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ARITHMETIC AND TRUTH
IN LUKASIEWICZ’S INFINITELY VALUED LOGIC

Greg RESTALL

Abstract

Peano arithmetic formulated in Lukasiewicz’s infinitely valued logic collap-
ses into classical Peano arithmetic. However, not all additions to the lan-
guage need also be classical. The way is open for the addition of a real truth
predicate satisfying the 7-scheme into the language. However, such an
addition is not pleasing. The resulting theory is w-inconsistent. This paper
consists of the proofs and interpretations of these two results.

1. Introduction

T-sentences and unrestricted self-reference do not mix well. Given the T-
scheme (that —T A7 < A for each sentence A, and a Godel coding

—71) and the means for self-reference (say, that given by a Gddel coding)
it is simple to construct sentences like L satisfying — L < ~ L (liar senten-
ces) and C satisfying - C « (C - D) for any D we like (Curry-paradoxical
sentences). Using moves like reductio (A = ~A — ~A) and contraction
(A—> (4> B) - A— B) it is simple to deduce absurd conclusions from
these sentences. In addition, Lob has shown that given contraction, no
provability predicate satisfying minimal conditions(*) can satisfy
Prv A1 — A [2]. These are significant limitative results in formal arith-
metic.

Reductio and contraction are valid in nearly every logic on the market,
so the standard reactions to these problems has been to either abandon self-
reference and keep truth (by enforcing some kind of type discipline) or to

(") Specifically, we need justthat — Prv TAV iff — A, — Prv TA—=B = (Prv TA —»
PrvTB1), and — Prv TA?' = Prv TPrv TAT 1 | So, Prv contains as its provable exten-
sion all of the provable sentences in arithmetic, and it interacts with implication in the usual
way. Note that these are quite broad conditions, as a truth predicate would do just as well
as a proper provability predicate.
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keep self-reference and abandon the notion of truth. A third approach is
clear. We can keep both self-reference and truth, while rejecting both con-
traction and reductio.(?)

2. Logic Without Contraction or Reductio

It is well known that Lukasiewicz’s infinitely valued logic L is resistent
to paradoxes. Neither contraction nor reductio are valid in L_, and the naive
comprehension scheme is consistent in L_ [6]. L, seems resistant to the
standard paradoxes. However, we will see that L is not a panacea for
paradoxes in arithmetic. Before that, we must introduce L.

The predicate logic L., is a simple extension of classical predicate logic,
given by expanding the set of truth values for evaluating formulae to the real
interval [0,1]. If we take 0 to be the designated value, then conjunction and
disjunction (A and V) on the interval are maximum and minimum respec-
tively. Negation (~) maps x onto 1-x, and the conditional (-) is restricted
subtraction. (A conditional with an antecedent valued x and a consequent
valued y is given the value y — x. This means that if the consequent is ‘as
true as’ the antecedent the conditional is true, and if not, the conditional
falls short of the truth as far as the consequent differs from the antecedent.)
Finally, universal and existential quantification (v and 3) are modelled by
supremum and infimum respectively. Given some first-order language &£,
an L, structure for that language is a domain together with an interpretation
for each predicate in the language (a function from the appropriate cartesian
product of the domain to the interval [0,1]) and for each function symbol
(a function on the domain). Truth values for arbitrary formulae are defined
recursively in the usual manner. A formula is said to hold in an £, structure
just when it receives the value 0 in that structure. Theorems are the for-
mulae that hold in every L, structure.

It is useful to consider another connective o, called ‘fusion.” 4 © B is
defined as ~ (4 - ~ B). Fusion is the residual of the conditional, in that

(%) Of course, it is also possible to either ignore conditionals, so that the problems like
Curry paradoxes and Lb’s theorem do not arise (this approach is taken by those who favour
using a simple three-valued logic, such as Kripke [1] or Maddy [3]) or to accept reductio
while bearing the contradictions that ensue (this approach is taken by those who favour the
use of paraconsistent logic to deal with the paradoxes, such as Priest [4]). Neither of these
analyses are at issue in this paper, interesting though they are.
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(A°oB)= Q) (A= (B~=>0)

is a theorem of L. It is simple to show that fusion is modelled by restricted
addition. That is, if A has value x and B has value y, then A © B has value
min(l, x+y). Therefore, A © A has value twice that of A (or 1, if you hit
the limit), and A © (4 o A) thrice that of A (or 1) and so on. We write A"
for the n-fold fusion of A with itself. This has an interesting corollary:

Lemma 1 If a formula A does not hold in a L, structure (it is not evaluated
as 0) then for some n, A" is false in that structure (it is evaluated as 1).

Proof If A has value x, then A™ has value min(1, mx). Given that x = 0,
an integer n = 1/x will give A" value 1 as desired. =

Theorem 2 Classical logic TV results from L, by adding any of A v ~A,
AAA->B)y=B, A—>(A0°A),and (4= ~A) > ~A.

Proof For each axiom scheme with only one sentence variable A, the scheme
is only true when A is evaluated as either 1 or 0. In the scheme A A (4 -
B) — B, if this is true for all B, then we have A A (4 > ~A) - ~A, and
it is clear that this is true only when A is either 0 or 1. Any evaluation in
which these schemes are true must be classical. =

3. Arithmetic in L,

To examine behaviour of arithmetic in L_, we will use a set of axioms
known to give Peano arithmetic in the context of classical logic, but which
also do not break the “spirit’ of the L, law. The axioms are couched in the
first order language with one binary relation symbol ‘=", one unary constant
0, one unary function symbol ‘’*, and two binary function symbols ‘+ and
“X’. (As usual, we abbreviate ‘ X’ by juxtaposition.)

Identity 0=0,vavy(x =y—=y = x),
VxvVywz(y = z—=>(x = y—=x = 2)),
vavy(x' = y' »x =y),
Successor vxvy(x = y—=x' =y'), vx(Q # x'),
* Addition vx(x + 0 = x), vavy(x + ¥ =(x + y)"),
Multiplication vx(0 = 0), vxvy(xy' =xy + x),
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Induction A(Q), Vx(A(x) = A(x")) — VxA(x).

A L fact is anything true in all L structures in which all axioms hold, and
in which the induction scheme is truth preserving. We write ‘L! | A’ to
indicate that 4 is a L? fact.

Note that induction is only assumed as a rule. This is because assuming
the stronger axiom form 4(Q) A Vx(A(x) = A(x")) = VxA(x) would be out
of place in a logic like L. Cashing out the quantifiers in the axiom in terms
of conjunctions we have

AQ) A (AQ) = AD) A (AD) = AQ) A (AQ2) > AQ) A
.= A0Q) A AQD) A AQ) ...

But in L, claims like A A(A—=>B)—>A A BandA A (4 =B A B->
C) > A A B A C, are not theorems, in general. (If they were, so would
A—>A° A, and L, would collapse into classical logic.) So, it would be out
of place to posit the induction scheme in such a strong form.

The question naturally arises: how does L/ differ from Peano arithmetic,
TV*? The answer is: surprisingly little. Adhering to contraction-free scruples
matters little for Peano arithmetic. We have the following result.

Theorem 3 For every A, LY = A iff TV' | A.

Proving this fact involves showing that excluded middle holds in L struc-
tures. We prove this in degrees. First excluded middle for equations of the
form Q = x, then for all equations, and finally, for all formulae.

Lemma 4L EQ=xVv 0 # x.

ProofClearly L F0=0Vv 0# 0,andL! FvxQ=xV Q # x>
0 =x'" v 0 # x') by virtue of the fact that LY = 0 # x’. Induction then
gives us the result. u

To get the result for arbitrary equations, it is helpful to have a double
induction rule.

Lemma 5 IfL] | AQ.y), L! F A(x,0), and L | A(x,y) = A(x".y’) then
L! | vxwyA(x,y) too.
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Proof Firstly, LY | wyA(x,y) = A(x',0) as LY | A(x’,0). This is the base
case of our first induction. For the induction step, note that we have L% |=
VyA(x,y) = A(x’,y’), strengthening the antecedent of the double induction
step we hypothesised. So, we also have

Lo F (WAR.y) = AKX',y)) = (VyA(x.y) = AX',Y"))

by weakening in the antecedent. This gives L. | wy(vyA(x,y) = A(x',y")
by induction on the free instances of y. Confining the quantifiers we have
L! | vyA(x,y) = vyA(x',y). But we have L! | vyA(0,y) too, so an induc-
tion on x gives LY | vxvyA(x,y) as desired. =

Then it is a simple step to excluded middle for all equations.
Lemma 6L, F x(y =z 0 =x),andhence L, Fy=2zV y # z.

Proof Note that L, F axQ = ze Q0 =x)andL! F ax(y = 0« 0 = x).
These are the two base cases of our double induction. We also have L! |
y =zey =7, so this will give us the inductionstep L, | Ix(y = z &
0 = x) > (' =z’ & 0 = x). Double induction then gives the first result.

For the second, L, | 3x(y = z < 0 = x) shows us that in any structure,
an arbitrary identity is equivalent to one of the form Q0 = x. This second
identity is evaluated as either zero or one in every LZ structure, and hence,

80 is the original identity. This means that excluded middle holds for all
identities. "

There is one last step to excluded middle for all formulae.
Lemma 7L = A VvV ~A for each formula A.

ProofEvery formula is recursively built up from identities by the propositio-
nal connectives and the quantifiers. The identities are interpreted as either
zero or one in every structure. The connectives and quantifiers, when given
classical values, only return classical values. Hence, any formula will be

evaluated as either zero or one, and hence, excluded middle holds of any
formula. u

This final lemma completes the proof of Theorem 3, given the result of
Theorem 2, which tells us that adding exluded middle to L, collapses it into



308 GREG RESTALL

classical logic. This means that in weak logics like L, we keep the full
strength of classical logic for arithmetic. We need not take classical logic
as the best theory of inference, while agreeing that it is correct for reasoning
about numbers. This need not be true for other predicates we may wish to
add to the language. A predicate added to the language is not bound to be
classical. It is required only to obey the more liberal laws of L_. This
makes analysing truth and self-reference in a logic like L, an exciting
prospect. We are not forced to ‘cripple’ the deductive machinery of the
mathematics in order to count the paradoxical inferences as invalid.

This means that even such oddities as Lob’s theorem hold in LZ, in the
sense that, for any provability predicate Prv in the language of arithmetic
if - Prv TA7 — A then — A. This is not as restrictive as it might seem,
because Lukasiewicz’s logic keeps the way open for there to be another
provability predicate Prv" for which Lob’s result fails. For example, any
truth predicate T will do for this purpose. The only restriction is that the
predicate will not be expressible in the language of arithmetic: it must enrich
the language.

4. The Truth about Truth in L,

To add truth into the theory, let’s enrich the language of arithmetic by a
unary predicate ‘T" denoting truth. As a predicate of numbers, we must
employ a Gddel coding to transfer reference to numbers to reference to
formulas. Pick a particular coding, ™7, so that for every formula A,
A7 is a numeral in the language. Then we require that T pick out truth.
One way to do this is to posit Tarski’s scheme

HFTrMA1l e A

Adding this scheme to L{ results in the arithmetic L7 containing truth. The
rest of this paper will consist of the proof that L7 is w-inconsistent, and
the interpretation of this fact.

Before we can present the proof proper, we need a definition of w-incon-
sistency appropriate for £.2. The guiding thought is that theory is w-inconsis-
tent if and only if its closure under the w rule (from A(Q), A(1), AQ2), ...
to derive VxA(x)) is inconsistent. This prompts the following definition.

Definition 1 A theory X is w-inconsistent just when for some A4 and each n,
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X E A(n), but in addition, X | ~ vxA(x).

Clearly, if an arithmetic theory is w-inconsistent, it has no standard models.
As a result, if a theory is w-inconsistent, it is not a satisfactory theory of
arithmetic. The proof that L27 is w-inconsistent is not difficult.

Firstly, we need some self-reference in order to concoct the w-inconsistent
formulae. For this, we need a special form of the diagonalisation lemma that
allows for formulae with free variables to be diagonalised. Recall the diago-
nalisation function, which takes Gddel numbers of formulae and returns the
Godel number of its diagonalisation, given a particular free variable we’ve
picked out for the purpose. Let the variable in our case be x, then the
diagonalisation of A is Ix(x= T4 A A).

Lemma 8 If we have an arithmetic theory that is classical in the arithmetic
Jragment, and which represents the diagonal function diag, then for any
Jormula B(y) with at least the variable y free, there is a formula R (with at
most the variables other than y free in B(y) free in it) where — R o
B( TR ) in that arithmetic.

Proof The proof is standard. Let A(x,y) represent diag in the arithmetic. So,
for any n, k if diag(n) = k then + wy(A(n,y) ©y = k).

Let F be the formula 3y(A(x,y) A B(y)). F is a formula with at most the
variables other than y free in B(y) free in it. Let n= TF and let R be the
expression x(x = n A 3y(A(x,y) A B(y))). Asn = 'F1 , R is the diagona-
lisation of F, and it has the same variables free in it as in F, except for x.
So we must have — R < 3y(A(n,y) A B(y)). Let k = TR ; then diag(n)
= k and we must have — Vy(d(n,y) < y = k) as A represents diag. It
follows that = R « 3y(y = k A B(y)), which gives — R <« B(k) as de-
sired. =

Now we can define our formulae to prove w-inconsistency. Let 4, 4,, 4,
... be defined as follows: ()

Ao = ~VxyRE+LY)A Ty) A4, = A"

n

(®) It was an insight of Ben Robinson that pointed me in the direction of defining a series
of formulas with this general structure. I'm very greatful to him for the idea.
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where R is a recursive predicate defined to represent the Godel codes of A,,
A, A, .... This means that Rxy is true whenever y is the Godel code of
sentence number x in the list above, and false otherwise. Such a predicate
R is expressible in the arithmetic fragment of the language. Consider how
all of the formluae A, are ‘manufactured’ from the previous ones by a very
simple procedure. Given the code of 4, the code of A,,, is found by ap-
plying a simple transformation. This can be packed into a recursive defini-
tion. We don’t yet have the code TR of R, so we’ll leave this as the
argument place of a function. Then we can let A( TR ,0) be the Godel
number of 4,, as a function of whatever code we give R itself. Then, we
can let A( TR ,n+1) be the Godel number of A4,,,, given by a simple
transformation on A( "R ,n). The resulting function is recursive. (We
defined it by recursion in simple arithmetic functions dictating the way
formulae are made up out of subformulae). So, this function % of two free
variables can be represented by some predicate in classical arithmetic. Call
this predicate H. To get the value of TR, we need it to satisfy:

+ Ry < H( TR x,y)
But we have such an R by the diagonalisation lemma that we proved.

Theorem 9 L! is w-inconsistent.

Proof A, is designed to “say” ‘not all of the 4, are true, for i>0" Assuming
this is how 4, is to be interpreted, we could reason like this. If A, were
true, then each A; would be true too by construction. So, 4, must be untrue.
But then, some 4, would be positively false (iterated fusions do this), ma-
king A, true. A contradiction.

This means that something must go wrong with the interpretation of A,,
on pain of inconsistency. The universal quantifier must pick out more than
just the standard numbers. The argument goes like this, formally.

Consider the value I(4,) of A, in some model. If I(4,) # 0 then J(AZ*")
= I(4,,,) = 1 for some # (by iterated fusion). This means that I(T 4, ,,7)
= 1 by the T-scheme, and hence I(3y(R(n+1,y) A Ty)) = 1 by the defini-
tion of R. Hence, I(4,) = 0, contradicting what we assumed.

So, we must have I(A,) = 0, and hence I(43*") = I(4,,,) = 0 for each
n. This means that I@y(R(n}+1, y) A Ty)) = 0 for each n. In other words,
LI" | 3y(R(n+1,y) A Ty) for each n, but LA7 | ~vxay(R(x+1,y) A Ty),
giving w-inconsistency. u
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5. Interpretation

If we wish to continue the search for a way to keep both truth and self-
reference, we must weaken the catalogue of logical principles further than
simply L.,. It is clear from the proof that the fact that for any untruth, a
finite number of fusions is sufficient to generate falsehood is to blame. This
is reflected in the validity of Hay’s rule (from ~ (4") - A for each n to
derive A) in L. The question arises: are there logics in the vicinity of L,
which do not contain this rule? And there are. The next weakest logic on
the landscape is the substructural logic CK.(*) It has a smoother proof
theory than L, and it rejects all analogues of Hay’s rule. If arithmetic,
truth and self-reference are to live together, logics like CK are the place to
make the attempt. (%)
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