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FIXED POINT THEOREMS FOR INCONSISTENT AND
INCOMPLETE FORMATION OF LARGE CATEGORIES

Joshua CoLE & Chris MORTENSEN

ABSTRACT: The method of fixed points is used to show that an unrestric-
ted comprehension scheme for large categories can be described in either
inconsistent or incomplete theories of several background logics; thus
simplifying and generalising a result of Feferman.

1. Introduction

Defects in the current foundations for category theory are well known and
have occupied thinkers about foundations since Eilenberg and Mac Lane
proposed the theory of categories in 1945. This is not to say that foundatio-
nal problems have seriously interrupted the progress of mathematicians who
actually use categories in their day-to-day work. The popularity of category
constructs in the practice of mathematics continues to grow despite any truly
satisfactory resolution to the original foundational problems. It must
however be conceded that the categories of mathematical practice are
generally small or locally small and so are well accounted for by the current
foundations.

Just as it is natural and healthy for discussions about architectural achieve-
ments to focus on aesthetics and functionality of design, so is the current
interest in the applications of categories normal and productive. Engineering
talk about the properties of bricks, mortar, steel and timber seem tedious
by comparison. However when the architect becomes more
adventurous with their applications of the material, the cautious among us
begin to wonder about the received wisdoms concerning bricks and mortar
and we turn back to the engineers for reassurance. Focus should again begin
to move back onto logicians. Questions about the foundations of category
theory have become all the more pertinent with the recent surge in populari-
ty of the theory.

This paper is a reaction to an approach to the foundations of category
theory by Solomon Feferman in [2]. Feferman presents a theory of partial
operations and classifications which are kinds of intentional characterisations
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of the concepts of characteristic functions and sets.

Classifications have a general comprehension axiom which facilitates the
formation of the general kinds of collections required for the practice of
unrestricted category theory by mathematicians. Feferman models this axiom
in an underlying logic which is classical and S4 modal.

Our aim in this paper is to attempt to simplify the modelling in an intuitio-
nist logic and then to dualise the intuitionist model to get a model in a
paraconsistent logic. Our approach stems from a recognition of the well
known isomorphism between S4 theories and theories in intuitionist logic,
the observation that such intuitionist logics are the logics of open sets and
that there are paraconsistent logics which are the logics of the corresponding
closed subsets. We will observe that these topological constructions are
defective in their treatments of double negation, leading to a reformulation
in a different dual pair of logics.

The motivation for this paper is a desire to recommend paraconsistent
theories as equally viable as intutitionist ones for the practice of mathema-
tics.

2. Preliminaries

Feferman sets out to model a comprehension axiom for classifications:
ifva,..aiclfa,...a,=c A (Vx(epceO¢x) A (Vx(xpced ¢ x))]

in a logic which is essentially S4.

Ignoring the possible misordering of the quantifiers and setting aside the
idea of the characteristic (partial) function f, the idea seems to be to have
two predicates, 7 and % to be intuitively understood as functioning like the
predicates € and & in set theory. ¢, is some property which, by virtue of
the comprehension scheme, gives rise to a classification ¢. [J¢x is read
intuitively as saying it can be verified that the property ¢ holds of object

x. As a result, while 7 and 7 in some sense function like € and &, it is
not the case that:

(vx)(vy)(xmy < —xny)

This is because some classifications y are partial, which means for some x,
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(emy V xny) fails and consequently so does (xqy < —xny). As an example
consider the property ¢x defined as xyx. An attempt to verify ¢a amounts
to a check whether ana. But to verify ana requires first a demonstration that
¢a holds, which is what we were trying to demonstrate in the first place.
So attempts to verify some properties are circular and cannot be completed.

Restricting the properties ¢x that give rise to an associated classification
¢y to those for which CJéx holds has the effect of bringing about a kind of
incompleteness in the resulting theory in the sense that

@)@x) Gy v xny)

Our approach is to be open about this incompleteness by dropping the
predicate # from the language and just using the sentence operator —
instead. We also drop [J from the language and achive its original purpose
by using a 3-valued logic and allowing some sentences of the form ¢x to
take the middle truth value. The resultant theory will be incomplete in the
usual sense that A v —A fails for some sentence A.

To be more precise, let L be a logic with a set of truth values X with
designated values VCX. Let the consequence relation =, be defined as
follows. A |, B iff for all valuations v on X if v(4) € V then v(B) € V.
A set of sentences Th, is an L-theory iff it is closed w.r.t. |5, and closed
w.r.t. conjunctions.

DEFINITION: An L-theory Th, is incomplete iff for some sentence A neither
A € Th, nor 74 € Th,.

<

DEFINITION: Thy is inconsistent iff for some sentence 4 both 4 € Th, and
—A € Th,.

3. A J3 Theory

In this section the aim is to show how a modified comprehension axiom for
classifications:

O @y)(¥x)0my, < ¢x)

can be modelled in the intuitionist logic J3. That is, we will construct a
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theory 7h,, whose underlying logic is J3 such that C € Th,,.

Like Feferman we denote the language of our theory by L (=,») which
is a basic language L (=) extended by the addition of the binary predicate
7 (but not » or [J). We assume the existence of a simplier theory 7h_ in
the simpler language L (=). The negation operator will be denoted by the
symbol -, ’

J3 is a logic with a set of three truth values {F, N, T}, a set of designated
values V,; = {T'} and negation — defined such that =T = F, =N = Fand
-F=T.

J3 is a topological logic. This means that we can consider the truth values
F, N and T to be sets in some topology and the operators A, vV, =, V, 3
to be defined in terms of set operators in the topology.

Consider a partially ordered set of worlds W-

w<sw
and the set of hereditary subsets X:
A, {w}, {w'w}

X is a set of open sets and (W,X) is a topological space. A valuation is a
function v:L (=,3) = X.

Compound sentences containing operators A, V, =, V, 3 are evaluated
by recursively applying the following rules:
For any valuation v,

(i) V(4 A B) = v(A) N WB)

(ii) v(4 vV B) = v(4) U WB)

(ili) v(—4) = | ((4)) = The largest open set § such that SSwA)

(iv) v((vx)Fx) = N{y: for some term ¢, WF?)=y}

(v)  W(@x)Fx) = U{y: for some term ¢, v(Ff)=y}
We let F denote A, N denote {w} and T denote {w",w} and tell the usual

intutionist story regarding designated truth values. That is, let vV, ={T}.
Following Feferman we define a model for the comprehension axiom
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using a transfinite inductive definition. That is we define a valuation v such
that W(C) € V,;i.e. W(C) = T.

The required valuation v will be named v, in the construction that follows.
v, will be defined in terms of a previous valuation v, which will in turn be
defined in terms of vy,, etc. So in order to define the valuation v, we require
definitions of a series of valuations v,, v,, v, .... Our definition begins with
a basis v,.

BASIS: For all sentences A € L (=,3), v, is defined:

(B1) v(4) = {w',w} ifA €EL(=)and A € Th_

B2) v = AifAE€ L(=)butA & Th.

(B3) v,(4) = {w} otherwise

(B4) Remaining compound sentences are then evaluated by recursive
applications of the rules (i) - (v).

Because this is a transfinite inductive definition the induction step has two
parts, one for successor steps and one for limit steps.

INDUCTION STEP: v, is defined:
If @ is a successor ordinal then

(Il) vu+](aqc¢) = vu (¢a)
(I2) Remaining compound sentences are then evaluated by recursive
applications of the rules (i) - (v).

If o is a limit ordinal then
03) va (A) = U,G<m vﬁ(A)

This completes the definition of a transfinite series of valuations v,, v,,
Vs, .... The valuation v; is a special valuation in this series which is a fixed
point. That is a valuation such that for every sentence S, VAS) = v,.4(8).

Before proving that such a valuation is implicit in our definition of the
transfinite series of valuations, we prove some interim results.

DEFINITION: v, < v, iff
{A € L(=mvA)=T} S {4 € L (=n)v(4)=T}
and {4 € L (=,n)v,)=F} € {4 € L (=,n):v,(4)=F }.
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or alternatively:

For every sentence A if v, (4)=T then vy(A)=T and if v, (4)=F then

THEOREM (Monotonicity): For valuations v,, vsifa < Bthenv, < v,

PROOF: By induction on the number of connectives in an arbitrary sentence
A.

If A is an atomic sentence then the theorem trivially holds because the rules
for building up any valuation only change the values of compound senten-
ces. So v, (4) = vu(A).

Assume that for sentences P, Q the theorem holds. We show that the
theorem holds for sentences P A Q, P v Q, - P, (Vx)P, (ax)P. Three of
the five demonstrations are given here:

(@) Assume v,(P A Q) = T. By clause (i) of the evaluation procedure for
valuations it follows that v,(P) = T and v(Q) = T. From the induction
hypothesis we have vs(P) = T and v4(Q) = T. By again employing clause
(i) of the evaluation procedure for valuations we conclude that V(P A Q)
= T as required. A similar argument can be given assuming v.(P A Q) =
F and concluding that vi(P A Q) = F

(c) Assume v,(P) = T. By clause (iii) of the evaluation procedure for
valutions it follows that v,(P) = F. By the induction hypothesis it follows
that vy(P) = F. Again from (iii) we have that v,(—P) = T as required. A
similar argument can be given assuming v,(—~P) = F and concluding that
vg(mP) = F.

(e) Assume v,(@3 x)P) = T. By clause (v) of the evaluation procedure for
valuations it follows that for some term ¢, v, (3 x)P[x/1]) = T. By the
induction hypothesis we have that for some term ¢, vs((@x)P[x/t]) = T. By
clause (v) of the evaluation procedure for valuations we conclude that
Ve((@x)P) = T as required. O

THEOREM (Fixed Point): This definition generates a fixed point. That is
a valuation v, such that for every sentence 4 € L (=), Vi) = v,,,(4).

PROOF: By the previous theorem, we have that this method generates a
sequence of valuations: v, < v, < v, < ....

Once a sentence gets assigned a value T or F by a valuation it retains that
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value in all later valuations. Now, there are only denumerably many
sentences in the language L (=,7). The set of ordinals of the second number
class is non-denumerable. So for some A of the second number class v, =
Va1 O

THEOREM (v, is a model for C): VA@Y)(VX)(xny, < ¢x)) € V,,
PROOF:
Left to right:

Assume for arbitrary a and for some c, that vlanc,)=T. Let a be the least
ordinal such that v,(anc,)=T. o must be a successor ordinal. By the method
of construction it must be the case that v, ,(¢a)=T. Since a-1 < fit follows
from montonicity that v{(¢a)=T.

If we assume for arbitrary a that v(anc,)=F it can be shown by a similar
argument that v(¢a)=F.

Assume for arbitrary a that v{anc,)=N. Assume also that v{¢a)=T(F),
then by the method of construction Vr.i(ancy)=T(F). But v, is a fixed point
s0 v{anc,)=T(F) which contradicts the first assumption. So v{¢a)=N.

Right to left:

Assume for arbitrary a that v(¢a)=T. By the method of construction it
follows that v,,,(an c,)=T. But V/=Vy,, since v, is a fixed point. So v/ay
c)=T.

By a similar argument it can be shown that if vA¢a)=F then v(anc,)=F.

Assume for arbitrary a that v(¢a)=N. Assume also that viancy)=T(F).
Let o be the least ordinal such that v, (anc,)=T(F). « is a successor ordinal.
By the method of construction v, ,(¢a)=T\(F). By the monotonicity theorem
and the fact that a-1 < fit follows that v{¢a)=T(F) which contradicts the
first assumption. So v{anc,)=N.

So for arbitrary a, vlanc,) = v{¢a) and hence by the definition of «, for
arbitrary a, vfanc, < ¢a)=T. So V @y (Vx)(xmy, < ¢x) = T.
e W, O

DEFINITION: Let R denote the classification defined by the property —xnx.

THEOREM: v(RnR) = N.
PROOF: We show that it is impossible for VAR@R) = Tor F.

Assume V{(RnR) = T. Let « be the least ordinal such that v, RnR) = T.
o must be a successor ordinal and v,,(~RyR) = T. By (iii) v, ,(RyR) = F.
By monotonicity, it follows that VA(RnR) = F which contradicts the original
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assumption.

Assume V{RyR) = F. Then v(—RyR) = T. By (I1) Vi(RnR) = T. But
since v, is a fixed point v, = v,,,. So V{RnR) = T, contradicting the original
assumption.

So RyR does not take on truth value T or F in any valuation v,. It therefo-
re retains its original valuation of N at Ve O

DEFINITION: Let R denote the classification defined by the property xnx.

THEOREM: v(RyR) = N. L

PROOF: Again we show that it is impossible for VARnR) = Tor F. We do

this by showing there can be no least ordinal « such that v (RnR) = (F).
Let o be the least ordinal such that v(RqR) = T(F). « is a successor

ordinal and v_,(RqR) = T(F) contradicting the original assumption that o
be the least such ordinal. O

DEFINITION. Define the theory Th,; = {A € L (=,7) : v{d) € V,;}

THEOREM (Incompleteness): For some sentence P, neither P € Th,; nor
-P € Tn,,.

PROOF: v{RqR) = N = {w}. By (iii) v(~RnR) =A. {w}, A2 V,,. So RqR
& Th,; and “RyR & Th,,. O

In this section we have given a definition of a sequence of valuations Vi
V2, V5, ... in the topological logic J3. We have proved that one of these
valuations is a fixed point v, which defines a theory Th,,. This theory is
incomplete and contains our modified axiom of comprehension C.

4. A P3 Theory

Next we show how a similar paraconsistent model for the modified compre-
hension axiom can be obtained by exploting the topological nature of the
previous construction. Its dual closed set construction is a model for C in
the logic P3.

P3 is a logic with a set of three truth values {F,B,T}, a set of designated
values V,,; = {B,T} and negation — defined such that ~T = F, ~rB =T
and ~F =T,
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Notice that we can transform the J3 lattice into the P3 lattice by turning
it upside down. This is achieved by exchanging U and N. A problem with
this though is that the bottom value (F) is the only designated truth value,
which is absurd. Paraconsistentists have settled on a more satisfactory
dualisation of V,; as V,, = {X : X is a truth value and X & V,,. That is V,,
= {A,{w}}.

A construction isomorphic to this one can be obtained by considering the
closed subsets of W instead the open ones and retaining the original orde-
ring, unions and intersections. A new definition of negation needs to be
supplied

Instead of considering the open subsets of our original set of worlds W,
we now turn our consideration to the closed subsets.

Retain the original partially ordered set of worlds W:

w =w
and now consider the set of anti-hereditary subsets Y:
AW}, {w' w}

Y is a set of closed subsets and (W,Y) is a topological space.
This time we define valuations

vh v2’ V3, "';vf: L (=,"7) = Y

Let F denote A, B denote {w*} and T denote {w*,w}. V,, = {B,T}

To change the underlying logic J3 to P3, we rename the truth value N as
B and add B to the set of designated values V,,.

The rules (i) - (v) for evaluating the valuations of compound sentences
carry through unchanged with the exception of (iii). Closed set negation is
denoted by the symbol ~— and is defined:

(iii) (—A) = C (W(4)) = The smallest closed set S such that VA)ES

This means that ~T = F, ~B = Tand —F = T, as desired. (B3) is
changed to:

(B3) v,(4) = {w"} otherwise
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DEFINITION: Thy, = {A € L (=,n) : V{A) € V,;}

The monotonicity theorem carries through with minor modification in
clause (c) where — is changed to —. The fixed point theorem carries
through with a modification changing N to B. C € Th,, follows similar-
ly. O

DEFINITION: Let R denote the classification defined by the property —xnx.

THEOREM: v(RyR) = B
PROOF: Replace N by B in the previous version of this proof. O

THEOREM (Inconsistency): For some sentence P, both P € Thp, and —P
PROOF: v(RnR) = B = {w'} By the new (iii) v({—RyR) = {w",w}. {B, T}
€ V. So RyR and —RyR € Th,,. O

Thus the topological dual of the previous intuitionist construction is a
paraconsistent one. Both are equally viable. They are essentially different
perspectives of the same construction.

5. Double Negation and Routley-" Negation

In our J3 theory = N=F and =~ F=T. As a result, " " N=T. Recall that
sentences like RyR and Ry R are assigned the truth value N in the final fixed
point valuation v, This provides a neat solution to Russell-type paradoxes
in our theory of classifications, but as a further consequence of the topologi-
cal nature of the negation operator — it is also the case that v(— —RyR) =
Tand W(— < RqR)=T. This is unsatisfactory since Nis an undesignated truth
value while T is designated so that " =4 D A is not in the theory.
Similarly, in the P3 theory —r~B=F so that while WRnR)=B,
W~ ~RyR)=F. B is designated in P3 but Fis not, so A D A fails.
The logic underlying Feferman’s theory is classical so that double negation
holds in it. A better reconstruction is therefore one which affirms double
negation. If we want double negation to behave as required for sentences
which are assigned the middle truth value, the definition of the negation
operator has to be arranged so that the middle truth value is a fixed point
under its own operation. That is, in an intuitionist theory we want the
negation of N to be N also, and in a paraconsistent theory we want the
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negation of B to be B.
Again we consider the set of worlds W:

L]

w =sw
We adopt the Herditary Condition of relevant semantics:
Ifx < yand x € I(4) theny € I(A).
Routley “-negation (denoted by the symbol ~) is defined as follows:
Let w* = w

() w € IA) iff w* & I(~A)
(i) w* € I(4) iff w* & I(~A)iff w & I(~A)

There are four cases we need to consider: (a) ~A, (b) ~{w'}, (c) ~{w},
@ ~{w,w'}.

(a) Assume I(4) = A. That is w* & I(4) and w & I(A). Then by (ii) it
follows that w € I(~A) and by (i) w* € I(~A). That is, I(~A4) = {w,w'’}.

(b) Assume I(4) = {w'}. Thatis w* € I(4) and w & I(4). Then it follows
that w & I(~A) and w* € I(~A). That is I(~4) = {w’}.

(c) Assume I(4) = {w}. Thatis w* & I(4) and w € I(4). Then it follows
that w € I(~4) and w* & I(~ A). That is I(~A) = {w}.

(d) Assume I'(A) = {w,w’}. That is w* € I(4d) and w € I(4). Then it
follows that w & I(~A) and w* & I(~A). That is I(~4) = A.

So there are two fixed points under negation here: ~{w'} = {w"} and

~{w} = (w}.

THEOREM: w € I(A), I(~ A) iff w* & I(4), I(~ A)
PROOF: w € I(A) iff w* & I(~A). And w € I'(~A) iff w* & I'(4). O

Notice that so far the hereditary condition has not been employed. In the
set of worlds W this condition says, since w* < w if W' € I(4) then w €
I(A). There are two cases to consider: (a) w* = w and (b) w* = w.

Now if w* = w then {w’} = {w} = {w,w’} and we have just the Boolean
algebra [{w},A]. So our present concern is with the second case where
w # wandw' < wsow" < w.
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THEOREM: (Consistency of w") There is no sentence 4 such that w* € I(4)
and w' € I(~A).

PROOF: Assume there is a sentence P such that w* € I(P) and w* €
I(~ P). Then by the hereditary condition w € I(P). From the definition of
negation it follows that w* & I(~ P) which contradicts the second assumpti-
on. O

THEOREM: (Completeness of w) For every sentence A, w € I(A) or w €
I(~A).

PROOF: Assume there is a sentence P such that w & I(P) and w & I(~A).
Then by the definition of negation w* € I(~P). From the hereditary
condition it follows that w € I( ~ P) which contradicts the second assumpti-
on. O

Applying Routley-" negation and the hereditary condition on our original
paritally ordered set of worlds W = w" < w gives us a choice of two
3-element algebras suitable as underlying logics for a model of the modified
comprehension axiom: [A S {w} € {w',w}] and [A S {w} S {w',W}]
where the middle value in each is a fixed point under negation.

We take this pair of logics and regard them as duals of each other, where
one is an intuitionist logic and the other is a paraconsistent one. In addition
to the Routley definition of “-negation we also adopt the *-operation which
dualises theories.

DEFINITION: Let Th be a theory defined by an interpretation I and set of
designated values V. That is Th = {4:1(4) € V}.

DEFINITION: Th* = {A:I(~A) & V}.

Now if we let V in Th be the singleton {T'} as intutionists insist, then we
can deduce the nature of V in the dual theory Th" which will be paraconsi-
stent.

THEOREM: If Vin This {T } then V in Th" is {B, T'}.

PROOF: Th = {A: I(A) € {T}}. Th" = {A: I(~A) € {T}}. So Th" = {4:
I(~A) € {F,N }}. By the definition of ~ we have Th’ = {4: I(4) €
{N,T }}. The convention is to label the middle truth value in a paraconsi-
stent logic B instead of N so Th" = {A:I(4) € {B,T }}. Thus V in Th" is
the set {B,T }. O
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In the following two sections we detail the construction of a further two
theories again containing the comprehension axiom C. This time they will
be Routley-" duals of each other and negation will be Routley-" negation.

6. A K3 Theory

K3 is a logic with a set of three truth values {7, N, F }, a set of designated
values Vy; = {T'} and negation ~ defined such that ~T = F, ~N = N
and ~F =T.

We define valuations

vls vz; vas b vj: L (":s??) - {As {W‘}, {W.,W}}

Let F denote A, N denote {w'}, and T denote {w',w}. Let the set of
designated truth values V,, = {T}.

The rules (i) - (v) are as for J3 except for (iii). We denote Routley-*
negation by the symbol ~ and define it as before.

The definitions of valutions v,, v,, v, ..., Vv, are as before and the fixed
point theorem carries through.

DEFINITION: Define Thy, = {A € L (=,3): VAA) € V;}
The theory Th,, contains the comprehension axiom C and is incomplete

like J3 because v(RnR) = N = v(~RyR) and N & V,,. However this time,
because of the new definition of negation, v(~ ~RyqR) = N as desired ]

7. An RM3 Theory

RM3 is a logic with a set of three truth values {7, B, F }, a set of designa-
ted values Vg, = {B,T} and negation ~ defined such that ~7 = F, ~B
=Band ~F=T.

We define valuations

Vi, Vo, V3, ooy Vet L (= 1) = {A{W}, {W',W}}

Let F denote A, B denote {w}, and T denote {w",w}. Let the set of



236 JOSHUA COLE & CHRIS MORTENSEN

designated truth values Vg, = {B,T}.

We evoke the same proven strategy to arrive at a theory Thy,,, which
models the comprehension axiom C, but unlike Th,, is inconsistent because
V(RyR) = B = v(~RyR) and B € V,,,. v(~ ~RyR) = B. a

8. Conclusion

We have seen that Feferman’s original construction lends itself to recon-
structions in the toplogical logic duals J3 and P3 as well as in the lattice
logic duals K3 and RM3. All reconstructions utilise some sort of fixed point
method for arriving at the model of the comprehension axiom, as did
Feferman in his original modal logic setting. This suggests that the fixed
point method for constructing models of axioms has broad application. The
method appears not to make any special demands on its underlying logic,
although if it is used on an infinite domain it does presume some fairly
strong properties of the metatheory’s “set” theory.

So what about the foundations of category theory? It must be acknowled-
ged that the problem of finding an adequate foundation for category theory
is rather unsatisfactorily solved by Feferman; and so far as the present
approach is just a reconstruction of the Feferman idea, the same can be said
of it.

Feferman’s theory of partial operations and classifications provides a
foundation for category theory in that it is a theory that makes possible the
formation of set-like entities, classifications, from “arbitrary” property-like
entities, operations. Feferman goes some way towards giving a consistent
account of naive set theory, and it is something like naive set theory which
is needed in foundations for a fully general (well founded) category theory.
However, as Feferman notes himself, unlike naive set theory his theory
contains no extensionality axiom. No attempt has been made to model an
extensionality axiom in any of our reconstructions. We do note however that
modelling an extensionality axiom does appear to be possible. Brady uses
a similar methodology to model both a comprehension axiom and extensio-
nality axiom in [1].

A disappointment with the Feferman paper is that his comprehension
axiom for classifications is less than wholly general. Whereas with the
standard foundations for category theory a distinction must be made between
small and large categories, the Feferman foundations require a similar
distinction to be made between partial and total categories. For example,
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the new foundations allow the construction of the category of all total
categories, but not the category of all categories, partial and total.

This is characteristic of the common approaches to foundations. With
NBG foundations it is legal to form the category of all small categories, but
not all categories small and large. The Grothendiek method of universes
allows the formation of all categories in a universe U, but not all categories
both in and outside U. It does allow the formation of the category of all
categories in U and some outside U, but its objects will all be categories in
a larger universe U’ and one cannot include as objects categories outside
U.

Inside such foundational frameworks one is given glimpses of what it is
like to have true freedom to categorially abstract, but in each case a seemin-
gly arbitrary boundary is drawn over which one is forbidden to legally step.
Such boundaries owe their existence to an almost pathelogical fear of
contradiction on the parts of past foundationalists. And such fear is not
without justification. Contradiction in the classical setting is a fearsome
creature with a rapacious nature. No sooner is its presence permitted than
the entire system is swamped by it, in that every sentence and its negation
take on the status of theoremhood. But it is well known that this nature can
be tamed, even harnessed, with a shift in logic.

The comprehension scheme used in the four theories given here is truly
unrestrictive. The strategy in all four cases has been to abandon the classical
logic as background logic for the theory and to assign a third truth value
to “contradictory” sentences. Aside from the behaviour of negation, the
difference between intuitionist theories 7h,;, Thy, and the paraconsistent
Thp;, Thy,,; is just an attitude to this third truth value. Intutionists regard it
as undesignated like False whereas paraconsistentists regard it as designated
like True. In all cases the existence of contradiction is contained in small
regions.

We believe that foundations allowing a truly general category theory can
only be achieved by abandoning some of the notions of classical logic. The
Feferman foundations originally appeared classical and quite general. We
have shown that it is possible to capture many of the original ideas of the
Feferman approach in theories which are intuitionistic or paraconsistent. The
shift away from classical logic allowed us to use an unrestricted comprehen-
sion axiom and to simplify the presentation.
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