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A LOGIC-BASED MODELLING OF
PROLOG RESOLUTION SEQUENCES

John S. JEAVONS and John N. CROSSLEY

Introduction

In logic programming a clear distinction must be made between the declara-
tive semantics associated with a logic program and the procedural semantics
(see for example Lloyd [4]). The declarative semantics associates a set of
sentences in formal logic to a given program, whereas the procedural se-
mantics gives a description of how the interpreter searches for a deduction.
In languages like PROLOG the deduction procedure employed consists of a
sequence of applications of SLD-resolution steps. In this paper we work
from the procedural aspect; we first introduce a formal logical system and
then we specify an injective map from the set of all finite SLD-derivations
into the set of provable sequents of the formal system. From this we are
able to provide a logic-based model for the procedural aspect of resolution-
based logic programming. Thus we are not addressing the declarative se-
mantics here; we are specifying what may be called the ‘internal’ logic of
the program.

To clarify the differences between the declarative semantics (which we
may regard as the external logical content) and the proposed logic-based
semantics (for the internal deduction procedure), we first consider a proposi-
tional program @ consisting of the five clauses:

p

-

-q
-4q

AW -
o aT
N

The declarative content is a set of sentences in classical propositional logic,
S = {p&q = p, =4, p, p=q, r=p}. The queries ? -p, 7 - q, ? - p, g and
? - p, p are all supported since each one of the sentences P, q, p&q and p&p
is a logical consequence of the set S. Nevertheless, standard PROLOG fails
to return an answer for any of these queries if the program clauses are
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written in the order specified.

Consider now the procedure for an SLD-refutation of ®U {« p, p}, as
distinct from an SLD-refutation of ®U {« p}. The corresponding two
resolution sequences are quite distinct entities, although in the declarative
semantics the formulae p&p and p are logically equivalent, so that from §
= p&p we can infer S |= p and vice-versa. The sequence below displays
an SLD-refutation of ®U {« p, p}, where the selected atom in a query is
indicated by underlining, and where the selected program clause is indicated
by the number above the arrow

?'E,P-S'?-Q-l-?—g,p:>?-g,p—3-?—2—3-true.

This SLD-refutation is not, per se, an SLD-refutation of ®U {« p}, al-
though if we delete the first query we then obtain such a derivation. From
the procedural viewpoint our logic-based semantics for the internal deduc-
tion process must distinguish between two such refutations. We propose to
associate a provable formula with a finite SLD-derivation in such a manner
that corresponding to two distinct derivations we have two formulae which
are not logically equivalent. In particular, the formula associated with a
query ? - p, p will not be logically equivalent to the formula associated with
the query ? - p, so the PROLOG comma will no longer be interpreted as an
idempotent connective (like &) in classical logic. We introduce a new
connective®(see next section) for the logical connective corresponding to the
comma in PROLOG clauses. In the proposed logic a sequent A4, ..., A, —B
corresponds to a formula (4,°...24,) D B, so that the comma in the left-
hand side of the sequent corresponds to our new connective®. Now in most
logics the sequent 4 - A is provable, and in our logic the sequent A, A
AeA is provable but we cannot contract on the left-hand side to obtain a
proof of A + AeA. Similarly, we do not allow weakening, the sequent 4
A is provable, but we cannot weaken on the left side to obtain a proof
of A, B + A, for an arbitrary formula B. The next sequence shows a failed
attempt for the query

2-p.7-p>0-g,p>2-p,p>?-pr>7-r

The choice of program clause 5. ensures that the resolution sequence can
never terminate with true, yet p is clearly a logical consequence (in the
external sense) of the set of selected program clauses. This example reinfor-
ces our view that in dealing with the internal logic we must indeed consider
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a formal system with no weakening because weakening allows the introduc-
tion of fake dependencies, but in a resolution proof every selected program
clause is relevant to the proof. .

Finally, the connectiveewill be non-commutative since a derivation se-
quence for the query ? - p, g via some computation rule is not, a priori, a
derivation sequence for the query ? - ¢, p. The computation rule must also
have a semantic interpretation in the proposed internal logic. Lloyd [4]
points out that if @ is a definite program and if ®U {« A4} has an SLD-
refutation via a computation rule R, then ® U {« A} also has a SLD-refuta-
tion via any other computation rule %’'. However, from the viewpoint of
the internal logic the two refutations do not correspond to the same deduc-
tion of A.

In classical logic the expression 4,, ..., A, — B may either be a sequent
(using + as a separator of the right-hand side from the left-hand side), or
the expression may stand for the assertion that from the axioms A4,, ..., A4,
we can deduce B (in some formal system). The two notions are related since
in most traditional logics we have that the sequent 4,, ..., 4, B is prov-
able if, and only if, we can prove the sequent B from the axiom sequents
A4, ..., = A,. In our proposed logic the two notions no longer coincide
and to avoid confusion we will write sequents of our formal system as A4,,
.., 4, = ~B.

To each finite SLD-resolution sequence we will associate a sequent T' =
A, where I is a sequence of formulae. Each member of I" corresponds
either to an application of the computation rule, or to a selected program
clause, or to a re-arrangement of the atoms in a goal clause. If we have an
SLD-refutation of ®U {« A, B} the associated sequent is of the form I' =
A*B, where we note that the Prolog comma is not interpreted as &. If
the resolution sequence for the goal < A, B fails finitely with final goal «
C, D, E, say, then the associated sequent is of the form I' =  (CeDeE)
D (A*B) which can be interpreted as ‘after the sequence of steps represen-
ted by T, in order to deduce A*B we need a deduction of CeDeE’.

In order to represent an infinite SLD derivation we would require an
infinitary logic. In this paper we specify only a finitary logic, together with
its semantics. We indicate at the end of this paper how such an infinitary
version of the logic may be developed, but the details are not included as
the precise formulation of the infinitary version is much more cumbersome
than for the finitary case.

The rest of the paper is as follows. Section 1.1 specifies the syntax for
the logical system. In section 1.2 we give a Kripke-type semantics in terms
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of monoids with a partial order relation. A soundness and completeness
result is established in section 1.3. In section 2 we give the translation of
an SLD-resolution step into the logic and extend this to the specification of
any finite SLD-derivation in the logic.

1.1 The formal system L,

Our logic for representing the internal logic of a resolution based inference
system will be denoted by L,. The basic alphabet contains the following
symbols:

(i) a countable set of variables x, y, ... ;
(ii) function symbols f, g, ... ;

(iii) predicate symbols P, Q, ... ;

(iv) propositional constants L and 1 ;
(v) binary connectiveseand D ;

(vi) universal quantifier v ;

(vii) punctuation symbols (, ).

The terms of L, and the well-formed formulae of L, are specified in the usual
inductive manner.

The axioms and inference rules are given below in sequent form A =
A, where A is a L, formula and upper case Greek letters stand for finite
sequences of formulae.

Axioms

A  (for any formula A)

A (for any sequences A, T and any formula A)
1

A L, T

Inference Rules

(1 - weakening) AT =1+A
ALLE=+A
(cut) T=+A A A L=+B
AT,Z=+B
I' A= +B I'=+A A,B,L=+C
Dy sRE 3 , B,
( ) I'=+-A4ADB L2k A, ADB, T, Z =+C
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(*R) T'=+-4 A=+B (L) T,A,B,L=+C

I' A= +A*B T',A*B, ¥ = +C
(V-R) T = HA(®y) (v-L) T,40,A=+C
I' = vx A(x) T',vxAx), A= +C

The rule (v-R) is subject to the eigenvariable condition that y does not occur
free in any formula of T'; in the rule (v-L) t may be any term.

We say that a formula A is provable (or is a theorem) if, and only if, the
sequent = HA is provable. It is easy to show that the sequent A,, ..., 4,
= + Bis provable if, and only if, 4, D (4,D...(4,DB)...) is provable, and
this formula is provable if, and only if, (4,%(4,°(...4,)...)) D B is prov-
able. We do not have to be particular with the bracketing when writing
(4,°...24,) aseis associative, but we do of course when we write A, D
4,D..).

The formula (4D B)e4) D B is a theorem (since ADB, A = B is
easily seen to be provable), but the formula (4¢(4AD B)) D B is not a theo-
rem aseis not commutative.

The system L, enjoys the cut-elimination property; this can be established
in a similar manner to that given by Gentzen [1] for classical logic, but the
proof in our case is actually easier due to the absence of structural rules in
L,.

The system presented here is in fact a subsystem of a logic presented by
Komori [2]. We do not include the connectives &, V (or the quantifier 3)
and this results in a simpler semantics for L, than for the logic given by
Komori which includes these connectives. Our logic L, is sound with respect
to the structures presented in Komori [2]. Moreover, since Komori esta-
blishes a cut-elimination result for his logic, it follows by the sub-formula
property that if a sequent is not provable in L, then it is not provable in
Komori’s logic. From this it follows that L, is also complete with respect
to Komori’s semantics. In sections 1.2 and 1.3 below we establish a sound-
ness and completeness result for L, with respect to a simpler class of struc-
tures than the structures employed by Komori (see the remarks at the end
of section 1.3).

1.2 Semantics

Our semantics for L, is a Kripke [3] style semantics where we have “states
in the progress of knowledge”. We first define a partially ordered monoid
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structure by M = (M, -, 1, <, o) where M is a set and
(i) (M, -, 1) is a monoid with binary operation - and identity 1;

(i) (M, <, o) isapartially ordered set such that m, < m, implies that,
for all mEM, m;-m < m,;m and m-m, < m-m,. The element oo is
the greatest element of M and for all mEM we have m-o© = oo-m
= 0o,

We now introduce a universe U which is a non-empty set. A pre-interpreta-
tion for the language of L, is a pair U = (U, F;: fis a function symbol of

L)) such that if f is an n-ary function symbol then F;: U - U. The triple
(M, M, U) is called a frame. Denote by L[U] the expanded alphabet of L,
formed by adjoining a set of new constant symbols, {u : u€ U}. We can
now define a valuation on the frame (M, M, U) as a relation |= between

elements of M and closed atomic formulae of L{U] which is to satisfy the
conditions:

() m [ L if, and only if, m = o and » [ P(,, ..., t) for each
closed atomic formula of L[U],

(i) m | 1if, and only if, 1 < m,

(iii) For any closed formula P(t,, ..., t,) of L[U], if m | P(,, ..., t,)
and m<m’, thenm’ | P(t,, ..., t).

This valuation is extended to all closed formulae of L{U] by defining

(iv) m |E ADB if, and only if, for all (m,, m,} € M* such that m, |
Aand m - m, < m,, we have m, | B,

(v) m [ A*B if, and only if, there exists (m,, m,) € M* with m, = A
andm, F Band m, - m, < m;

(vi) m [ vx A(x) if, and only if, for each uEU, m |= A(u).

We can also extend the relation |= to include closed sequents of L{U] by
defining

(viiym | C,, ..., C, = ~Bif, and only if, m |= (C;e...eC)) D B.

A straightforward induction shows that for any closed L[U] formula, A, we
have that if m |= A holds and m<m’ then m' |= A holds.
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The quadruple (M, M, U, [=) is called a model with domain U. An L[U]
sequent C,, ..., C, = B is valid in this model if, and only if, 1 | C;, ..
C, = B’ holds for each closed sequent C;, ..., C, = —B", where C, ..
C, = +Bis any closed L[U] sequent which can be obtained from C,, ...,
C, = +B by uniformly replacing any free variables present by constants
of L,[U]. Finally, a sequent C,, ..., C, = B is called valid if, and only
if, the sequent is valid in every model. It is easily verified that the axiom
sequents of the form A = A4 and = 1 are valid. The axiom sequent A,
1, L = A is also valid; this follows by observing that if m |
Dys...eD,o L oE\e...oFE , then m= oo, and also that o |= 4 holds for every
formula A4, which is established by induction on the complexity of 4.

1.3 Soundness and Completeness
Theorem 1. If the sequentT' = A is provable in L, thenT = A is valid.

Proof. From the remarks at the end of the previous section, it suffices to
establish that all inference rules preserve validity. We illustrate the argument
by considering the two rules (D-L) and (*-L).

Let (M, M, U, [=) be an arbitrary model and let F be any closed formula
of L,{U]. We will denote by m, an arbitrary element of M such that m, | F
holds in the model. Consider an application of the rule (D-L)

¢, ..., =+4A D, ..D,BE,..E=rC
D, .. D, ADB,C, ...C,E, ...E = +C

r

Since we are assuming that the premisses are valid we have (using the
notation introduced in the last paragraph of section 1.2)

me ....mg A (D
and

Mp: . o .Mp- - mg - mg. . ... .mg | C ()

Now from the definition of the relation m | A"DB" we have that
My sy - My | B, so using (1), with my- = mce ... mee, we have

my-~Sp mc"l' v wve o mc; '= B’ (3)
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Using (3) in (2) with mg- = my~p - mc; . ... . mc then yields

Mp; . e . Mp: Mg Sp M, o oo M Mg e g | C

and this establishes that the conclusion sequent of our rule (D-L) above is
valid.
Consider now an application of the rule (e-L)
£1’ Eery Cn A’ B; Dls il ) Dn = l__l_';':
Cis 50, Cos A8, Dy, o D, = HE

Since the premiss is assumed to be valid we have
mc;.....mC:-mA—-mB--mD;.....mD:|=E'. 4)

From the definition of the relation m |= A™*B", we have that for any m .z
there exist an m',- and an m'g such that m’ - - m'y < m,-,p. Since (4)
holds for any m,- and mp-, we can replace m,- and mg- by m’ ;- and m'g
respectively, and then the order preservation property of the monoid opera-
tion gives us that

Mc, .o .me My m'gMp: . ... .My <

m.c’1 & v mc; Mo mD; < wee . Mpe,

n

and hence we can conclude that we have
M oo M Myep  Mp; . ...y | E,

which establishes the validity of the conclusion sequent for the rule (e-L).
The remaining rules are dealt with in a similar manner, and this esta-
blishes our soundness property.

Theorem 2. IfT' = A is not provable in L, then T' = A is not valid.

Proof. We construct a model with the property that if I' = A4 is not
provable in L, then I' = A is not valid in our model. We first specify
our pre-interpretation for the language. Without loss of generality we may
assume our language contains at least one constant symbol, and at least one
function symbol (of arity = 1). We take as our pre-interpretation the in-
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finite Herbrand universe generated by the constant symbols and function
symbols of L,. Thus L[U] contains (new) constants naming each element
of our Herbrand universe.

We now specify our partially ordered monoid structure. Let W denote the
set of all closed formulae of L[U], and for each A € W define [4A] = {BEW:
A = B is provable in L[U]}.

Let M = {[A]: AEW} U {D}, where & is the empty set of L[U] for-
mulae. Partially order M by set inclusion so that [4] <[B] if, and only if,
[A] < [B]. Then the greatest element (o) of M is [ L], and there is also
a least element . The monoid operation on M is defined by [4]{B] =
[4*B] for any A, B € W, and & {A] = [A]"® = &. This operation is
well defined since if [4,] = [4,] and [B,] = [B,] then [4,][B,] =
[A,][B,]. The neutral element (1) for the monoid operation is [1].

This completes our specification of a frame (M, M, U).

We now specify a model based on this frame as follows. If 4 is any closed
L[U] formula then define [4] |= P if, and only if, PE [A], for each closed
atomic L,[U] formula P. Furthermore, we specify not & | P for all closed
atomic formulae P.

Lemma 1. In the model specified above we have that if C and A are any
closed L,[U] formulae then [A] = C if, and only if, A = + C is provable
in L,[U].

Proof. We argue by induction on the structure of C. For atomic formulae
the result is immediate from the specification of the model and the 4 = A
axioms. Consider the case where C is 4D B. The induction hypothesis gives
us that [D] | A if, and only if, D = A4 is provable and also [E] [ B if,
and only if, E = + B is provable. Now suppose [F] = 4D B, then we have
to show F =  ADB is provable. We have [F]{D] [ B holds whenever
[D] [ A, so in particular [F]{A] |= B holds. Thus [Fe4] | B and the
induction hypothesis allows us to conclude that FeA = B is provable. But
since F, A =  Fe4 is clearly provable we now conclude that F A=FB
is provable and hence also F = — ADB.

For the converse, suppose F = +— AD B is provable. If [D] |= A then the
induction hypothesis implies that D = + A is provable. By definition of the
monoid operation [F]{D] = [FeD], and FeD = B is provable using
proofs of F = +— ADB and D = A, so that now using the induction
hypothesis we again conclude that [F]{D] = B. This establishes that [F]
| ADB, as required.
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Consider the case where C is A*B, and suppose that [F] |= A*B. Then
we have that for some [D], [E] € W, [D]{E] < [F] where [D] | A and
[E]  B. The induction hypothesis then implies thatD = A4 and E = B
are provable, hence also D*E =  AeB. Since [D]{E] = [D*E] < [F]
implies that F = + DeE is provable, we have that F =  AeB is provable.
For the converse, suppose F = - A*B is provable, then from the induction
hypothesis [4] F A4 and [B] | B so that [4]{B] < [F] and hence
[F] | A*B holds.

For the case where C is the closed L{U] formula vx B(x), suppose first
that [F] | vx B(x) holds. Then we have that [F] |= B(x) holds for every
constant  of L,[U] and the induction hypothesis implies that F = +— B(x)
is provable for all constants g in L[U]. Now if we select a proof of
F = +B(u), where u is a constant that does not occur in F, and replace
each occurrence of u in this proof by a variable y that also does not occur
in the given proof, then we have a proof of F = + B(y). An application of
the rule (v-R) then yields a proof of F = + vx B(x).

For the other direction, suppose that F = +— vx B(x) is provable. Then
F = +B(u) is provable for each constant ¥ of L[U] and hence we have
from the induction hypothesis that [F] |= B(u) holds for all such u, and thus
[F] E vx B(x) holds. E

Lemma 2. Let D,, ..., D, = A be an L, sequent that is not provable. Then
this sequent is not valid in the model specified above.

Proof. We show that D,, ..., D, = A is not valid in the model specified
prior to the preceding lemma. To do that we must establish that the relation
(1] E D, ..., D, = A does not hold. Let {x,, ..., x,} contain all the free
variables present in D,, ..., D, = A, and without loss of generality we
can assume that no variable occurs both free and bound and also that no x,
occurs as an eigenvariable in the given proof. Suppose for a contradiction
that [1] |= D,, ..., D, = A holds. Then we have that [1] | D}, ..., D}
= kA" holds for all closed sequents D}, ..., D} = A" formed from the
sequent Dy, ..., D, = 4 by replacing the free variables by constants of
L{U]. The preceding lemma then implies that the sequent 1 = K
(Die...*D;) D A’ is provable. Now consider the case where each free
variable x; in D,, ..., D, = A is replaced by a constant y, such that u,, ...,
u, are all distinct. Given a proof of 1 = + (Dje...eD}) D A" we can replace
each instance of i, by x,, for i = 1, ..., n, and we obtain a proof of 1 =
= (D,*...D,) D A. However, 1 = + (D,*...eD,) D A is provable if, and
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only if, D,, ..., D, = + A is provable, and this gives our contradiction as
D,, ..., D, = + A is not provable by hypothesis.

The result in Lemma 2 completes the proof of Theorem 2.

As we remarked above, L, is in fact a fragment of a formal system of
Komori [2]. Komori establishes a completeness result using monoid struc-
tures similar to ours, but the universe U of individuals is no longer fixed,
so that for each element m € M we have some corresponding universe
U(m). More precisely, Komori considers structures (M, K, U) where M is
a partially ordered monoid structure and, further, (M, <) is a meet semi-
latticewitha- b Nc)=a-bNa-cand®dNc)-a=b-anb-
¢ for all a, b, ¢ € M. The least upper bound operation is used to interpret
the connective Vv, and the quantifier 3. The set K is a subset of M (in our
logic we take K to be M), and U is a function from K to the power set of
some non-empty set. Komori shows that if a sequent is not provable in his
system, then there is a model based on a frame (M, M, U), in which the
sequent is not valid. Furthermore, this model can be chosen as a finite
domain model, so that U(m) is a finite set for each m € M.

The corresponding result in our semantics for L, employs an infinite (fixed
domain) model, so our completeness result does not follow from Komori’s
semantics by deleting the meet semi-lattice property used to interpret vV and
3.

Ono (5] has given a semantics for predicate logics without the contraction
rule using monoids with fixed domain. However, Ono allows the weakening

rule and so our semantics for L, cannot be deduced from the semantics given
by Ono.

2. Representing SLD-Derivations in L,

In this section we begin by considering a single SLD-resolution step. The
resolution step can be considered to consist of three sequential sub-steps (see
below), and we specify an injective map from the set of SLD-resolution
steps into the set of provable L, sequents. This map is then used to specify
an injection from the set of all finite SLD-derivations into the set of prov-
able L, sequents.

We adopt the terminology of Lloyd [4]. If @ is a definite program and
G a definite goal « A4, ..., 4,, ..., 4, then the goal G’ derived from G
using a (variant of) a program clause A, <« B,, ..., B, is givenby « (4,, ...,
Apis By, ..., B, A, ..., A)B, where § is an m.g.u. of the atom A, selected
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from G and the head A4 of the specified program clause. The complete
derivation step from G to G’ is specified by

(i) an application of the computation rule to select an atom, A,, from
G,

(i) selection of a program clause whose head can be unified with A,
and

(iii) construction of the derived goal, G'.

This sequence of stages will be represented in L, by a provable sequent
of the form

Gy, COMP,, H, R, = + G,

where G, is a sentence representing the initial goal G, COMP, is a sentence
representing the application of the computation rule, H, is a sentence repre-
senting the instance of the input clause, and R, is a sentence representing
the construction of the resultant goal, this goal being represented by the
sentence G,.

Let G, be < P, P,, ..., P, and suppose the computation rule selects the
atom P, Let the selected input clause be Q < Q,, Q,, ..., Q... with as-
sociated unifier 6, so P is syntactically identical to Q6. The resultant goal

i & Py wees Py B 5, Oy Py, ..., P)0. We take as G, the universally
closed sentence

V((P,*P,e...eP)) D 1), and similarly G, is the sentence
v((PIO...OPHGQIO...OQ,,,-PJHO...OP,I)B D 1)

COMP, is the sentence
V(Pj-(Plt...-PJ_IOP;H'...-P,,) D (Pv..SP8 AP
We take for H, the sentence

v((@s*...*Q.) D 0),

and for R, the sentence
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v((Pl."',.Pj-l.Ql.'"!.Qm.l?i-&l.“‘.Pn)e D
(Q,°...00,°P,0...0P, P, ;0...0P)f).

Note that if the connectiveeis replaced by the classical conjunction, then
both the modified COMP, and R, are provable in classical logic. However,
neither COMP, nor R, are theorems in L,.

We now show the sequent

G,, COMP,, H, R, = + G,

is provable in L,.
The two quantifier-free sequents

(Po...8P)0 D L, (PeP,e...5P, P, ;o...¢P)§ D
(P,s...Pp...oP,)0, (PoP,e...oP, 0P, ®...¢P ) = + L

Va2 B

and

(Q,*...*0,)0 D P, 0, (Q®...2Q,*P,s...eP, *P,, o...sP,)0,
= I (PSP,*...0P_oP,, *...oP)f

are easily seen to be provable in L,. Application of the cut rule then yields
the provable sequent

(Ps...P)0 D L, (PoP,e...P,,*P, ;o...P)6 D

(P,s...oPj...2P,)6, (Q;*...0,)8 D P, 0,
(Q,°...Q,*P,%...0P, *P, 0. P)§ = + 1.

If we now apply the rule (v-L) to the first three formulae in the antecedent
of this last sequent, we have a proof of the sequent

Go, COMP,, H,, (Q,®...50,*P,¢...*P, oP, ¢. eP)j = I 1.

Jj+1e
An application of (D-L) then yields a proof of

Gy, COMP,, H,, (P,®...5P, 8Q,*...%Q, ¢P,, *..¢P,)§ D
(Q:°...2Q,oP,o...oP, P, o..*P,)f),

(Py*...oP; 0Q;0...00,oP,, 0. P )0 = + L.
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Now an application of (O-R), followed by an application of '(V-L), gives
Go, COMP,, H,, R, = —(P,®...0P,#Q,®...2Q oP, o eP)§ D | .

Finally, applying (V-R), noting all formulae in the antecedent are now
closed, we have

G,, COMP,, H, R,, = + G,
as required.
Successful SLD-derivations in L,

Given a successful derivation with initial goal G, and final empty goal G,
we have in L, the associated provable sequents, for each derivation step,

G,, COMP, H,, R, = + G,
G,, COMP,, H,,R, = + G,

: : (D
G,,, COMP,, H, =r 1

Repeated application of the rule (*-R) then gives the provable sequent,

G,, COMP,, H,, R,, G,, COMP,,..., G,,, COMP,, H, =
HGeGe...o 1.

Now since we have as an initial sequent
G,G,..,G,, L =+ 1
we have the provable sequent

G,, COMP,, H,,R,,G,, ... H = + 1. )

We can regard (2) as representing the entire derivation in L,, but an alter-
native to (2) is obtained by applying the cut rule (n-1) times using (1) (to
eliminate G,, ..., G,, as antecedent formulae)

Go, COMP,, H,, R,, COMP,, H,, R,, COMP,,..., COMP,, H, = + 1 (3)
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If the derivation has computed answer substitution 6, then corresponding
to the soundness of SLD-resolution, as given in Lloyd [4], we have the
following provable sequent of L,

COMP,, H,, R,, COMP,, ...,R,,, COMP,, H, = + V(P,*...*P)§, (4)
where Gy is < P,, P,, ..., P,.
This result is readily established using an argument analogous to that used
in establishing the provability of the sequent G,, COMP,, H,, R, = + G,,
given in the beginning of this section. We take (4) as our L, sequent repre-
senting a refutation branch for ® U {« P,, ..., P,}.
Finitely failed SLD-derivations in L,

Finitely failed derivations end in the application of the computation rule to
select an atom which cannot be unified with the head of any input clause.
Corresponding to (1) above we have the provable sequents

G,, COMP,, H,, R, =+ G

: o)
Gn-z’ COMP»-I! Hn—l’ Rn-l = F Gn-l
G,,, COMP,, =+ G,

where, if G, is « Q,, ..., Q,, the final goal, and COMP, is

v((Q2Q,°...20;,20;.,%...°Q) D (Q;*...¢Q))
corresponding to the selection of the atom Q, then G, is defined to be the
formula V((Q*Q,°...2Q0;,*Q.,*...°Q, D 1)

To obtain a sequent analogous to (2) we see that from (5) we have the
provable sequent

Gy, COMP,, H,, R,, G,, ... G,,, COMP, = + G...*G..
Since the sequent

Go'....G:,.Qj.Ql.---. )i1® j+l.'".Qr= =L
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is provable we then have the provable sequent

G,, COMP,, H, R, G, ..., G,,, COMP,,
QJ_.QIQ.__Q j_lijHo___ch =} 1

which then yields
GO’ COMPU Hly Rl, Gls sery Gn—l! COMP” = (}:

as the analogue of (2).

Similarly an application of the cut rule (n-1) times in (5) yields the prov-
able sequent

G, COMP,, H,, R,, COMP,, H,, ..., COMP, = + G,

which is the analogue of (3).

If the failed derivation has associated unifier sequence 4,, ..., 6,, then
letting 6 be the composition of this unifier sequence, we also have the
provable sequent

COMP,, H,, R,, COMP,, ..., COMP, = +
V(02052000 00) D V(P,e...oP)h. ©)

corresponding to (4).

We take (6) as our L, sequent for a finitely failed derivation of
® U {« P, ..., P}, terminating with the goal < Q,, ..., Q, in which the
atom Q; is selected and fails to unify with the head of any program clause.

3. Concluding Remarks

We have introduced a formal system L, for representing finite SLD-deriva-
tions so that a finite derivation may be represented by a provable sequent
Ay, ..., 4, = + B, where the sequence of formulae 4, ..., A, represent the
sequential applications of the computation rule, program clause selection,
and subsequent re-arrangement of atoms in the derived goals. A sound and
complete semantics for L, is obtained in terms of Kripke-style semantics
using a monoid equipped with a partial order relation.

To extend the analysis to include infinite SLD-derivations we have to



A LOGIC-BASED MODELLING OF PROLOG RESOLUTION SEQUENCES 205

extend L, to an infinitary logic in which sequents of the form 4,, ..., = +
B are allowed with an infinite sequence of formulae in the antecedent. Such
an extension is indeed possible by adjoining to L, infinitary connectives to
represent an infinitary expression like 4,94,®.... A soundness property for
this infinitary logic is obtained by considering monoids further equipped
with infinitary operations, but we do not have a corresponding completeness
property.

Monash University
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