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ON THE EXPRESSIBILITY OF PROPOSITIONS

Pavlos PEPPAS, Norman Foo and Mary-Anne WILLIAMS

Abstract

In possible world semantics propositions are defined as sets of possible
worlds. A proposition P is said to be expressible in a formal language L iff
there exists a set of formulas I" of L such that the possible worlds satisfying
T are precisely those contained in P. It is well known that not every propo-
sition is expressible in a given language L; in other words there exists a gap
of expressibility between propositions and formulas. As shown herein, this
gap can cause problems in modelling belief dynamics. Motivated by these
problems in this article we study the expressibility of propositions. More
precisely we investigate conditions under which the expressibility gap rea-
ches its lower bound, and we show that even under these conditions there
exist infinitely many propositions that are not expressible in a given lan-
guage L, unless L contains only finitely many logical equivalence classes.

Keywords: Formal Logic, Belief Change, Knowledge Representation.

1. Introduction

In recent years the characterization of propositions that has been most
popular among philosophers is the one adopted in possible worlds semantics,
namely to identify propositions with sets of possible worlds. The basic idea
is to identify a proposition P with the set of all possible worlds where P is
true. For example, the proposition “Alexander the Great was Greek” is
defined as the set of all possible worlds at which Alexander the Great was
indeed Greek. As noted by Lewis[6], “... The idea goes back at least to
Clarence 1. Lewis[5], in which the set of worlds is called the ‘comprehe-
nsion’ of the proposition; and to Rudolf Carnap[1], in which propositions
are taken as sets of state descriptions, and state descriptions are said to
represent Leibniz’ possible worlds or Wittgenstein’s possible states of af-
fairs”.

Sets of possible worlds can also be assigned to formulas of a given formal
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language L. More precisely, to any formula ¢ €L we assign the set of all
possible worlds where ¢ is true. We denote this set by [¢]. Being a set of
possible worlds, [¢] is a proposition.(') We call [¢] the proposition ex-
pressed by the formula ¢. Generalizing these definitions, we denote the set
of all possible worlds satisfying a set of formulas T', by [T'], and we call this
set the proposition expressed by I'. We shall say that a proposition P is
expressible in a formal language L, iff there exists a subset T" of L, such that
P is expressed by I'.(})

It is well known that not every proposition is expressible in a given lan-
guage L; in other words, there exists a gap of expressibility between propo-
sitions and (sets of) formulas. In this article we investigate conditions under
which this expressibility gap reaches its “lower bound”, and we provide a
characterization of the languages for which the gap is eliminated at its lower
end. The study was prompted by the anomalies that the expressibility gap
causes in modelling belief dynamics, anomalies which however have been
largely neglected by workers in the areas. To motivate the forthcoming
discussion, we shall briefly discuss these problems before presenting our
results.

2. Problems in Modelling Belief Dynamics

In this section the concept at focus is the process by which a rational agent,
call him Orpheus, changes his beliefs about the current state of a dynamic
world, in response to the occurrence of events. The familiar blocks world
[2], is a typical example of a dynamic world, and events such as “stack
block A on block B” are the kind of events we consider herein. Formalizing
the notion of a dynamic world in its full generality is beyond the scope of
this article (refer to [8] for such a formalization). For our purposes it suf-
fices to work within the simple framework described below.

We consider a dynamic world which at any given time point is at a par-
ticular world state. As time progresses the world changes states by the
occurrence of events. We denote by W and E, respectively, the set of all

() We assume that, not only every proposition is defined as a set of possible worlds, but
also that every set of possible worlds defines a proposition.

(%) Notice that according to our definition of expressibility, if a proposition P is not

expressible in a language L, then there is no finite or even infinite set of formulas of L that
expresses P.
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world states, and the set of all events, of the dynamic world under con-
sideration. For an event e € E and a world state wE W, we denote by R(e,w)
the world state resulting from the occurrence of e at w. We assume that the
beliefs of our agent Orpheus about the world, are represented as formulas
of an object language L. For simplicity let us assume that L is a proposi-
tional language and moreover that Orpheus is deductively omniscient (he
knows all the logical consequences of his beliefs), and therefore his belief
state at any time point is represented by a theory of L.(%) Since the world
states in W are the entities where the truth value of the formulas of L is
evaluated, we shall temporarily (only for this section), identify world states
with possible worlds. Consequently sets of world states will often be treated
as propositions, and for any I' € L, [I'] now denotes the set of all worlds
states where T' is true.

Having set up the stage, let us now consider the process by which Orpheus
changes his beliefs about the current world state, due to the occurrence of
events. More precisely, suppose that Orpheus’ beliefs about the current
world state is represented by the theory 7, and at this point the event e
occurs causing the world to change states. Responding to the occurrence of
e, Orpheus needs to update his beliefs, changing from T'to a new belief state
which we denote by €(e,7). We are interested in the reasoning process that
Orpheus uses to arrive at the new belief state G(e, 7).

Firstly we observe that, given that Orpheus’ current belief state is T, any
world state satisfying T is equally likely, as far as Orpheus is concerned,
to be the current world state. More precisely, suppose that [7] = {wi, w,,
Wi, ...}. Then for all that Orpheus knows the current world state could be
any of w;, w,, w, .... This being the case, Orpheus presumably reasons as
follows about the state resulting from the occurrence of e (see [10], [4], [8],
[9]): “For all I know, the current world state could be any of w,, w,, wi, ....
If the current state is w, then the resulting state is R(e,w,), if the current
state is w, then the resulting state is R(e,w,), if the current state is w, then
the resulting state is R(e,ws), .... However, as I am uncertain about the
current world state, all I can say about the resulting state is that it will be
one of the states R(e,w,), R(e,w,), R(e,wy), ...”. Let us denote the set
{m(evwl)s m(eiWZ)! ER(E,W::,), "'} b)’ fR(e, []])’ le iR(e, {]]) = {m(e’wi):
w;E[T]}. According to the above line of reasoning, R(e,[7]) is the set of
all world states compatible with Orpheus’ beliefs about the state resulting

() A theory T of L is any subset of L closed under logical entailment.
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from the occurrence of e. Therefore the new belief state (e, 7) should be
such that the world states compatible with €(e,7) are precisely the elements
of R(e,[7]). This gives us the following implicit definition of E(e,7):

(7] R(e, (D).
w, ® e Rie,w,
W, e > e m(e,wz)
W; e > ® m(e,w3)
I l e, D=
T R(e,T)

Figure 1: Updating Belief States
(@R) [Cle,D] = R(e,[T]).

Notice that the new belief state G(e,T) is not defined directly from the old
belief state 7, but instead the transition from T to §(e,T) occurs in three
steps: First one moves from T'to [7], then from [7] to R(e,[7]), and finally
€(e,T) is defined from R(e,[7]) in terms of the condition (PR) (Figure 1)
This last step however from R(e,[7]) to G(e,T) is problematic. We have no
guarantee that there exists a theory €(e,7) of L such that [G(e,7)] =
R(e,[T1). Indeed, taking world states to be possible worlds, condition (P%)
defines G(e,7) as the theory of L that expresses the proposition %(e,[7]).
However, due to the gap of expressibility that occurs between propositions
and formulas, it is not safe to assume that such a theory always exists.
This problem with belief dynamics has not received the appropriate atten-
tion by workers in the area. This is mainly because the definition commonly
adopted for §(e,), is slightly different from the one given above, yet
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different enough to avoid the problem caused by the expressibility gap.
More precisely, according to this second definition, the new belief state
&(e,T) is no longer defined as the theory of L that expresses R(e,[7]), but
rather as the theory of L consisting of all formulas that are true at every
world state in R(e,[7]) [3], [10], [4]. Let us denote by Th(w) the set of all
formulas that are true at a world state w, i.e. Th(w) = {¢EL: w [ ¢}.
Then the second definition of €(e,7) is given by the following condition:

R 6eD =N epem ThW).

We shall refer to the first and second definition of €(e,7), as the extensional
and intensional definition of belief dynamics respectively. It is not hard to
verify that when R(e,[7]) is expressible in L, the two definitions give rise
to precisely the same theory €(e,7). Yet, when R(e,[7]) is not expressible
in L, the two definitions clearly differ: The former collapses under the
inexpressibility of R(e,[7]), while the later gives us the theory
H,Em‘[mTh(w). This theory however represents only part of what Orpheus
can infer about the state resulting from the occurrence of e (namely the part
that can be expressed by formulas of L). Indeed, consider the proposition
P = [N.enemn Th(W)] expressed by the theory we derive from the inten-
sional definition of belief dynamics. Clearly, R%(e,[7]) is a subset of P, and
given that R(e,[T]) is not expressible in L, it follows that R(e,[T]) is a
proper subset of P, which in turn makes P a proposition strictly weaker
from R(e,[T]). Therefore, while Orpheus is capable, based on the reasoning
process described above, to confine the set of candidate resulting states to
R(e,[T]), the belief state r\mm Th(w) ascribed to Orpheus+by the inten-
sional definition of belief dynamics, allows further world states as candidates
(namely all states in P - R(e,[71)), thus undermining Orpheus’ true capabil-
ities. In other words, there is some loss of information when Orpheus’
conclusions about the state resulting from e, are expressed as a theory of
L according to the intensional definition of belief dynamics. This loss of -
information is perhaps best illustrated by the scenario described below.
Continuing with our example, let us assume that following e, another
event e’ occurs. Based on the reasoning process described above we con-
clude that Orpheus’ inferences about the state resulting from e’ are described
by the proposition R(e’,R(e,[T])) (Figure 2). Let us assume that both the
proposition R(e’,R(e,[71)) and R(e’,[E(e,T)]) are expressible in L, and let
T’ be the theory of L that expresses the former proposition, i.e. [T"'] =
R(e’,R(e,[T])). Let us also assume that e’ is such that for any two world
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states w, w', R(e’,w) # R(e',w') whenever w # w'. Then given that
$(e,[T]) is not expressible in L, it is not hard to verify that 7' is a proper
superset of the theory €(e’, €(€,7)) = | | cqe rseny Th(W), at which we
arrive following the intensional definition of belief dynamics. All the for-
mulas in 7" - §(e’, €(e,T)) represent facts about the state resulting from
e', that Orpheus is capable of deducing, which however have been lost in
the process of representing propositions as theories of L.

Summarizing the discussion of this section we make the following obser-
vations. When belief states are represented by theories of a formal language
L, the gap of expressibility that exists between propositions and formulas,
makes problematic the modelling of belief dynamics. In particular, the
extensional definition of belief dynamics collapses whenever it faces an
inexpressible proposition, while the intensional definition (which is the one
most commonly used) is only an approximation to this process, capturing
progressively less and less about the state of the world, as more and more
inferences vanish into the expressibility gap.

[C(e, )] R, [Ce,D])
®eD | | R, Relm)
(0 Ree, D) a0 =l L
. . e . §¢ L
O O

T Cle, I T’
Figure 2: Loss of Information due to Lack of Expressibility

These anomalies in belief dynamics motivated a study on the expressibility
of propositions, the results of which are reported in this article. Before

presenting our results however, we need to fix some notation and ter-
minology.
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3. Preliminaries

We define a standard logic to 'be an ordered pair (L, ), where L is a
nonempty countable formal language closed under the propositional connec-

tives,(*) and + is a consequence relation defined over L, that satisfies the
following conditions:

(i) If ¢ is a truth-functional tautology, then + ¢.

(i) If ~ ¢y and ~ ¢, then + y (modus ponens).

(iii) + is consistent, that is, there exists a ¢ €L such that H-¢.

(iv) + satisfies the Deduction Theorem, that is, {¢,, s, ..., @,} — V iff
F (@ A@A . Ag) > Y.

(v) + is compact.

Let (L, ) be a standard logic, and let T" be a subset of L. We denote by
Cn(T") the closure of T" under +, i.e. Cn(T") = {¢ EL: T' + ¢}. We shall
say that ' is consistent iff Cn(T") # L. Often we shall also refer to a for-
mula ¢ €L as being consistent, meaning that the set {¢} is consistent. A
theory T of L is any subset of L closed under +, i.e. T = Cn(7). A theory
K of L is complete iff for every formulae € L, ¢ € Kor —¢ € K. We
shall denote the set of all consistent complete theories of L by K, . For a set
of formulas I of L, we shall say that T is an extension of T" iff T is a theory
of L that includes I', i.e. I' €& T = Cn(T). If for an extension T of ', Cn(T")
is a proper subset of T, then we shall say that T is a proper extension of T".
If an extension K of I" is a consistent complete theory of L, we shall say
that K is a consistent complete extension of T'. Notice that from the as-
sumptions we made for standard logics, it follows (from Zorn’s Lemma)
that every consistent set of formulas I' S L has a consistent complete
extension. This is a property that we shall use quite often in our proofs.

() In other words, if ¢, ¥ € L then =g, oV {, ¢ AY, o>y, gy are also formulas of
L.
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4. Assessing the Expressibility Gap

With the definitions of the previous section we are now ready to proceed
with our study on the expressibility of propositions. The results presented
herein apply to the entire range of standard logics.

Given an arbitrary standard logic (L, ), the general question we shall
be addressing is whether there exist propositions that are not expressible in
L, and if so, “how many” are they. However before we can answer this
question we need to identify the “domain” of propositions; in other words
we need to specify the set W of all possible worlds from which the proposi-
tions in question are formed.

It does not much matter what possible worlds are, as long as they either
verify or falsify any formula of L, and there are enough of them so that the
relation between — and the set W of all possible worlds, satisfies certain
desirable logical properties (e.g. soundness and completeness of — with
respect to W). More precisely, we will assume that the set W of all possible
worlds associated with a standard logic (L, ), satisfies the following two
conditions:

(i) For every formula ¢ €L, and any possible world wE W, either w
EeoorwfE —e.

(i)  For any set of formulas 'S L and any formula ¢ €L, T + ¢ iff for
Al wWEW, w | T entails w = ¢.

We shall call a set of possible worlds W that satisfies the above two con-
ditions, a universe for the logic (L, ). Our results on the expressibility
of propositions in L will be stated relative to some universe for (L, ).
Notice that the conditions (i) and (ii) do not exclude the case of two
distinct possible worlds verifying precisely the same set of formulas. Conse-
quently it is not hard to see that for every standard logic (L, ), there exist
universes for (L, ), with arbitrarily large cardinality. Moreover, the larger
the universe, the more the propositions that can be formed from it, the
smaller the proportion of the propositions that are expressible in L. Conse-
quently, for any given standard logic (L, +), the expressibility gap can
became arbitrarily large as it grows with the size of the chosen universe.
Since there is not much to say about how large the expressibility gap can
be, we shall instead focus on its “lower boundary”, analysing how small
this gap can get. Clearly, for any standard logic (L, ), the expressibility
gap reaches its lower end when the universe W out of which propositions
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are formed, is minimal, in the sense that no proper subset of it is a universe
for (L, ). It is not hard to verify that a universe W for (L, ) is minimal,
iff for every consistent complete theory K of L, there exists precisely one
member w of W such that K = Th(w).(°) From this it follows that for
each minimal universe W, Th is a one-to-one correspondence between W
and the set K; of consistent complete theories of L. This again implies that
all minimal universes of (L, +) are isomorphic with respect to |=. There-
fore the expressibility gap is the same (subject to isomorphism) across all
minimal universes for (L, ). This facilitates our study on the lower boun-
dary of the expressibility gap since for any given standard logic (L, ), we
only need to analyse the expressibility of propositions at one representative
minimal universe W. Given the one-to-one correspondence between any
minimal universe and K, for the sake of simplicity we shall identify the
representative minimal universe W with X, identifying each possible world
w€& Wwith the theory Th(w) that it satisfies. Under this convention a propo-
sition is now taken to be a set of consistent complete theories of L, while
for a set of formulas I'SL, [I'] denotes the set of all consistent complete
theories of L that include I'. This convention will allow us to detach our
study from semantical considerations and evaluate the expressibility of
propositions in purely syntactic terms.

It turns out that the lower boundary of the expressibility gap varies from
standard logic to standard logic, and for some logics the gap is in fact
eliminated. We shall call such logics intensionally strong. More precisely,
we shall say that a standard logic (L, ) is intensionally strong iff every
proposition P in 2¥ (the powerset of K,) is expressible in L.(°) If a stan-
dard logic is not intensionally strong, we shall say that the logic is inten-
sionally weak. The major objective of this article is twofold. Firstly, to
provide a characterization of the class of intensionally weak logics. Second-
ly, for every intensionally weak logic, to evaluate the “size” of the expres-
sibility gap at its lower boundary.

As a first step to this end consider Lemma 4.1 presented below. The
notion of a consistent proposition that appears in this lemma is defined quite
simply as a nonempty proposition.

(® Recall that for a possible world w, Th(w) denotes the set of all formulas in L that are
true at w, i.e. Th(w) = {€L: w | ¢}.

(® Notice that in the present context, a proposition P € 2% is expressible in L iff there
exists a set I' of formulas of L, such that the consistent complete extensions of I' are preci-
sely the elements of P.
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Lemma 4.1 Let (L, + ) be a standard logic, and let PE 2™ be a consistent
proposition. Then P is expressible in L iff P = [N P].()

The proof of Lemma 4.1 is straightforward and we shall not include it here.
Lemma 4.1 simply says that given a proposition P in 2, if any set of
formulas of L can express P, then NP is such a set. Given Lemma 4.1 it
is not hard to verify that a standard logic (L, +) is intensionally weak iff
there exists a theory T of L such that for two distinct propositions P and P’
in2"L, NP = NP’ = T. We call such a theory ambiguous. More precisely,
let (L, ) be a standard logic, and let T be a theory of L. We define [ 7]
to be the set of all propositions P in 2 such that NP = T, i.e. [T] =
{P € 2%: N P=T}.(° We shall say that a theory of L is ambiguous
iff [ 7] contains more than one element. If T is not ambiguous, we shall
say that T is specific. Then, as mentioned above, from Lemma 4.1 we
derive the following corollary.

Corollary 4.1 Let (L, +) be a standard logic. Then (L, \ ) is intensionally
weak iff there exists a theory of L that is ambiguous.

Having reduced intensional weakness to the existence of ambiguous theories,
we shall continue our expedition seeking a characterization of ambiguous
theories. The following two lemmas will be very useful in our journey.

Lemma 4.2 Let (L, v ) be a standard logic and let T be a consistent theory
of L. Then [T} € [T] and for every P € [T], P € [T}, i.e. [T] is the
maximum element in [ T with respect to set inclusion.

Proof.

PartI: [T] € [T].
Clearly T S N [7]. We show that the converse is also true. Let ¢ bea

formula of L such that ¢ & T. Then —¢ is consistent with 7 and therefore
there exists a consistent complete theory K of L such that T U {—¢} S K.

(") Notice that since P is a nonempty set of consistent complete theories of L, NPis a
theory of L.

(®) Notice the difference between [T] and [T]: The former is a proposition (a set of
consistent complete theories), while the later is a collection of propositions (a collection of
sets of consistent complete theories). In fact it is not hard to verify that [T] € [T].
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Then K € [T] and ¢ & K, from which we derive that ¢ &€ N [7].

Part II: Forevery P € [T], P < [T].

Let P be any element of [ T]. Then N P = T and therefore every element
of P is a consistent complete extension-of 7. On the other hand [7] is by
definition the set of all consistent complete extensions of T and therefore
Pc (7. - L

Lemma 4.3 Let (L, +) be a standard logic, T a consistent theory of L, and

P a subset of [T]. Then P € [T iff for every ¢ € L such that ¢ & T,
there exists an element K of P containing — .

Proof.

Part I' If P € [ T] then for every ¢ € L such that ¢ & T, there exists
an element K of P containing — .

Assume that P € [T]. Since T'is consistent, P # & . Moreover let ¢ €
L be such that ¢ € T. Then ¢ € N P and therefore there exists an element
K of P not containing ¢. Since all the elements of P are consistent complete
theories it follows that —¢ € K.

Part II: If for every ¢ € L such that ¢ & T, there exists an element K of
P containing —¢, then P € [T].

Assume that for every ¢ € L such that ¢ & T, there exists an element K
of P containing —¢. Since T is consistent, there exists a ¢ €L such that ¢
& T. Therefore by the above assumption there exists an element K of P that
contains —¢. Consequently P # &. Moreover, since P S [T], every
element of P includes 7, and therefore T € N P. We show that the con-
verse is also true. Let ¢ be a formula of L such that ¢ & T. Then there
exists a K € P such that ¢ € K and since the elements of P are consis-

tent complete theories, ¢ & K and consequently ¢ € N P. This proves that
T = N P and therefore P € [T]. L

Based on the above two lemmas, we can now prove the following result that
will bring us very close to a characterization of ambiguous theories. How-
ever before we present this result we need one more definition. Let (L, )
be a standard logic and let 7, T’ be two theories of L. We shall say that
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T' is a finite extension of T iff there exists a formula ¢ € L such that T’
= Cn(TU{e}).

Lemma 4.4 Let (L, ) be a standard logic, T a consistent theory of L, and
P an element of [ T). Then P is minimal in [ T] with respect to set inclu-
sion iff every element of P is a finite extension of T.

Proof.

Part I: If P is minimal in [T] with respect to set inclusion, then every
element of P is a finite extension of T.

Assume that P is minimal in [ 7] with respect to set inclusion, and let K*
be an arbitrary element of P. If K* is the only element of P then T = K’
and clearly K* is a finite extension of 7. Assume therefore that (P - {K'DH
# Q. Since P is minimal in [ T], (P- {K*}) € [T]. Therefore by Lem-
ma 4.3, there exists a ¢ € L such that ¢ € 7, and for every K € (P -
{K"}), "¢ & K. On the other hand, since P € [ T], again by Lemma 4.3,
there is a member of P containing —¢, and since none of the theories in
(P - {K*}) contain —¢, the member of P containing —¢ is bound to be K*,
Therefore K* contains —¢ and moreover K* is the only member of P con-
taining —¢. The next step is to show that K* = Cn(TU{—¢}). Clearly
Cn(TU{~¢}) S K', so all we need to prove is that K* S Cn(TU {—¢}).
Assume on the contrary that for some y € K*, y & Cn(TU { —1¢}). Then
clearly (¢ = ) & T. From this and Lemma 4.3 we derive that there
exists a member K of P containing —(—¢ — ) and consequently, -¢ €
K and ~y € K. This however leads us to a contradiction. Indeed, since
¥ € K" and K" is consistent, 7y & K* and therefore K* # K. On the other
hand however —¢ € K, contradicting the fact that K* is the only member
of P containing —¢. This proves that K* = Cn(TU {—¢}). Therefore K*
is a finite extension of 7, and since K* was chosen arbitrarily, it follows that
every element of P is a finite extension of T.

Part II: If every element of P is a finite extension of T, then P is minimal
in [ T] with respect to set inclusion.

Assume that every element of P is a finite extension of 7. We prove that
P is minimal in [ T] with respect to set inclusion by showing that every
proper subset of P is not in [T]. Let P’ be an arbitrary proper subset of
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P. Then there exists a K* € P such that K* € P’. Since K € P, K" is a
finite extension of T and therefore there exists a ¢ € L such that X* =
Cn(TU {¢}). We claim that for every K € P’, ¢ &€ K. Assume on the
contrary that for some K' € P', ¢ € K'. Since XK' € PP S Pand N P
= T, it follows that T S K'. Therefore, Cn(T U {¢}) S K’ and conse-
quently K* S K'. Given that K* and K’ are consistent complete theories,
from K* € K’ we derive that K* = K', which however contradicts the initial
assumption that K* & P’. This proves that for every K € P’, ¢ & K. On
the other hand, since K* = Cn(T U {¢}) and K* is consistent, it follows that
—1¢ & T, and therefore Lemma 4.3 implies that P’ & [T]. [

From Lemma 4.4 we can now derive a characterization of ambiguous
theories. More precisely, let (L, ) be a standard logic and let T be a
theory of L. We shall say that T is almost complete iff every consistent
complete extension of T is a finite extension of 7. Lemma 4.5 below as-
sociates the notion of almost completeness with that of ambiguity.

Lemma 4.5 Let (L, v ) be a standard logic and let T be a consistent theory
of L. Then T is specific (not ambiguous) iff T is almost complete.

Proof.
Part I: If T is specific then T is almost complete.

Assume that T is specific. By Lemma 4.2, [7] € [ T] and therefore since
T is specific, [7] is the only element of [ 7] and consequently [7] is mini-
mal in [ 7] . Then by Lemma 4.4 every element of [7] (which by definition

is the set of all consistent complete extensions of 7) is a finite extension of
T.

Part II: If T is almost complete then T is specific.

Assume that T is almost complete. Then every element of [7] is a finite
extension of T and since by Lemma 4.2 [T] € [T], it follows by Lemma
4.4 that [7] is minimal in [ 7] with respect to set inclusion. Then given that
any element of [ T] is a subset of [7] (Lemma 4.2), it follows that [7] is
the only element of [ 7] and consequently T is specific. -

Based on Lemma 4.5 and Corollary 4.1 we derive the following result that
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brings us very close to a characterization of intensional weakness.

Lemma 4.6 Let (L, ) be a standard logic. Then (L, + ) is intensionally
weak iff there exists a consistent complete theory of L that is not finitely
axiomatizable. ()

Proof.

PartI: If (L, v ) is intensionally weak then there exists a consistent complete
theory of L that is not finitely axiomatizable.

Assume that (L, +) is intensionally weak. Then by Corollary 4.1 there
exists an ambiguous theory 7 of L. Since T is ambiguous, by Lemma 4.5,
T is not almost complete and therefore there exists a consistent complete
theory K that includes 7, such that X is not a finite extension of T, ie K
# Cn(TU {¢}), for every ¢ EL. From this it follows that K is a consistent
complete theory of L that is not finitely axiomatizable. Indeed, assume on
the contrary that for a finite set of formulas T', K = Cn(T"), and let ¥ be the
conjunction of all the formulas in T'. Then, given that K is a consistent
complete extension of 7, we have that K = Cn({y}) = Cn(TU {{/}), which
of course contradicts the fact that X is not a finite extension of 7.

Part II: If there exists a consistent complete theory of L that is not finitely
axiomatizable then (L, ) is intensionally weat.

Assume that there exists a consistent complete theory X of L that is not
finitely axiomatizable, and let 7* be the theory of L that we derive from the
closure under + of the empty set, i.e. 7¥ = {p €EL: + ¢}. Clearly, X is
a consistent complete extension of 7¥, and since X is not finitely axiomatiz-
able, from the definition of 7* it follows that K is not a finite extension of
T'. Therefore T* is not almost complete, and consequently by Lemma 4.5,

T' is ambiguous. Then by Corollary 4.1 we derive that (L, +) is inten-
sionally weak. .

We now need to take only one final step before we provide our charac-

(®) A theory T of L is finitely axiomatizable iff there exists a finite set of formulas T'
L such that T = Cn(I).
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terization of intensional weakness. At this last step we shall relate the exis-
tence in a standard logic (L, ) of a non finitely axiomatizable consistent
complete theory, with the number of logical equivalence classes into which
the consequence relation - partitions L. More precisely, let (L, ) be a
standard logic. Define = to be the following binary relation in L: For every
@, ¥V €EL, ¢ = yiff = ¢ e . It is not hard to verify that = is an equi-
valence relation on L, and consequently it partitions L into equivalence
classes, which we shall call the logical equivalence classes of (L, + ).

Lemma 4.7 Let (L, +) be a standard logic. Then (L, \ ) has infinitely many
logical equivalence classes iff there exists a consistent complete theory of
L that is not finitely axiomatizable.

Proof. Proving that the existence of a non finitely axiomatizable consistent
complete theory entails the existence of infinitely many logical equivalent
classes is straightforward. We shall therefore focus on the converse, namely
on proving that the existence of infinitely many logical equivalence classes
entails the existence of a non finitely axiomatizable consistent complete
theory.

Assume on the contrary that L has infinitely many logical equivalence
classes and yet every consistent complete theory of L is finitely axiomatiz-
able. Based on these assumptions we shall make a number of observations
from which we shall eventually derive a contradiction.

Observation 4.1 The set K, of all consistent complete theories of L is in-
finite.

Proof. Assume on the contrary that K, is finite. It is not hard to see that for
any two theories T, T of L, if T # T then [T] # [T]. Consequently, the
number of different theories of L is no greater that the number of different
subsets of K. Since K| is finite, the power set of K, is also finite and
consequently, L has only finitely many distinct theories. This however
contradicts our initial assumption of L having infinitely many logical e-
quivalence classes since to every logical equivalence class there corresponds

a distinct theory (simply take the closure under + of a representative of the
class). a

We can say more than simply that K, is infinite. Since every consistent
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complete theory of L is finitely axiomatizable, for every K € K, there is
a § € L such that K = Cn({£}), and given that L has only countably many
formulas, it follows that K| is countable. Let K, K,, K,, ... be an enumera-
tion of the consistent complete theories of L, i.e. K, = {K,, K,, K, e}
For every i € n (where 8 = {0, 1, 2, ...} is the set of natural numbers),
we define ; to be a formula in L such that X; = Cn({¢}):

(1) For every i € &, K, = Cn({£)}).
We define Z to be the set of all £, fori € »,i.e. E = {§,:i € 8}

Letij € n be such that i  j. Then K; # K; and therefore by (1), &, W
£, and since K; is complete it follows that —¢; € K. Consequently the
following is true:

(2) For every i, j € &, if i # j then ¢, —E.

For a set of formulas T' of L we define ¥(T') to be the set (') = i9¢
(&, € Eand K; €& [T]}.

Observation 4.2 For every consistent formula ¢ € L, Cn({e}) =
Cn(R({e}))-

Proof. Let ¢ be an arbitrary consistent formula of L. We first show that [e]
= [S({¢})]. Let K,, be an arbitrary member of [¢]. Then by definition, -,
& ({#}) and therefore by (2), £, + ¢ for every ¢ € 3({e}), from
which we derive that K, € [&({¢})]. Conversely, let K, be an arbitrary
member of [3({¢})]. Then by (1), =¢,, & I({¢}) and consequently K,, €
[¢]. This proves that [¢] = [({e})] and therefore Cn(S({¢}) =
Cn({e}). o

Observation 4.3 For every consistent formula ¢ € L, S({¢}) is finite.

Proof. Let ¢ be an arbitrary consistent formula of L. By Observation 4.2,
Cn(({¢})) = Cn({¢}) and therefore by compactness, there exists a finite
number of formulas —1¢,, 2, ..., 2§, in S({¢}) such that =¢, A ¢,
A ... A T+ . We show that ~¢,, ¢, ..., —§, are the only for-
mulas in F({¢}). Assume on the contrary that for some —E € S({e)), ¢
¢ {—¢&, D, ..., D). Since ¢ € ¢({e}), by Observation 4.2,
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—¢; € Cn({e}) and consequently, &, A 2§, A ... A 7§, +— ¢, Then
by the Deduction Theorem we derive that ¢, - £, V £, V ... V £, which
however in combination with (2) and the fact that §£, & {¢,, &,, ... , £},
leads us to a contradiction. This proves that ¥({¢}) = {~¢,, ¢, ...,
—¢,} and consequently ({¢}) is finite. o

Observation 4.4 Let T be a consistent theory of L. Then T is finitely
axiomatizable iff X(T) is finite.

Proof. Assume that T is finitely axiomatizable, and let I" be a finite set of
formulas such that Cn(I') = T. Define ¢ to be the conjunction of all the
formulas in T'. Clearly T = Cn({¢}) from which we derive that [T] = [¢],
which again implies that X(7) = ({¢}). Then from Observation 4.3 it
follows that X(7) is finite. For the converse notice that, given Observation
4.2, it follows that, T = Cn{U, < ; Cn({e})) = CnlU, ¢ ; Cn(@({e})) =

Cn(U., er ¥({e}) = Cn(X(D). Consequently, if X(7) is finite then T is
finitely axiomatizable. o

Define Ev and Od to be the sets Od = {—¢: ¢, € E and i is odd } and Ev
={"&: & € Eandiis even}, i.e. Od = {—¢,, "¢, ks, ... } and Ev
= {~¢&,, &, &, ... }. By the definition of Od and Ev, it is not hard to
verify the following:

Observation 4.5 Let K € K| be a consistent complete theory of L. Then K
is an extension of Cn(Od) iff K is not an extension of Cn(Ev).

We now need only one final observation to derive a contradiction:

Observation 4.6 Let T and T' be two theories of L such that for any consis-
tent complete theory KE K, , K is an extension of T iff K is not an extension
of T'. Then both T and T’ are finitely axiomatizable.

Proof. Assume on the contrary that one of the two theories, say 7, is not
finitely axiomatizable. From this assumption we shall derive that every finite
subset of TUT ' is consistent. Let A be an arbitrary finite subset of TU T’
and let T', T be the finite subsets of Tand T ' respectively, whose union
makesup A, i.e.I'=ANTandI'" = ANT . Since T'is not finitely axiom-
atizable there exists a formula ¢ € T such that I' H¢. Consequently the set
T'U{—¢} has a consistent complete extension, call it K. Clearly K is not
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an extension of 7, and therefore K is an extension of T’. Then K is a
consistent complete extension of 'UT = A. Hence A is consistent. Since
A was chosen arbitrarily, it follows that every finite subset of TUT is
consistent and therefore by compactness, TUT ' is consistent. This again
implies that there exists a consistent complete theory K’ of L, that is an
extension of both T and T ', which of course leads us to a contradictiond

Combining the above observations, we can now derive a contradiction.
More precisely, by Observation 4.5 and Observation 4.6, both Cn(Od) and
Cn(Ev) are finitely axiomatizable. On the other hand however, both
(Cn(Od)) and X(Cn(Ev)) are clearly infinite sets and therefore, from
Observation 4.4 we derive a contradiction. This completes the proof of
Lemma 4.7

Lemma 4.7 has another, much shorter proof, which however relies on
results from Boolean algebras.('®) We sketch this proof below.

Consider the Lindenbaum algebra of the standard logic (L, + ). Given the
conditions (i)-(v) in the definition of a standard logic, one can show that the
Lindenbaum algebra of (L, +) is a Boolean algebra. The elements of this
algebra are the logical equivalence classes of (L, +), and moreover the
principle ultrafilters of the algebra correspond precisely to the finitely
axiomatizable consistent complete theories of L. Then Lemma 4.7 follows
directly from a well known result in Boolean algebras [7], according to
which a Boolean algebra has a non-principle ultrafilter iff it is infinite. ®

From Lemma 4.6 and Lemma 4.7 we directly derive the following theorem
that constitutes the central result of this article.

Theorem 4.1 Let (L, \) be a standard logic. Then (L, v} is intensionally
weak iff it has infinitely many logical equivalence classes.

From Theorem 4.1 it follows that there are not many standard logics for
which the expressibility gap is eliminated at its lower boundary. In fact,
given Theorem 4.1 it is not hard to verify that the only intensionally strong
standard logics are those that collapse to a propositional calculus with fini-
tely many propositional variables. As another indication of the wide range
of intensionally weak logics, consider the following result.

(') This second proof was suggested by the anonymous referees.
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Theorem 4.2 Every first order logic with equality is intensionally weak.

Proof. Let (L, ) be an arbitrary first order logic with equality and let x,,
Xy, X3, ... be the variables in L (every first order language has a countablely
infinite set of variables). Define y, to be the formula of L stating that “there
are at most n distinct elements”. Formally, for every natural number n >
1, we define y_ to be

Ix, VX, (X, = x;) forn =1
I I XX, (K =X VX, =XV .. VX,, =x)forn =2

The only symbols appearing in the formula v, are the variables x,, x,, ...,
Xa.+1, the left and right parentheses, the identity relation and the logical
operators, and therefore for every natural number n = 1, y, is a formula
of L. Clearly, for any two natural numbers m, n = 1, if m # n then
Hy,, « V,. Therefore for m # n, y,, and y, belong to different logical e-
quivalence classes. Hence (L, ) has infinitely many logical equivalence
classes and therefore by Theorem 4.1, (L, +) is intensionally weak. =

With Theorem 4.1 we have accomplished the first of our two objectives,
namely to characterize the class of intensionally weak standard logics. Recall
that our second objective is to evaluate for a given intensionally weak
standard logic (L, ), how “big” is the expressibility gap at its lower end.
More precisely, intensional weakness entails the existence of at least one
proposition in 2% that is not expressible in L. This however tells us very
little about “how many” propositions in 2% are not expressible in L. The
following result will help us estimate the “size” of the expressibility gap at
its lower end.

Lemma 4.8 Let (L, ) be a standard logic, and let A, be the set of all
ambiguous theories of L. Then there is no maximal element in A, with
respect to set inclusion.

Proof. Assume on the contrary that 4, has a maximal element with respect
to set inclusion. Then there exists a theory 7* of L such that 7* is am-
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biguous, and every proper extension of 7* is specific('). Since T* is am-
biguous, it follows that 7* is consistent and therefore [7*] # &. Let K €
[7"] be an arbitrary consistent complete extension of 7*. Since 7' is am-
biguous, by Lemma 4.5, 7* is not almost complete and therefore 7* # K.
Then there exists a formula ¢ € K such that ¢ & 7*. Let T be the theory
T = Cn(T" U {¢}). Clearly K is a consistent complete extension of T, and
therefore T is consistent. Moreover, T is a proper extension of 7%, which
makes T specific and by Lemma 4.5, almost complete. Then there exists
a formula y such that X = Cn(T U {y}), and given that T = Cn(T* U {¢})
we derive that K = Cn(T* U {¢ A ¥}). Consequently, X is a finite extension
of T". Since K was chosen arbitrarily, it follows that every consistent com-
plete extension of 7* is a finite extension of 7* and therefore 7* is almost
complete. Then Lemma 4.5 implies that 7* is specific, which of course
contradicts our initial assumption of 7* being a maximal ambiguous theory
of L. L

Based on Lemma 4.8 we can now prove the following theorem.

Theorem 4.3 For every intensionally weak standard logic (L, v ), there exist
infinitely many propositions in 2 that are not expressible in L.

Proof. Let (L, ) be an intensionally weak standard logic. Then by Corol-
lary 4.1, there exists a theory of L that is ambiguous. Since L has one
ambiguous theory, from Lemma 4.8 it follows that L has infinitely many
ambiguous theories. Moreover, it is not hard to verify that for any two
ambiguous theories 7, T' of L, if T # T’ then [T] N [T'] = @.
Finally, from Lemma 4.1 is follows that for every ambiguous theory T of
L, all propositions in ([ T] - {[71}) (which by definition is nonempty), are
not expressible in L. Combining the above we derive that there exist in-
finitely many propositions in 2* that are not expressible in L. n

(") Recall that T ' is a proper extension of a set of formulas I' iff T’ is a theory of L and
Cn(I") is a proper subset of T .
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5. Conclusion

In this article we have analysed the gap of expressibility that occurs between
propositions (defined as sets of possible worlds) and (sets of) formulas of
a formal language. The study has mainly been motivated by the problems
that this gap causes in modelling belief dynamics. There are essentially two
major results reported in this article. The first is a characterization of the
class of standard logics for which the expressibility gap does not dissolve
even under the strongest restrictions on possible worlds (intensionally weak
standard logics). According to this first result, the only intensionally strong
standard logics are those whose consequence relation partitions the formulas
into finitely many logical equivalence classes. A consequence of this is that
all first order logics with equality are intensionally weak. According to the
second main result of this article, for every intensionally weak standard
logic (L, +), there exist infinitely many propositions that are not expres-
sible in L, even under the strongest restrictions on possible worlds.
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