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LOGICAL CONSEQUENCE AND
MODEL-THEORETIC CONSEQUENCE

Greg O’HAIR®

1. Introduction.

Since Tarski’s work on the notions of truth and consequence in the 1930s,
model theory has flourished alongside the older tradition of proof theory.
It has led to many impressive technical achievements, and a new, semantic
perspective on logic. Moreover, the model-theoretic account of logical
consequence based on Tarski’s work has been taken to provide a successful
analysis of the common-sense or pre-theoretic notion. Unsurprisingly, the
influence of Tarski’s work has spread farther afield. Many people working
in areas such as A.I., Cognitive Psychology, Epistemic Logic, Epistemology
or Semantics of Natural Languages have adopted the model-theoretic con-
cepts as part of their intellectual equipment for investigations of language,
thought or reasoning.

In his recent book, The Concept of Logical Consequence [Etchemendy
1990], John Etchemendy has subjected this account to a powerful critique,
exposing confusions and bad arguments that have contributed to the illusion
that it captures the everyday notion.(*) He shows that it does not yield an
extensionally adequate account of logical truth or consequence for arbitrary
languages, thus forfeiting also the weaker claim to give a new, technically
precise concept coinciding (roughly) in extent with the ordinary notion.(?)
What about our strong feeling that, for some (artificial) languages, the
account is guaranteed to be correct? Etchemendy shows in chapter 11 that
though the guarantee does indeed hold in special cases, it does so in virtue

" This paper was written while I was on leave at the Center for the Study of Language
and Information, Stanford University. I have benefitted from discussion with John Etchemen-
dy, Jon Barwise, Chris Mortensen, Ed Coleman and Graham Priest, and from a seminars
I gave on [Etchemendy 1990] at Stanford and at the University of Adelaide.

(') See, for example, his discussion of the confusion between “representational” and

“interpretational” conceptions of semantics in chapter 2 (and later), and his discussion of
“Tarski’s Fallacy” in chapter 6.

(3 The bulk of the relevant discussion here occurs in chapters 7 through 9.
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of there being a proof system that is intuitively sound!

In this paper, I make no attempt to evaluate Etchemendy’s critique. Ra-
ther, my aim here is to explore its implications. (I hope the issues will be
of interest even to those who do not accept the critique.) First, I raise some
issues for those who wish to continue to use the familiar methods where
appropriate. Secondly, I consider an alternative conception of semantics
going back (perhaps) to Wittgenstein, which Etchemendy suggests has been
confused with the standard model-theoretic approach. Next I consider a
related issue, that of our continuing dependence (if Etchemendy is right) on
the intuitive notion of logical consequence. This points to the need for
investigation of the intuitive notion. I conclude with a look at some issues
for such a study —for example, the relation between logical consequence
and modal notions such as that of necessity, and the apparent failure of the
model-theoretic approach to reduce the notions of logical truth and conse-
quence to non-modal notions.

2. Using the model-theoretic concepts.

Of course, the technical achievements of model theory survive Etchemen-
dy’s critique intact. They were never part of his target, and indeed, unlike
some early critics of Tarski, he is in sympathy with the aim of using mathe-
matical methods in studying these matters. However, his analysis does raise
some serious questions about the application of the model-theoretic methods.
Remember that Etchemendy has shown (assuming, for our purposes, the
correctness of his account) that, in the general case, the model-theoretic
account can be expected to give extensionally incorrect answers, perhaps
substantially and systematically so. That is, the account may:

® undergenerate— fail to declare something to be a logical consequence
(of other given items) when it is so, or

® overgenerate— declare something to be a logical consequence when
it is not so.

On the other hand, Etchemendy has shown how, under certain conditions
the model-theoretic account may be used without fear of these errors. What

are these conditions? Essentially, there are two, and each deserves some
attention.
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2.1 A new role for completeness theorems.

Modifying and building on an earlier idea of Kreisel’s, Etchemendy is able
to show that, where we have a proof system that is intuitively sound and in
addition, according to the model-theoretic semantics, complete, we may be
assured that the semantics will deliver answers that are intuitively correct.
There are two novel twists here. One concerns the kind of logical conse-
quence involved, and will be discussed below. The other concerns the role
of the completeness theorem, in enabling an intuitively correct proof system
to guarantee that the (model-theoretic) semantics is correct! We are so used
to assuming that soundness and completeness theorems “justify” the proof
system rather than vice versa that this can come as a shock!

After absorbing the shock, we are left with the problem that, notoriously,
a completeness theorem is not always available. Sometimes, we just have
to live with that fact, a theme to be explored below. However, Jon Barwise
makes the useful observation that we should not give up too soon: there are
times when some modifications may result in a completeness theorem be-
coming available after all [Barwise 1991]. The idea is as follows. By hypo-
thesis, our proof system is incomplete. Traditionally, this would have been
seen as a defect of the proof system, or as a problem for provability with
respect to some kind of language. Thanks to Etchemendy, we now see that
the model-theoretic semantics may be at fault: if some “valid” sentences are
not provable, it may be because they are not really (i.e., intuitively) valid
after all! We took them to be (model-theoretically) valid because they are
true in all models; and,indeed, so they are, but only relative to our model-
theoretic set-up. We may alter this set-up in either of two ways: by keeping
the same collection of models, and changing the semantic arrangements (an
idea suggested by Peter Aczel), or by moving to a larger collection of
models, including some where the troublesome sentences are false. Provided
that we can do this, our original proof system is now complete (anything
still valid after the changes to the model theory was already provable), and
Etchemendy’s guarantee applies after all.

Another strategy, of course, is to try to strengthen the proof system, so
that sentences hitherto unprovable can now be proved. Here, too, we can
(in principle) do more than might have been realized. For, as long as our
extensions to the proof system remain intuitively sound, they need no further
virtues to the job we need them for —guaranteeing the correctness of the
model-theoretic semantics. In particular, they do not need to be ‘cognitively
natural’, tractable or finitary.
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Thus, we have new motivation for seeking, and hopes of (sometimes)
finding completeness theorems where previously we thought there were none
to be had. This is not a universal panacea, however, and we need to con-
sider what to do in the face of continuing incompleteness. Before dealing
with this, though, we need to look at another condition involved in Etche-
mendy’s guarantee.

2.2 Two kinds of consequence.

Consider the significance of completeness theorems again for a moment. On
the traditional conception, they showed that the proof systems in question
were powerful enough to encompass all the valid sentences or consequences.
On the new perspective, they can be used to show that the model theory is
not too ‘powerful’, that it does not overgenerate. What about the converse
problem, that of undergeneration? The methods considered so far do not
seem to allow of a general solution to this problem. However, in one of the
high points of the book, Etchemendy shows how, in the spirit of modern
algebra, the problem can, for some purposes, be defined away. The idea
is to think about the logical properties, not of one interpreted language, but
of a whole family of such languages, the family covered by the model
theory. Take the logical truths (or consequences) common to all the lan-
guages in the family. Etchemendy shows that, assuming as before that we
have a completeness theorem for an intuitively sound proof system, a Krei-
sel-style argument will guarantee that the model theory delivers exactly the
right answers about this collection.

This result is, I believe, an interesting and important one. It points to a
useful distinction, between what we might call ‘algebraic’ consequence and
‘single language’ or ‘single structure’ consequence. With the algebraic
tendency in modern mathematics, much work has been concerned essentially
with whole families of structures, for example, all those that satisfy the
axioms for groups or rings. The same tendency is found, of course, in
modern topology, where whole families of spaces with certain properties
in common are investigated at once. It seems illuminating to think of the
algebraist as exploring the logical (as well as mathematical) properties of
such families —the (algebraic) consequence relation for the languages (or
structures) of, say, group theory.(*) The down side is that sometimes, as

(*) This may shed some light on model theory’s particularly close connection with algebra,
notwithstanding its many diverse applications to other areas.
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in set theory, number theory or (one conception of) Euclidean geometry,
we are really concerned with one structure, or one interpreted language used
to talk about that structure. Though these familiar examples are from mathe-
matics, this was largely to balance those of algebra and topology, and to
remind us that there seem to be both kinds of study within mathematics
itself. There must be many examples from the cognitive sciences, from
Linguistics or A.L., say, where essentially one structure, or one interpreted
language, is in question at a given time. This is an appropriate moment at
which to turn to the alternative approach to semantics sketched by Etche-
mendy, since it offers help at this point.

3. Representational semantics.

On the standard, interpretational view, we think of a sentence, say, ‘Snow
is white’ as being true in one model and false in another in roughly this
sense: a sentence having in itself no particular meaning (an uninterpreted
string) is given one interpretation under which it is true, and another under
which it is false. So the ‘world’ (some domain of ‘objects’, and functions
and relations over them) is held fixed, while the meaning varies from model
to model. As Etchemendy notes, we could think about models differently,
representationally: one model could represent a ‘world’ in which snow is
indeed white (and hence our sentence is true), and another represent a
different world, in which snow is, say, red (and our sentence, still having
its customary meaning, is false). So here the meaning is held fixed, while
the ‘world’ varies. Perhaps Wittgenstein had this conception in mind. At
any rate, there are these two possible dimensions of variation.

The two approaches have a very different ‘flavour’, but can we be sure
that they are not really equivalent, two perspectives on the same model-
theoretic reality? Etchemendy shows that, while in special cases they deliver
equivalent semantics (declare the same items to be logical truths or valid
arguments), in general they diverge. So we have two genuinely different
ways of doing semantics. Which should we prefer? And how would repre-
sentational semantics work? More work needs to be done on such ques-
tions.(‘) In terms of our discussion in the preceding section, one point
stands out: the alternative, representational approach offers solid advantages

(*) Barwise and Etchemendy made a start on what Barwise describes as a ‘rational recon-
struction’ of semantics along representational lines in [Barwise and Etchemendy 1990].
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where the conditions for Etchemendy’s guarantee do not apply. The alter-
native, representational approach looks promising here, since it does not
require a completeness theorem and makes sense in relation to single inter-
preted languages. So, like the intuitive notion, it is available when the
interpretational approach isn’t; while, like the interpretational approach, it
offers the advantage over the unaided intuitive notion of systematic, mathe-
matical methods. True, it is relatively unexplored, and we need to under-
stand it better. Still, it begins to look as though we can have the best of both
worlds! A more sobering perspective will emerge in the next section.

4. Dependence on the intuitive notion.

Reflecting on the discussion above, we can see two ways in which, if Etche-
mendy’s analysis is correct, we still depend upon the intuitive notion of
logical consequence. The first concerns its role in, so to speak, underpinning
the model-theoretic semantics, however satisfactory and successful the latter
might be. The second concerns certain limitations on the availability or
appropriateness of the model-theoretic notions in some cases.

4.1 Underpinning the model-theoretic semantics.

In the case of interpretational semantics, this role is a striking implication
of Etchemendy’s account, emphasized already above. As we saw in looking
at the ‘new role’ for completeness theorems, we need the intuitive concep-
tion to warrant the (intuitive) soundness of the proof system that (via the
completeness theorem) warrants the correctness of the interpretational
semantics.

It should be emphasized that representational semantics, too, needs the
intuitive notion. This applies, indeed, in the very setting up of a structure
of models.

We might try to distinguish between the role in the two cases, in some-
thing like the following way. In the former case, the intuitive notion turns
out to be needed to provide an ‘external’ guarantee for a significantly dif-
ferent concept. In the latter case, the role is more intimate, even ‘internal’
to the very idea of representational semantics. Be that as it may, in both
cases, the role is an ongoing one: however appropriate and successful any
application of either variety of model-theoretic semantics may be, the in-
tuitive notion and its role are there in the background. This raises ‘foun-
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dational’ questions, for example about our ‘justification’ for both the in-
tuitive notion and judgments based on it.

4.2 Limited availability of model-theoretic semantics.

Another source of dependence on the intuitive notion lies in the limited
availability or appropriateness of the model-theoretic concepts. What is
involved here is more than a temporary failure to develop or adapt such
concepts in ways that make them suitable for specific areas, as in the case
of various modal or intensional logics. Rather, there seem to be certain
limitations of principle involved. Once again, this seems to apply to both
interpretational and representational semantics, though in different ways in
the two cases.

In the case of interpretational semantics, one such limitation stems from
the need for a completeness theorem in order to validate the model theoretic
set-up. Another concerns the distinction drawn earlier between algebraic and
single-structure consequence. This suggests that where our concern is the
study of a single structure, interpretational semantics will never quite fit the
bill. This in no way detracts from the usefulness of model-theoretic methods
in teaching us more about the properties of a language or structure. But the
limitation is there. How significant we think it is will depend, for example,
on whether we think that important parts of mathematics are best understood
as the study of single structures.

That, of course, is where representational semantics seems to step into the
gap exposed by Etchemendy’s analysis. However, things are not so simple.
It seems as though there will be times when neither interpretational nor
representational semantics will be fully appropriate for our purposes. The
classic case of elementary number theory provides an illustration. This case
is, famously, a problem for the standard approach. It fails to meet either
condition for Etchemendy’s guarantee, since it is incomplete, and since we
are really concerned with the one interpreted language, the one structure of
natural numbers. However, in this case, we cannot turn to representational
semantics for help. The reason is that we cannot make sense of the idea of
alternative models, representing ‘possible worlds” where, say, 2+2 # 4.
As Etchemendy says, “That way madness lies”(62).(*) The problem in

(*) There may be some irony in the fact that this case continues to be a source of problems

for model-theoretic semantics so many years after Tarski used it to good effect against earlier
approaches.
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this case is that arithmetic consists of necessary truths. Obviously, there are
other examples. Perhaps further study may reveal different cases, where for
one reason or another representational semantics is not appropriate.

4.3 Proof theory to the rescue? The case of number theory.

If Etchemendy’s main points are granted, it may be conceded that no formal
theory of arithmetic quite hits the mark. In fact it might be said that this was
well-known already. In the case of first-order theories, there is the existence
of non-standard models, as well as the fact that any particular such theory
is both too weak (by Godel’s first incompleteness theorem) and too strong,
in the sense of having a lot of unused power and complexity by comparison
with informal number theory. Second-order arithmetic is interestingly dif-
ferent, but brings its own problems...

Still, it might be claimed, none of this means that we are thrown back on
some hazy and questionable, intuitive notion of ‘arithmetic consequence’
in order to ground the precise concepts of formal arithmetic. Admittedly,
the existence of non-standard models illustrates the difficulty of finding a
suitable model-theoretic semantics in this area. (Though, the issues are
complex. In the case of real numbers, the existence of non-standard models
seems liberating, providing us with a deeper understanding of possible
structures for analysis, and even new ways of doing mathematics in this
area. Perhaps this is at least a cautionary example for the distinction bet-
ween single-structure and ‘algebraic’ studies.) However, it might be argued,
the last seventy years or so of proof-theoretic work has given us a rich body
of technical knowledge of what follows from what in number theory.

The last point is surely true, but the significance of these studies needs
turther thought. There are two extreme positions that should probably be
rejected. The first is that the ‘metamathematics of arithmetic’ is an arcane
subject, sophisticated and technically accomplished, but in the end of little
interest to the working mathematician, who use (however precisely in an
informal sense) the informal notions. The second is a view of the kind
gestured at in the previous paragraph: the informal concepts are ‘folk’
concepts, horse-and-buggy concepts to be replaced by the precise concepts
developed in proof theory. The latter view disregards the fact that the
axioms and rules needed to be intuitively sound, acceptable to the intuitions
and practices of working mathematicians. The former view disregards the
insights of proof theory, and its power to influence the ‘working mathemati-
cian’, both relatively directly, and through the growing cultural influence
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of computer science on mathematics.

Perhaps a more reasonable view is reached by adding a spin to the familiar
‘reflective equilibrium” approach. The latter would suggest, for mathema-
tics, something like the following picture. Growing experience with some
structure, and particular judgments about it, suggests to mathematicians
‘principles’, such as the method of infinite descent, and that of mathematical
induction. These principles in turn shape mathematicians’ conceptions of
the structures they are studying, and may affect particular judgments they
make about them. We may add that there is no reason why such relatively
course-grained principles of informal mathematics might not be sharpened
up by the finer-grained concepts of proof theory. Similarly, the development
of quantifiers and the study of recursive functions has enabled a deeper
understanding of informal arithmetical thinking, and the articulation of a
number of alternative frameworks (for example, finitary, constructive,
predicative or set-theoretical) in terms of which to develop and justify
formal ‘versions’ of informal arithmetic. Much of this work, for example
on the power of PRA (primitive recursive arithmetic), is impressive and
interesting in its own right, and might reasonably be expected to affect the
way we think in, as well as about, informal arithmetic.()

What we seem to have, then, is a combination of, and interplay between
the intuitive notion and various intuitively sound proof systems. We have
been stressing the existence of a rich body of theory concerning the formal
systems. It seems worth studying the intuitive notion further, to explore its
contours, its strengths and weaknesses, and perhaps to look for other ways
of explicating aspects of it that have not been captured so far.

5. Exploring the intuitive notion.

However, this is easier said than done. While it was assumed that the model-
theoretic account provides a successful analysis or explication of the intuitive
notion, there seemed little point in worrying too much about the latter. Even
those who were not entirely happy with the standard story were inclined to
work on modifying the technical concept rather than on investigating the
intuitive one. Perhaps the latter could safely be consigned to the ‘pre-his-

(%) Much of this material is reviewed in [Hajek and Pudlak 1993] as well as in [Sieg 1985],

[Sieg 1988], [Simpson 1988] and in a series of very interesting papers by Solomon Feferman,
e.g., [Feferman 1988].
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tory” of the subject. As a result, perhaps, there seems to have been little
serious investigation of the intuitive notion over the last fifty or more years.
It is beyond the scope of this paper to do more than sketch a few of the
issues that would need to be addressed in such a study.

5.1 Culture and Cognition.

Asssuming, then, that there is an intuitive notion of logical consequence,
with the kind of significance that Etchemendy suggests, what sort of thing
is it, and where does it come from?

Is it grounded in the social/cultural practices of argumentation in various
forms? (And was Aristotle codifying, as it were, the structure of such
practices?) If so, something like the picture suggested in the previous section
would be quite plausible, with an ongoing interplay between more intuitive
and more scientific conceptions. (So, perhaps would Wittgenstein’s meta-
phor of town and suburbs.)

Or is it, somehow grounded in our cognitive system, perhaps in the ar-
chitecture of a ‘reasoning system’, or in some other way? The development
of cognitive science promises the possibility of understanding better the
psychological basis of our reasoning skills without lapsing into the kind of
‘psychologism’ attacked by Frege and Husserl a century ago.

5.2 Topic-neutral or Content-specific?

Cutting across the first issue is one between logic as something that abstracts
away completely from content, or as something that may involve, and even
vary with, content. The Tarskian conception seems committed to the former
view, despite Tarski’s reservations about the possibility of characterizing
the logical constants.

Etchemendy’s account, on the other hand, suggests the idea that the logical
consequence relation for a given language may reflect the meanings of
expressions other than the familiar ‘logical constants’. Recent work of
Gardenfors and others on ‘conceptual semantics’ suggests one way in which
a view on the previous issue could be combined with this perspective to
develop, e.g., an account of the ‘logic’ of colour concepts. Harking back
to the earlier discussion of arithmetic, Etchemendy’s account suggests that
what follows from what in the interpreted language of arithmetic is tied up
in part with our number concepts. Understanding these, in turn, may involve
reflecting on practices (e.g., counting) and cognitive structures.
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5.3 Naturalism and Modality.

Perhaps the most perplexing issue, at least for a naturalist, concerns the link
with modality. One of our strongest intuitions about logical consequence is:
if a conclusion follows logically from some premises, then, if the premises
are true, the conclusion must be true also. Etchemendy has an epistemic
argument for this being required of any acceptable account of logical conse-
quence. If he is right, we have another challenge for naturalism: how to
give an account of logical truth and consequence that meets the modal
requirement. Where does the intuition of necessity come from? And what
in the world —or the mind— grounds it? We need to return to some of the
older issues about logic, for despite the technical sophistication of model
theory, and the undeniably valuable tools it has brought us, at a more
fundamental level we may be as far from the ‘goal of a scientific semantics’

as when Tarski was writing in the 1930s. Or perhaps that goal was always
an illusion?

Flinders University
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