, without first having to be reconstrued in terms
of predicates.) So, for example, the satisfaction predicate will be reconstrued
as of type ([1, 1][1,01,[1,0][1,1]), and in place of rSat,(A4,0,,0,, f)" we will
write "Sat,(A4,x,x,, f).

It was to facilitate this rewriting exercise that the semantics of the last
section was cast in the way it was, e.g. in its otherwise clumsy use of finite
sequences as satisfiers. It is not an exercise which will vastly impress our
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objector, who will rightly maintain that it merely transfers to the metalan-
guage the question of the right way to construe flexible apparatus. What it
does do, however, is deprive the objector of any formal support. The sub-
stantive issue of the ultimate intelligibility of flexible apparatus as genuinely
autonomous is not to be settled on formal grounds, but turns on the sound-
ness or otherwise of intuitive motivation of the sort our first section sought
to provide, and on the fruitfulness of the way it can be deployed to philoso-
phical ends.

University of Melbourne
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