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FINITE MODELS FOR SOME SUBSTRUCTURAL LOGICS

J.K. SLANEY

This paper is a report of computer-driven research into the modelling of
propositional systems related both to linear logic and to relevant logic. One
result is an exponential lower bound on the number of models of given size
validating such systems. Another theorem explores dualities within models
for such systems in order to explain striking regularities in the distribution
of models of the system C. In these researches the computer figures not as
a prover of theorems, nor even as a proof assistant, but as a source of quasi-
empirical data.

1. The Logics C, CK and R

As is explained at more length in [5], premises of arguments—items in
databases—may be bunched together in several different ways, conclusions
(queries) either following or failing to follow logically from these bunches.
Here we consider two ways of putting statements together for the sake of
argument: collection into sets and collection into multisets. The two opera-
tions may be nested inside each other to any finite depth, giving a technical
notion of a “bunch” of formulae as follows.

1. Any formula is both an extensional and an intensional bunch.
2. Any set of intensional bunches is an extensional bunch.
3. Any multiset of extensional bunches is an intensional bunch.

Bunches (intensional and extensional) are just what are required to be so by
this definition. For the logical purposes of this paper only finite bunches are
really required, though the general theory of such complex objects is of
interest and deserves a proper mathematical study. It is worth pointing out
before entering into details of the logic that the null set & and the null
multiset [] are here being treated as different items with very different
inferential properties. On the other hand, we shall be fairly loose about the
difference between {4}, the set singleton of A, and its multiset singleton [A4],
since both have just the same logical force as A itself.
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It is convenient to have some notation for intentional and extentional
combinations of bunches of arbitrary sorts. For this purpose it is easiest
simply to overload the symbols for set union U and multiset union u. To
form the set union over a family of bunches, let each of them which is not
already a set be replaced by its set singleton and then the union formed.
Analogously, the multiset union over a family of bunches may be defined
by substituting [X] for each constituent X which is not already a multiset.
Thus, for example, where M is a bunch which is a multiset, S a bunch
which is a set and A a formula

MuSuAd=MulS] ulAd]
MUSUA={M} USU {4}

Clearly each union operation is associative and commutative. In addition,
set union is idempotent though multiset union is not.

The objects with which logic deals are sequents. A sequent is an ordered
pair consisting of a bunch and a single formula.(*) We write

X+ A

to say that the sequent with premises X and conclusion 4 can be proved in
a givenlogical system, subscripting the turnstile with the name of the system
if the context does not make it plain. I'(X) is a bunch in which X occurs as
a sub-bunch, and T'(Y) differs from it exactly in that the displayed occur-
rence of X is replaced by Y. The systems begin with one axiom scheme

Ar A

Any formula is derivable from itself. The rest of the rules transform this
trivially valid argument form into less trivial ones. Apart from the unspoken
principles flowing from combinatory properties of the operations U and v,
such as associativity and commutativity, there is one basic structural rule
saying that inference from a set need only appeal to a subset

(" This concept of a sequent is really a special case: it is sometimes more convenient to
think of a sequent as a pair of bunches, giving multiple conclusions as well as multiple
premises. The present paper uses only the attenuated version, however.
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T'X)+ A

TXUbhr4A LS

For the logic C with which we begin there is no corresponding principle
for multisets.

To formulate the propositional logic C, add to the basis various logical
rules governing connectives. The first connectives to consider are two types
of conjunction corresponding to extensional and to intensional combination
of premises.

X+ A Y~ B

XUYHA&B &

X+—-A&B 'k UB)+~ C &E
'X) ~ C

X4 Y+~ B il

XuY+-AoB .

X+—AoB I'AuB)+ C oF

'x)~ cC

It will readily be seen that the connective symbolised by the ampersand has
the familiar semilattice character of classical conjunction. It exhibits the
usual truth-functional relationship, a conjunction following from (the set of)
its conjuncts and in turn entailing each of them. The intensional conjunction
or “fusion”, on the other hand is entailed by the multiset of its conjuncts
and in general entails not those conjuncts individually but whatever can be
got by using one of them as an inference ticket and the other as a departure
point.

Negation in C is an involution: an operation of period 2 which reverses
the sense of a proposition and reverses its inferential properties. Thus it is
governed by the two-way double negation rule and by a version of modus
tollens.

X+ A4 DNI X+ 114

XF 74 X+ A N
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XudAw+ B Y+ B
XuYr -4

MT

In terms of negation and the two conjunctions we can define several other
connectives. Each conjunction has a dual disjunction, and as might be
expected in a logic there is an implication

AV B =df 7 (mA & —B)
A+B =df °(— A4 o B)
A—-B =df (4 o B)

Introduction and elimination rules for these are derivable but are omitted
here for brevity.

It is technically useful to add sentential constants to the language. The true
constant t has, as premise, the same inferential force as the null multiset O,
while the trivial constant T corresponds similarly to the null set &. Each
of these can be negated to produce the false and absurd constants f and F
respectively. There are two further axioms tI and TI

Ot
Ir+T
and one more rule

Xkt ) ~ 4
TX) - 4

tE

Finally, there are two more definitions.

f =df -t
F =df T

Clearly, t = A4, is equivalent to A, as aret o 4 and f + A, while 4 » f is
equivalent to —A.

To convert C into the stronger logic CK it suffices to add the intensional
version IK of the structural rule EK.

T(X) - A

I‘(Xl_lY)l—AIK
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The effect of the two rules together is of course to allow arbitrary weake-
ning of premise bunches, so they can be combined into a single rule

I'X) - A K
IAX) + 4
One way of viewing IK is as the result of identifying & with OJ or equiva-
lently T with t. This identification takes the system close to classical logic,
but not all the way since multiset union remains non-idempotent.

The main logical use of the idempotence of a premise-combining operation
is to secure the rule of contraction or absorption: that what follows from
two applications of a premise can be regarded as resulting from just one.
The intensional form of contraction can be added to C without assuming full
idempotence, and the result of adding it is the relevant logic R. R is C plus

I'XuX)+— A W

'X) — A
In the context of C the rules IK and W can be seen as opposites in that an
equivalent of IK is the principle that intensional bunching is stronger than
extensional

FrXuyrA KY
'XuY) + A4
while W is equivalent to the converse

I'XuY)+ A we
FTIXuY)r+4

The result of imposing both extra conditions would be to identify the two
forms of bunching, producing classical logic. To help place the various
systems in the logical landscape, note that C is exactly the non-modal frag-
ment of linear logic plus the distributivity of & and v . CK is similarly the
distributive partner of the logic BCK.
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2. Modelling the Logics

An algebraic model for C in the simplest sense is just a set on which are
defined functions corresponding to the connectives and to the bunching
operations. A “C structure”, then, is a complete distributive lattice, exten-
sional bunching corresponding to general lattice meet and the lattice order
serving to model the relation of implication. It is also equipped with a
function p from multisets of its elements back into the algebra such that for
any a

plal = a

and for any multisets of elements M, ... M,

pM U uM,) = plpM, . M)

Moreover there should be strong lattice ordering in the sense that for any
set X and for any element a

p[a,VX] = V{,u[a,x]: xe x}
To model negation there must be an involution ~ satisfying the postulates

3=

a
pla,bl<t & plac] < b

Extensional conjunction and disjunction (& and V) are modelled straightfor-
wardly by lattice meet and join, and negation by ~. Intensional conjunction,
o, is modelled for interpretation & by

(A o B) = p[$(4),3(B)]
and the bunching operations U and u are treated exactly like & and o
respectively. 3(t) is always pJ, and (T) is always lattice I, the top ele-
ment. Modellings of the other connectives follow from their definitions.

An R structure is just a C structure in which for every element a

a < ula,a]
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and a CK structure is a C structure in which
pd =1

Formula A is true for interpretation & iff 0 < 3(A) and valid in a par-
ticular algebra iff true for every interpretation in that algebra. Sequent X
+ A holds on interpretation & iff 3(X) < ¥(a) and is valid in an algebra
iff it holds on every interpretation therein. We say that X implies A where
the sequent holds and that X entails A where the sequent is valid. A is valid
simpliciter iff it is valid in every algebra for the appropriate logic, and X
entails A, without qualification, likewise.

This paper concerns attempts to generate small models—the largest with
16 elements—using the program MaGIC (Matrix Generator for Implication
Connectives) developed at the Australian National University by the au-
thor.(®) For the remainder of this paper, therefore, attention may be res-
tricted to finite algebras of the kinds outlined above. Finite lattices are
trivially complete, and in finite algebras there is no need to consider the
function p in general since it is fully reducible to its binary case. We there-
fore write

ab =df pla,b]
e =df puO

It is clear that fusion, the binary operation symbolised by juxtaposition, is
associative and commutative, that e is an identity for it, and that

ab<Tea <b

Given that the partial order is that of a distributive lattice and that ~ is of
period 2, these properties could be stipulated as postulates were fusion taken

as primitive rather than defined. Naturally, the algebras model R or CK iff
they also satisfy

a&b < ab
or

(®» MaGIC is in the public domain and is available by anonymous ftp from
arp.anu.edu.auwhereit is in directory /pub/MaGIC. Full documentation, data files, Makefile
and online man pages are included with the sources. MaGIC is in ‘C’.
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ab < a&bd

respectively. Proofs of soundness (that all provable sequents are valid) and
completeness (the converse) are routine and will not be rehearsed here.

3. Numbers of Models

To generate some comprehensible data concerning the behaviour of MaGIC
applied to C it proved useful initially to concentrate on totally ordered
structures. These provide an easily graspable series increasing in size in a
regular way. Because of total order there can be no isomorphisms between
distinct such structures provided the elements are presented in some standard
sequence: we choose to make this simple by identifying the implication
order with numerical order. Where the partial order of implication is a
chain, the lattice operations become trivial: the meet of a and b either is a
or is b, whichever is the lower, and their join is the other. Where the ele-
ments are numbered from 0 at the bottom to 7 at the top, @ can only be n-a,
so the De Morgan quasi-complement operation is also determined by the
ordering. Moreover, provided for every a

Oa=0

residuation is guaranteed, for 0z < b whence {x : xa < b} is nonempty;
but in a finite chain the lattice join of any set is a member of that set, so
the residual b/a of b by a is well defined as the greatest such x. For the
purposes of logic it is customary to write b/a as a — b in order to emphasise
the relationship with implication. The easy way to generate totally ordered
models of C and like systems is thus to work as MaGIC does not with
fusion directly but with the operation —. The modelling condition for the
arrow reads

¥4 -~>B) = 34> QB

Now clearly a = b is a true element (in the positive cone) iff a < b, so
each cell of the implication matrix can take either true values only or false
ones only. This regularity may be written into the search space at an initiali-
sation stage. It is easy to ensure that in every matrix tried
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a->b=b—»2a
just by forcing the matrices tried to show symmetry about the diagonal. As
a general fact about C models, e = a = a for all a. Given all of this, and
given that for all q, b, ¢
a<b=c—»a<c—-b

it is only necessary to test for satisfaction of the one postulate

a-b<d-=>c)=@—c

time
1,000 (sec)
100 *
10 *
1 . .
0.1 . .
size of models
0.01

6 7 8 91011121314

Figure 1: Runtimes

This MaGIC does reasonably quickly, though no doubt a program using a
search function designed specifically for this system rather than a general-
purpose one would out-perform it. ,

Here are the runtimes on a Sparc-2 for generating totally ordered models
of C by MaGIC 2.0. The sizes are numbers of elements and the times are
in seconds.
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Sizel 6 7 8 9 10 11 12 13 14

Time | 0.05 0.08 0.20 .0.52 1.41 474 137 453 153

It seems clear that these times are increasing at least exponentially with the
number of elements. This impression is strongly confirmed by graphing the
same results on a logarithmic scale (Figure 1). This would seem to indicate
that the problem of generating structures such as these ordered monoids is
of exponential time complexity. However, a closer examination reveals
another interesting function of the size of models: their number. Figure 2
is a similar graph of the number of totally ordered C models of sizes from

number
100,000 | of
models
10,000 *
1,000 u
100 .
w| .
; size of models

4567 8 91011121314

Figure 2: Numbers of Models
4 to 14. So apparently the number of models of a given size is also bounded
below by an exponential function of the size. This places the earlier figures
for runtimes in a new light, for it now appears quite possible that the model-
generation problem looks hard only because the density of solutions in the
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search space does not decrease much with size. The unit task for the pro-
blem is really the generation of a single model rather than all of them.
Hence a fairer measure of its difficulty is the time taken per model found.
If the number of solutions is increasing exponentially then any method of
producing them—even reading them from a file—will have an exponential
time bound, so in these circumstances such a bound is not necessarily
devastating.

The time taken per model generated, by size again, is as follows. These
times are in milliseconds.

Size | 6 7 8 9 10 11 12 13 14

Time | 2.9 2.2 2.5 2.8 3.2 4.5 53 7.0 9.2
This function is certainly increasing with the size of the models, but it is

not obvious that the increase is exponential. Figure 3 is the graph, this time
on an ordinary linear scale.

10 | p-sec/model

size of models

6 7 8 9 10 11 12 13 14

Figure 3: Milliseconds per Model

Some increase in the time taken per model found is to be expected, both
because large models occur comparatively rarely in comparison with the size
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of their search space and because the time taken to test a matrix of size n
X n for satisfaction of a postulate with k variables is likely to be around
O(n*). In the present case the serious postulate to be tested has 3 variables,
so certainly the time spent testing a good matrix of size n is proportional
to n°, and it would be unsurprising to find the time taken over bad ones to
show broadly similar behaviour. Given this, the above results are quite
encouraging, suggesting that the model-generation problem is not so sever-
ely intractable as at first appears. Indeed, up to size 10 the increase in time
seems to be no worse than linear. One upshot is that even linear improve-
ments in processing speed—for instance those due to parallelisation—may
bring about significant advances in what can be computed.

The next need is for a firm theorem to the effect that the numbers of
models do indeed increase exponentially with their size. It is easiest to
establish this for the special case of totally ordered models for CK which
are C models in which the identity e is the greatest element under the lattice
ordering. Begin, then, with a finite chain

@y € By iy G By G

The key is to pick what are to be the idempotent elements for the fusion
operation. Let the idempotents be some subset T including a,. Clearly there
are 2" different possible selections and what we want to show is that each
of them leads to a model. The point of requiring a, to be idempotent is to
ensure that for any g, there is some idempotent a; with j < i. Now define

a, o aj=de{ak:ksi,ksj,a*€ L}
It is obvious that this operation is commutative, and a moment’s thought

shows it to be associative as well. Moreover, it clearly satisfies lattice
ordering in that

a;,0(aVa)=(o a) Vv (g o a)
So we have a totally ordered commutative semigroup. To make it into a
monoid we add an extra element e with the property that a, < e for all i

and stipulate that it be an identity for o :

g o0e=qg =¢e 0 g
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This does not upset associativity, commutativity or lattice ordering. Residua-
tion is also fine:

a—>a = V{a*: a o a < a}
J J

All that is now required is to carry these properties over into a structure
with a De Morgan quasi-complement ~ and for this we use a construction
deriving from one originated by Meyer for the purposes of showing conser-
vative extension for negation in logics such as R. Let fand b, ... b, be
objects distinct from each other and from e and g, ... a,. Extend the total
order to them thus

bR . < << ... <e

and define quasi-complementation in the obvious way, letting € be f, T be
e and for any i < n letting a; be b, and b; be a,. It remains to extend the
operation © to the enlarged structure, which is easily done. For any ele-
ment x let

XxXoe=x=eoXx
and let

xof=f=fox

Then for any i and j from 0 to n,

g ob = a~a
b, o a; = a~q,
b, o bj =f

Checking that all of the postulates for a totally ordered CK model hold of
the structure is routine and will not be detailed here. Evidently each of the
2" original choices of idenpotents leads to a different model, and each of
these models has exactly 2n+4 elements. Hence where m is any even num-
ber greater than 2 there are at least 0.25(/2)" totally ordered CK models
with m elements.

The analogous argument for R models again proceeds by picking an
arbitrary set of idempotents, this time including a, but not necessarily a, and
defining
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a,0a=dMNa,:i<kj<kae€x)

Again associativity and commutativity are secured unproblematically. The
added identity e is ordered below the g; rather than above them, and it is
necessary to add a further element L even below e. The definition of g, =
a; is exactly as before. Now the b, are placed up above the a; and a new top
element T is added to give the ordering

1l <e<g<..<a<b<.<b<f<T

The definition of fusion requires a slight amendment:

This structure has more added elements than that for CK, so the lower
bound this time is only 0.1250/2)". This is still exponential, however.

It will be noticed that the results of this section place lower bounds on the
numbers of models of even-numbered sizes only. I fully expect that an
extension to odd numbers is possible, but I also expect it to be uninteresting
80 it is not pursued here.

4. Duality

It must have struck the reader that the construction used above to show the
number of totally ordered R models exponentially bounded was in a straight-
forward sense dual to the argument for CK models. The purpose of the
present section is to make this duality precise and to explain it. Here are
the numbers of totally orderd C models of all sizes up to 14 elements listed
according to the choice of e. The “middle” element M of any finite chain
is the one such that either M = M (if the number of elements in the chain
is odd) or M = M-1 (if the number of elements is even).
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2 3 45 6 7 8 9 10 11 12 13 14 | Size
M+6 2067 6148
M+5 329 944 1212 2946
M+4 59 161 204 477 643 1390
M+3 12 31 38 85 109 229 367 748
M+2 3 7 8 17 20 41 60 121 218 438
M+1 1 2 2 4 8 10 20 32 64 126 252
M1 1 1 1 1 1 1 1 1 1 1 1
M-1 1 2 2 4 4 8 10 20 32 64 126
M-2 3 7 8 17 20 41 60 121 218
M-3 12 31 38 85 109 229 367
M4 59 161 204 477 643
M-5 329 944 1212
M-6 2067
Value
of e

The first striking regularity (Fact 1) is that when e is M there is only one
C model of any given size. The second (Fact 2) is that the numbers below
the middle in any column exactly mirror those above it in the previous
column. To explain these facts we need some theorems.

Let us say that a C structure is complete iff for every element a either a
is in the positive cone or @ is, and that it is pseudo-complete iff for every
a, e < a Vv a. In totally ordered finite algebras, of course, these two
amount to the same thing, though in a more general setting they can come

apart. The first fact to note is that for any element a of any pseudo-complete
C model with 0

a&(@—0)=0
The proof of this is quite easy. First note that sincee <0 ande -0 = 0
0-0=0
From this it is immediate that for any a

a-»0=a-0-0
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whence by permutation in the right-hand side
a=+0=0->@—0

Applying the facts that in general x =y = y - X and that ~ is of period
2 we get

a-»0=a-0-0

whence

a-+-0<a-0-0
But in a pseudo-complete structure
e<@-0va—-s0
so by the monotonicity properties of lattice ordered structures
e<(@—=0v@->0-0

Clearly both sides of the join are less than or equal to @ & (a — 0)—0, so
very quickly

e<(@&@—-0)—-0
which is to say
a&@—-0)=0

What this amount to in the case of totally ordered complete structures is that
for any nonzero element @, a = 0 = 0. In the literature on algebraic treat-
ment of relevant logics this property is called rigorous compactness.
There is a stronger property of rigorous supercompactness, defined as
rigorous compactness plus that the result of deleting elements 0 and 0 be
a subalgebra. The next observation is that any totally ordered complete C
structure with O in which € < e is rigorously supercompact. That it is
rigorously compact we have already established, and that the result of
deleting the extreme elements is a De Morgan lattice is obvious. It remains
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therefore to show that if ab = 0 then either a = 0 or b = 0 and that if ab
= 0 then either @ = 0 or b = 0. The former is easy given total order and
rigorous compactness, for if ab = 0 then by residuation @ < b — 0 whence
by rigorous compactness @ & b = 0. For the latter, suppose ab = 0 and
a # 0. As we have shown, @ being nonzero, 2 - 0 = 0 which is to say

a0 = 0. On the supposition that ab = 0, therefore, aba = 0. Now in any
C structure and for any a and b, aa < e and e < b — b, so given the
remaining conditionthat e < e it is immediate that a2 < b - b or in other
words aa b < b. Putting everything together, 0 < aab < b whence b =
0.

It is now easy to show Fact 1: that for any finite(*) n there is only one
complete totally ordered n-element C structure with € < e. Proof is by
induction on n. Actually there are two inductions: one for the case in which
n is odd and one for the case in which it is even. Either way the base of the
induction can be established by inspection, and the induction step only
requires us to note that for an n-element structure of the relevant kind all
fusions involving 0 or 0 are fixed by rigorous compactness, while all the
rest are fixed by rigorous supercompactness and the induction hypothesis.

The key to Fact 2, the more general duality evident in the numbers of
models is that between fusion and fission, o and +. It is easy to exploit
the fusion-fission duality to turn any totally ordered finite C structure in
which & < e into a complete totally ordered C structure with one more
element. The construction is to add a new top element T and to define
fission on the extended structure thus:

{ T ifa=Torb =

a+b=

a o b otherwise

Obviously the operation ~ must be newly defined for the enlarged structure.

There is only one way to do this: where the elements are numbered in their
natural order fromQupton = T,

a=n-a

(*) This regularity does not extend to the infinite case: for a completely different denumer-
able C structure consider the integers in their usual numerical order with addition as fusion
and zero as the identity e.
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Then fusion « is defined for the new structure

axb=a +b

It is clear that the result of this construction is still totally ordered and has
one more element than the original. To establish that it really is a C struc-
ture it is necessary to check out the postulates. Clearly + is commutative,
and so « is as well. For associativity, note that the following are equal

a*(b*c
a +bxc
a +@ +7¢)
@+b)+c
axb+c

(@a*xb) »c

Now where e is the identity of the old (small) structure and a is any element
of the new one, a * € is @ _o e by definition and the fact that ~ is of
period 2. @ o e reduces to @ which is just a. Hence there is an identity
for the new structure. Lattice ordering is similarly inherited, and finally
residuation holds because for any g and b

Txa<hbh

so the set {x : x * @ < b} is nonempty whence @ — b is well defined as the
Join over it. Since the identity of the new structure is the quasi-complement
e of the old one, the old condition that g < e has gone over into the new
condition that the structure be complete.

The above construction establishes a mapping from the totally ordered C
structures of any finite size with ¢ < e into the complete totally ordered
C structures of the next size up. The numbers of models below the middle
line are therefore at least as big as those in the top half of the previous
column. To establish Fact 2, it remains to show that this mapping is in fact
onto, for which it is necessary to show that it can be reversed. Consider,
then, a complete totally ordered finite C structure. It has already been
shown, as part of the rigorous supercompactness argument above, that if
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ab = 0 then either a = 0 or b = 0 (the rest of the argument for rigorous
supercompactness relies on the suppositione < e and fails for the general
case of complete C structures, but we do not need it for present purposes).
Dualising, @ + b = T if and only if either a = T or b = T so the result
of deleting T leaves fission well defined, although it may destroy fusion.
To complete the reversal of the earlier construction, ~ gets redefined in the
natural way and o is recovered:

aob=a+b

Since + is fully associative and commutative these properties are inherited
by o, as is the existence of an identity and respect for lattice order. The
only remaining postulate is residuation, and again it suffices for this that for
any g and b

Doa=0
That is, in the large structure, for every a except T
0O+a=0

But this is exactly the property already established for complete totally
ordered C structures. Fact 2 therefore stands proved.

5. Conclusion

What has been set out in this paper is the outcome of a new kind of logical
research in which the main tool is a computer. The reasons for developing
programs such as MaGIC had nothing to do with exploring the fission-fusion
duality in C, and nor was it driven by any interest in bounds on the numbers
of C models of given sizes. What did motivate the programming project was
the desire for a source of models suitable for showing this or that formula
to be a non-theorem of a chosen logic. Testing a formula for validity in all
the C models with up to about 10 elements does not take very long on a
computer and yields, as Meyer points out, a de facto decision method for
C. The same goes for other logics in the vicinity such as the undecidable
R. If a formula survives all attempts to refute it in some thousands of dif-
ferent C structures, the most likely explanation is that it is a theorem of C.
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Since logics of the sort considered in this paper have no finite characteristic
matrices, there will be some nontheorems which are nonetheless valid in all
small models—indeed in the case of R there are some which are valid in
all finite models—but empirical experience suggests that these are rare.
Hence MaGIC is useful as a guide to provability. It was also realised early
in the project that examination of many small models for a system of logic
can give a logician some sort of “feel” for that system. An important part
of research in any of the formal sciences is getting to know one’s way
around; one must acquire a sense of how the structures with which one deals
tend to behave. For such a purpose, acquaintance with examples is in-
valuable.

It was only later, after efficient model-generating programs had been
produced and had been run a good deal, that interest grew in the numbers
of models being found and in their patterns of distribution. Regularities in
the numbers of totally ordered C models were immediately striking and
were noted as calling for explanation long before any explanatory theorem,
or even conjecture, was available. So were the exponential growth rates of
the numbers of models of most non-classical logics. Thus the hypotheses
leading to theorems like those above were generated from the empirical
data, having been totally unlooked-for at the time of production of the data.

It is quite evident that the researches so far undertaken using programs
such as MaGIC have no more than skimmed the surface of a large subject.
Theorems of significant generality are not proved directly by such programs,
but experience thus far shows that they can be suggested by perusal of the
mechanically produced low-level facts. When computers first became avail-
able for logical research in the 1970s one of our initial reactions was of joy
that hard work had been banished from logic for ever. That thought turned
out to have been premature at best, but at least now we can divide the
labour better, passing off much of the drudgery onto machines and freeing
creative logicians to create,
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