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SHEAF SPACES ON FINITE CLOSED SETS

William JAMES

1. Introduction

A sheaf space on closed sets is very similar to an ordinary sheaf space and,
like ordinary sheaf spaces, they have a special relationship with sheaves.
A sheaf space is a continuous local homeomorphism between two topologi-
cal spaces. Sheaves and presheaves over topological spaces are contravariant
functors that take a topology ordered by set inclusion as a domain category.
It is known that a sheaf over an open set topology will give rise to a sheaf
space and vice versa. It is usual to note that the category of all sheaves on
an open set topology &7 for a space X is equivalent to the category of all
sheaf spaces over X with the same topology. With this paper we modify the
notion of local homeomorphism to deal with closed sets and verify that at
least a restricted class of closed set sheaves are equivalent to “closed set
sheaf spaces™.

The notion of a closed set (pre)sheaf is a particular example of the notion
of a (pre)sheaf over a category and as such is uncontroversial. The notion
of a sheaf space over closed sets is itself not especially different from the
usual sheaf spaces however in the absence of a general theory allowing us
to forgo open set topologies we could be accused of misusing the “sheaf
space” name. In fact this paper is part of a dualisation project for sheaves
and toposes where the usual notion of a sheaf is “dualised” by being defined
over closed sets instead of open('). The aim of the project is to develop
paraconsistent logics for categories of sheaves and so toposes. The “topos
logic” of a category of sheaves over open sets is esssentially the Heyting
algebra of the open sets ordered by set inclusion and so Intuitionist. Closed
sets when ordered by set inclusion are a paraconsistent algebra. For
categories of sheaves over closed sets this is expected to give us a paracon-
sistent “topos logic”. In fact, it does. The principal idea of the dualisation
project, that any existing topos logic amounts by a process of dualisation

(*) This idea of dualisation is distinct from the usual definition within category theory
but it is intended that there be made some sort of intuitive connection.
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to a description of another topos’ paraconsistent logic, can be found in the
forthcoming Mortensen (1994). There is also a description of closed set
sheaf categories and the object of their logics, the subobject classifier Q. The
proof that the logic of these categories is indeed paraconsistent is expected
to be published as a paper later in 1994. The proof consists of showing that
a characteristic closed set paraconsistent algebra operator, — , exists as an
arrow (1XQ-Q for internal poset Q. In particular we are then able to
describe the paraconsistent negation operator —:Q-»{2. The proof will hold
for all categories of sheaves over any closed set topology.

There is some expectation that an adequate description of a closed set
sheaf space can be put to use in terms of Davey’s representation construct-
ions. Davey (1973) describes a general method for converting a subdirect
product representation of an algebra to a representation of an algebra of
global sections of a sheaf space. We note that Davey’s construction is given
in terms of open set sheaf spaces. The question of representation of paracon-
sistent algebras, particularly as sheaf spaces, becomes a concern for our
project of “dualisation” since, as suggested above, we know that categories
of closed set sheaves manifest the paraconsistent logic of the closed set
topology of the base spaces. Such categories display paraconsistent algebras
as part of their structure. We find for example that lattices of subobjects are
paraconsistent algebras. There is a speculation that inconsistent but non-
trivial theories can be represented as categories with such structure. It is
further speculated that mathematical and logical objects arising from
inconsistent but non-trivial mathematical and logical theory will be most
naturally collected into categories of this sort. On the hypothesis of an
equivalence between closed set sheaves and sheaf spaces, one way to
investigate these speculations is to develop representation theorems which
amount to equivalences of categories between say a category of paracon-
sistent algebras and a category of closed set sheaf spaces. Our object would
seem to be most immediately available if our sheaf spaces were defined over
closed sets. In the first instance though we must set about discovering the
viability of the notion of a closed set sheaf space. In particular we will want
to know how closely the theory of closed set sheaves and sheaf spaces
mirrors the theory of open set sheaves and sheaf spaces. To that end we
consider an equivalence of categories result for closed set sheaves and sheaf
spaces.

Our aim will be to present a somewhat restricted revision of the standard
constructions for the presheaf to sheaf space functor L and the sheaf space
to sheaf functor T' that can deal with structures on closed sets rather than
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open. While we propose to proceed along the usual line of development we
shall at times be required to alter the usual proofs to accomodate the new
nature of the stalk and base space topologies.

It will be advantageous to restrict the usage of the constructed functors
to presheaves and sheaf spaces over spaces X with topologies &7 where any
member of &7 is a finite subset of X. That is to say the usual construction
will not in general work for closed sets without some restriction of this sort.
We make significant use of this restriction.

We will also have occasion to restrict our constructions to presheaves F
where for any closed U, the set F(U) is finite. This is in response to what
seems to be a deep feature of the construction of sheaf space morphisms
from presheaf morphisms: given a presheaf morphism f: F - F' it is
possible to describe a function Lf from constructed sheaf space (LF,p;) to
(LF',pr) but to prove that function continuous in general we will be
required to accept arbitrary unions in the topology on LF. Notice too that
the construction of sheaf I'E from sheaf space (E,p) may not guarantee finite
sets '"E(U). The particular implication for us is that while we can describe
a functor I" from the category of all sheaf spaces over X to the category of
sheaves over X it will not in general compose with the functor L restricted
to sheaves. So the domain of our I' will be restricted to sheaf spaces (E,p)
where E is finite. These restrictions are somewhat ad hoc but only from the
point of view of creating a more general “sheafification” theory.

Note well that the above restrictions apply only for the particular construc-
tion of functors L and I included here. There should be no conclusion that
this indicates which presheaves and sheaf spaces can exist on closed sets.

We will adopt the following conventions: <7 is always a closed set
topology of finite subsets of X; presh(X,<7) is the name for the category
of closed set presheaves over topological space X where for any closed
U € X and any presheaf F the set F(U) is finite; sh(X,<7) is the category
of sheaves in presh(X, &); sheafsp(X, &) is the category of sheaf spaces
(E,p) over X where E is finite. Any category name given without an
underbar should be taken to refer to the unrestricted categories in question.
L will be a functor presh(X, & )y>sheafsp(X,o7); T will be a functor
sheafsp(X, T )»sh(X,7).

We shall end by discovering that sh(X, &) is equivalent to sheafsp(X, <7).
Note that since part of the motivation in describing an equivalence of
categories has to do with the “topos logics” of a category of closed set
sheaves and since we have placed an unusual restriction on the sheaves we
finally deal with, there is some sideline interest in providing sh(X, <) with
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a subobject classifier. The category sh(X, &) always has a classifier (. The
usual construction (Goldblatt (1984), p.369) for that Q given &7 as descri-
bed above yields for any U € <7, finite Q(U). This construction requires
an aside showing how to avoid arbitrary unions in the construction of
character arrows - see the forthcoming Mortensen (1994). We expect the
sheaf {1 to be the subobject classifier for sh(X, &).

Our presentation follows closely that of Tennison (1975). And for the rest
of this paper all topologies, sheaves, and sheaf spaces are understood to be
given in terms of closed sets unless otherwise stated.

1.1 Definition. Any collection § of sets will be called a basis for a closed

set topology T on a space X=\Ug when we have that b € T iff b is a finite

union of members of 8. Any collection o is a subbasis for closed set

topology T if the collection of all intersections of members of « is a basis

[jr T. Plainly, any collection « can be used as a subbasis for a topology on
o,

1.2 Definition. For a topological space (X, &7) set inclusion is a partial
order on <7. We will use &7 to denote both a closed set topology and the
poset category that has the sets of the topology as objects and all inclusions
as arrows. A presheaf over X with topology &7 is any contravariant functor
F:7%- SET. This will also be called a presheaf on <7. For any arrow
U € Vin & we will use F}; to denote F(U S V). A sheaf on &7 is any
presheaf F that satisfies two conditions for any U € <7 where
U=U{U,U, € &,i € I}:

(1) if s, s" € F(U) such that Fy,(s) = FU,(s"), all i € I, then s =5

(2) if we have {s; € F(U): i € I} such that Fi,,, (s) = Filny,(s), any i,
J € 1, then there is some s € F(U) such that F};(s) =s,, any i € I.

Given that <7 is a topology of closed sets the sheaf F is called a closed set
sheaf.

A morphism of presheaves is a natural transformation of functors.

1.3 Construction. For any presheaf F over X with topology &7 and any
x € X we define the stalk F, of F at x as usual to be the direct limit of the

direct system of sets and arrows {F(U): x € U € &7} and FY where
xXEVE&UandV E &7,
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Fix x € X. Let Z = [] F(U), the disjoint union of all F(U) where
x€UegF We deﬁne[ﬁ'fequivalence relation ~, on Z where supposing
u€ FU) S Zandv € F(V) © Zthenu ~_ viffthereisa W € &7 such
thatx € W< U N V, and F(u)=Fj(v). Then F, =lim(F(V)) is Z/~,
together with maps e

FU—-F,=FU)>Z—>@ZI~):5s+>5,.

Each s, is an equivalence class [s] under ~,.

The following claims are straightforwardly true: e € F, iff e =s, for some
s € F(U) where x € U. As a corollary for fixed x € X we have
F,={s5:5 € FU),x € U € &}. And for s,,t, € F, with s € FU),
t € F(V), wehave s, = ¢, iff thereissome WS U N Vwithx E WE &
such that Fi(s) = F(1).

Suppose a morphism f:F — F' of presheaves. Recall that f is a natural
transformation given by components f,: F(U) - F'(U) for each closed
U < X. For each x € X we have stalk morphisms f;: F, > F'_: 5= (f,(s)),.
Obviously for composite presheaf morphism F & F' 4 F'’ we have

&N, = g.f

1.4 Definition. A map p:E - X between topological spaces E and X is
continuous if for any closed subset U of X, the set p(U) is closed in E
(Kelly, (1970), p.86). A map p:E - X is a local homeomorphism if for any
e € E there is some open N S E and some open U € X such that e € N,
p(e) € U, and the map p|N:N - U is a homeomorphism. The map p/|N is
a homeomorphism if it is a bijection and both it and its inverse are continu-
ous with respect to open sets. In essence, a map is a local homeomorphism
if it is a homeomorphism when restricted or “localised” to an open subset
of its domain. Plainly, we can describe a similar property of maps in terms
of closed sets. Replace all occurences of “open” with “closed” in the
definition of a local homeomorphism and a homeomorphism and we have
the definition of a closed set local homeomorphism. A closed set sheaf space
on X is a continuous closed set local homeomorphism p:E — X between the
topological spaces E and X. When X is understood we shall use (E.p) to
denote the sheaf space.

For continuous local homeomorphism p:E — X and closed U S X a
section of p over U is a continuous map s5:U - E such that p-s = id,,. The
collection of all sections over U is denoted TE(U).

A morphism of sheaf spaces g:(E,p) - (E',p’) is a continuous map
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8:E - E' such thatp = p'-g.

1.5 Proposition: any homeomorphismp | N:N - U guaranteed by p as local
homeomorphism gives rise to a section (p|N)': U—> N - E.
Proof: (p|N)" is by definition continuous and plainly p-(p|N)"* =id,. =

1.6 Proposition: any section s:U - E is a closed map.

Proof: by hypothesis U is finite so s(U) is finite. For any e € s(U) there
are closed neighbourhoods M of e in E and V of p(e) in X such that
p|M: M -V is a homeomorphism. Homeomorphism p |M maps M N s(U)
bijectively to (p| M)(M) N U since s is a section. Since (p| M) is continu-
ous and M closed in E, we have (p|M)(M) and therefore (p|M)(M) N U
closed in X. And since p|M is continuous we have M N s(U) closed in E.
Choose exactly one p|M for each e € s(U) and the set s(U) is the finite
union of the associated sets M N s(U). =

1.7 Proposition: any section s: U = E is a homeomorphism s: U — s(U).
Proof: since p-s=id, the map 5: U - s(U): x > 5(x) has a bijective inverse
p|s(U). The section s is continuous and a closed map so given p as continu-
ous the map p|s(U) is continuous. ™

1.8 Theorem: For a sheaf space (E,p) with finite E the collection of sets
s(U), for all s € TE(U) and all U € <7, is a basis for the topology on E.
Proof: By hypothesis all U € <7 are finite, so all s(U) must be finite
subsets of E. Let M be any closed subset of E. For any e € M there is
some closed neighbourhood N S E such that a homeomorphism p | N exists.
The set M N N is closed in E and since p|N is a homeomorphism we have
asections=(p|(M N N))" over (p| NY(M N N)=p(M N N). For convenien-
ce let W=p(M N N). Plainly, e € s(W)S M. Recall that by hypothesis the
space E is finite so the subset M must be finite. Choose one s for each
e € M as described above and the set M is the finite union of sets s(W).
Since E is itself a member of the topology it follows that E is some finite
union of sets s(U). Since also any s(U)< E the space E is the union of all

s(U). =
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2. Construction of functor L:presh(X,&7) — sheafsp(X,7).

2.1 Construction: Given a presheaf F on X we can construct a sheaf space
(LF,pg). Let LF=]F,, the disjoint union of all F,, x € X. Define p.:LF - X
50 that (pp)'(x)=F. all x € X.

Suppose U is closed in X and s € F(U). Define a map §: U - LF: xi—s,.
We topologize LF by accepting the collection of sets $(U), all s € F(U),
all U € &7, as a closed set subbasis. All we need show is that LF= U{$§(U):
s € F(U), any U € <7} This holds since where x is fixed F ={s,:
s € F(U),x € U € &7}. We will presently establish that the sets §(U) are
in fact a closed set basis for a topology.

The map p,: LF - X is continuous with respect to this topology since for
any closed U € X we have (pp)"(U)=[[F,. And that implies (p,)(U) is the
collection for all x € U of points s, wherex € VE 7 ands € F(V). But
suppose U S Vand s € F(V). We always have Fy(s)=Fy(s| U). So,

ey'=Uswm:se Fm,veu,ve F}.

By hypothesis U is finite so there are a finite number of V € U and
(P (U) will be a finite union. Notice that this proof is clearly dependent
upon the restricted 7. Plainly some sort of restriction on &7 or some extra
hypothesis about the topology on LF will always be needed to prove that
P is continuous with respect to closed sets.

The map p: LF - X is a local homeomorphism. Any e € LF will have
some closed neighbourhood §(U). The maps p,|§(U) and § are inverses and
since p, is continuous and §(U) is a closed set, we have continuous p; | §(U).
We prove that § is continuous by noting that p,|§(U) will be a closed map
(take closed sets of LF to closed sets of X).

2.2 Theorem: The collection of all sets §(U) where §: U —» LF: x — 5, is
defined iff x € U € & and s € F(U) is a basis for a topology on LF.
Proof: any collection 8 of sets identified as a closed set subbasis for a
topology is a closed set basis for the same topology if any arbitrary intersec-
tion of members of § is a finite union of members of 8. Since by hypothesis
any U is finite, we have any §(U) as finite and any arbitrary intersection of
sets $(U) amounts to a finite intersection. That is, suppose « is a non-finite
collection of finite sets. If any members of « are disjoint, then Y= and
is therefore finite. Otherwise if no members of « are disjoint arbitrarily
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choose some b€ «. Note that (|« S b all bE «. Also, for any x € b such that
x¢& e there is some b’ € o for which x&b'. Let o’ be a collection which
contains b and exactly one such b’ for any x € b where x&o. Then o' is
a finite collection and o' =(a.

Let §(U) be defined for s€EF(U) and #V) for tEF(V). Suppose
e€ES(U)NH(V), then e=s,=t, for some xEU N V. If 5,=¢,, then there is
some WE &7 such that x € W and some r € F(W) such that r=Fy(s)=F(f).
But this is true for all x€W and furthermore r=Fy(r)=Fi(s)=Fi?). In
other words for all x€ W we have r,=s,=1,. So (W)S $(U) N #(V). Since
this is true for any e €$(U) N #(V) and $(U) N H(V) is finite, that intersecti-
on is the finite union of sets 7(W). =

So far we have not needed it but when for any closed USX we have
presheaf F with finite F(U), we will use the underbar notation (LF,p;) to
denote the constructed sheaf space.

2.3 Construction: Suppose a morphism f: F — F' of presheaves. Suppose
too that for any closed U < X the set F(U) is finite. Define sheaf space map

Lf: (LF’pF) - &F"PF')

so that for any s, € LF, (LA)(s,) = £i(5,) = (f,(s)),. This assures us that
Pr'Lf = pp. For any e € LF we have Lfle) = s5', iff e = s, for some

§ € F(U) such that fi(s) = s'. And since we have that LAS(U)) = £,(s)(U) ,
we find that for any closed set §'(U) € LF’ we have (L)'(§'(D)) = {8(U):
s € F(U), f(s) = s'} Since we have imposed the restriction that any F(U)
be finite, (Lf)"'(§(V)) is a finite union of closed sets and therefore a closed
set of LF. The function Lf is continuous.

It should be apparent that if we do not restrict the size of F(U) it is
possible that there be a non-finite number of s € F(U) for which fu) =
§' in which case we need some extra hypothesis about the topology on LF,
an alternative topology, or another construction for Lf,

This discussion yields L as a functor presh(X, <7) - sheafsp(X, <7) since
if we suppose a composite presheaf morphism F 5 F' 4 F'’, then for any
5. € LF, we have L(g* /)(s,) = (g, £)(s,) and (Lg'Lf)(s,) = Lg(LAs,)) =
8 (f(s)) = (8. £)(s)).
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3. Construction of functor T and T: sheafsp(X, &7) — sh(X, &)

3.1 Construction. Given any sheaf space (E,p) on X we can construct a sheaf
TE. For closed U € X let

TE(U) = {continuous maps U = E such that p-s = id,}.

When V & U we will set (TE)} to be the map s +> 5|V and then we have
a functor and thus a presheaf T'E : U +» I'E(U).

3.2 Theorem: T'E is a sheaf.

Proof: Suppose && 3 U = U{U,. : U, € &, i € I}. Suppose s,
s’ € (TE)(U) such that (I‘E)ﬂj (s) = (I‘E)gi (s"),alli € I. Thatis, s|U, =
s'|U, all i € I. Since s and s’ are functions U — E and the collection of
sets U, covers U we must have s = §' as required.

Now, suppose we have {s; € (TE)(U): i € I} such that

TE)iny, (5) = CE)ny, (5), all i,j € L.

Define amap s : U - E by s(x) = s(x) ifx € U, all x € U. Since we
have p's; = id,, all i € I, we have p's = id,,. Also, for any closed N € E
we have

sV 0 sy = Ut v nosqupy: i € 1.

Since each 5, is a closed map, the sets N N s(U)) are closed in E. Since
each s, is continuous, the sets s;' (N N s(U,)) are closed in X. Since all
closed sets of X are finite, s'(N N s(U)) is a finite union and therefore a
closed set. So, s is continuous as required. L

3.3 Construction: Suppose a sheaf space morphism g : (E,p) = (E', p'). We
construct the natural transformation I'g : TE —» T'E’ by specifying maps
Tg)y : TEWU) - TE'(U) for any closed U S X so that for any
s € (TEXD),

Tg)As) = g's.

Since both 5 and g are continuous g-s is continuous and since we know that
p'-g =p, we have id, = p-s = (p'-g)s. So, g's € (TE')(U). And for any
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V € Uin X the diagram

Tg)y
U TE(U) —— TE'(U)
1 TE)Y l l TE"Y
14 TE(VY) —— TE'(V)
Tg)y

commutes since for any s € T'E(U) we have (TE")J((T'g),(s)) = (g-5)| Vand
Tg)TE)y(s) = g-(s|V).

These constructions yield I' as a functor sheafsp(X, &) - sh(X, &7) since
if we suppose a composite sheaf space morphism E % E' 5 E'’ then for any
closed U € X and any s € (TE)(U), (Tg:H(s) = g:fs and (Tg-Tf)(s) =
TR ATNAs) = g (Fs).

It remains true that in producing a sheaf I'E from sheaf space (E,p) we
have accepted and used a restricted topology on the base space X but note
that we have required no restriction on E. Later we shall have need of a
restricted domain I'. Plainly if we restrict the domain to sheaf spaces (E,p)
where E is finite, we can define a functor

L : sheafsp(X, &) - sh(X, 7).

4. Equivalence of categories for sheafsp(X, <) and sh(X, 7).

4.1 Lemma: For finite E the sheaf spaces (E,p) and (LLE,pr) are isomorp-
hic.

Proof: We construct two morphisms k: E — LI'E and k': LTE - E which
are shown to be inverse closed maps (and so both continuous).

Consider any e € E. Let s: U — E be some section with e € s(U). Let
N = s(U), then s has inverse p|N. Let s’: U’ = E be another section with
e € s'(U). Let N' = 5'(U’), then s’ has inverse p|N'. Note that
SE€TE)U) and 5’ €(CE)U’). Let W = p(N N N'). Since (p|N)(N N N')
=pN N N) = (p|N)(N N N') we have s| W = 5’| W. Now both s and
s' are closed maps so N N N is closed in E. And s is continuous so
s'N N N') = Wis closed in X. So, we have (TE)Y(s) = [TCE)Y (s"). And
since p(e) € W we have s~ 5'. Therefore we can define a map
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k: E-»LTE: e > S

where s is any section of p for which e € cod(s).

Suppose s is a section over U. For any e € s(U) we have k(e) = s, so
k (5(U)) = {5,: € € s(U)}. Since p(s(V)) = U we have k(s(U)) = {s,,,:
ple) € U} = §(U). So, k is a closed map.

Any element of LT'E is s, for some s € (CE)(U) where x € U. Any
§ € (LE)(U) is a section of p. Suppose s € (CE)(U) and s' € (TEXU").
We have s ~, s’ iff x € U, U’ and there is some W such that x € W and
CE)s) = CE)y (s') which means s|W = s'|W and, in particular,
5(x) = s'(x). So we may define an arrow

k': LLE = E: 5, > 5(x).

The sets §(U) are a basis for the topology on LT'E and since k' (§(U)) =
{s(x): x € U} = s(U) we have k' as a closed map.

The map k' is the inverse of k since for a section s with e € cod(s),
s(p(e)) = e. So, k'-k = id;. Alternatively, the map k is the inverse of k'
since 5, € LLE only if x € dom(s) so plainly s(x) € cod(s) and since s is
a section p(s(x)) = x. So, k-k’ is the identity arrow for LTE. =

Note that technically the maps k and k' are maps k: E - LI'E and
k': LTE — E since if E is finite as assumed, then for any closed U S X the
sets I'"E(U) must also be finite.

4.2 Lemma: Presheaf F over X and T'LF are isomorphic iff F is also a sheaf
where for any closed U S X we have finite F(U).

Proof: we produce a natural isomorphism h: F — T'LF where for any
closed U € X, we have a bijection h,: F(U) = (TLF)(U). For any s € F(U)
we have a map § € TLF(U). We set h(s) = §. For closed V € Uin X
consider the diagram

ho
U 'FlU) —— (LF)(D)
| | | @y
v F(V) — (TLAHW)

hy
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For any s € F(U) we have hy(s) = §. Then, (TLF)Y($) = $|V. Now,
Fy(s) = s|V and h(s|V) = s|V. Since Fi(s) = Fis|V) we have s ~,

(s|V), s0s, = (s|V),, and as aresult §| V = 5| V. So the diagram commutes
as required and map h is a natural transformation. Note we require the
restriction upon F in order that we may define arrows I'LFY. .

The function A, is injective since § ={s.: x € U} = {1 x € =t
iff for all x € U we have s, = ¢, iff for all x € U there is some =3y 4
such that F,(s) = F.(#). The set U will be finitely covered by the sets W’
so if F is a sheaf and that last condition holds, then s = ¢.

Now if e € TLF(U), then e is some section U - LF of p,. As such e is
a closed map and e(U) is closed in LF. Given what we know about the basis
for the topology on LF we have a finite union of closed sets
e(U) = V{§(U): s; € F(U), U, € &7, i € I} (Note well: the subscript i
is an index and 5; € F(U) shquld not be mistaken for some 5, € LF).
Implied by this we have U = U{U;: i € I} and Fiiny (8) = Fijny, (), all
I,j € I. We can characterise e as the map where for allx € Uifx € U,
then e(x) = s,(x). Since the sets U, cover U there is exactly one s € F(U)
for which Fy(s) = s,. So for any U, and any x € U, we have Fi(s) = 5, =
Fii (s)), that is (s), = s,. So e is identical to the map §. The function h, is
surjective. ®

Note that technically h: F —> T'LF is more accurately the transformation
h: F —> 'LF since LF is finite by construction.

4.3 Theorem: Given our restrictions on the topology <7 on space X, the
functor L restricted to sheaves and the functor I' are an equivalence of
categories sh(X, &) and sheafsp(X, 7).

Proof: for this proof read L |sh(X, &7) for L. Functors L and T are an
equivalence of categories if there are natural isomorphims LT = id and
I'L = id,. We have already established isomorphisms k,: E - LI'E for
sheaf space E and h;: F - ILF for sheaf F, so we need only show that the
isomorphisms are natural. Suppose f; F - F’ is a morphism of sheaves.
Consider the following diagram in sh(X):
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hy
F F —— ILF
f [ f l l Ly
F' F — I\_ i
By

The diagram commutes if the component diagrams for each U € <&
commute. This holds since for any s € F(U) we have (hp)(s) = § and
LN (8 = Lf§ which is a map U - LF’ where for any x € U we have

LfHxE) = (f(s),. In other words Lf§ = fu/(tv\) And that is exactly
(he)fi(S)).-

Suppose g: (E,p) = (E', p’) is a sheaf space morphism where both E and
E' are finite. Consider the following diagram in sheafsp(X):

ke
E E —— TILE
2 1 g l l IL() @
E’ E’ —— TILFE'
k.

For any e € E, we have kie) = s,, for some section s of p with
e € cod(s). Assume s is a section over U. Now,

LI'g(k(e)) = LI'g(s,.,)
= @g)p(e)(sp(e))
= ((Eg)b'(s))p(e)
= (85)pe

And, k;(g(€)) = §', e, for some section s’ of p’ for which g(e) € cod(s’).
The map g-s is exactly one such section. Note that both g and s are continu-
ous so g-s is continuous, and p = p’-g so p"-g's = id,. And plainly g(e)
€ (g'5)(U) when e € 5(U). So, we can assert kz(g(e)) = (£°5),)» and
since p'(g(e)) = p(e) we have LI'g(k.(e)) = k.(g(e)) as required.®
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4.4 In summary:
Given the usual methods, a restricted class of sheaves over closed sets is
provably equivalent to a restricted class of sheaf spaces over closed sets.

The University of Adelaide

References

1. Allwein, G., “The duality of algebraic and Kripke models for linear
logic™, PhD thesis, Dept. of Comp.Sci, Indiana University, Aug.,1992.

2. Allwein, G. and Hartonas, C., “Duality for bounded lattices”, 1994,
(unpubl.).

3. Davey, B.A., “Sheaf spaces and sheaves of universal algebra”,
Math.Z., 134, 275-290, 1973.

4. Goldblatt, R., Topoi, Studies in logic, 98, 1984 (rev.ed), North-

Holland.

Kelly, J.L., General Topology, 1970 (reprint), Van Nostrand Reinhold.

Mortensen, C., Inconsistent mathematics, (forthcoming).

Tennison, B.R., Sheaf Theory, LMS lecture notes, 20, 1975, Cambridge
University Press.

HEER



