Logique & Analyse 137-138 (1992), 69-79

COMBINATORY LOGIC AND LAMBDA CALCULUS
WITH CLASSICAL TYPES

M.W. BUNDER

Type Assignment in Lambda Calculus

The primitive terms of lambda calculus are variables x, y, ... and possibly
some constants. Other A-terms are formed by application (if X and Y are
A-terms then (XY) is a A-term) and lambda abstraction (If X is a A-term and
x a variable then (Ax.X) is a A-term).

(XY) can be interpreted as the value of the function X at Y and (Ax.X)
as the function whose value at x is X.

There is an equality relation between A-terms which satisfies the following
axiom (amongst others):

B) Ox.MN = [N/x]M().

Most A-terms can be assigned an associated “type”. The intention is that
the type tells us what kind of term we have. We will describe types and the
rules for assigning them to A-terms.

Types are constructed from a class of type variables and/or certain type
constants using the binary operation —». X: co/— @B will be read “If U €
ofthen (XU) € R”

Given an arbitrary assignment of types to the free variables (and constants)
the types of compound A-terms are usually assigned by the following
rules:(%).

(") [N/x]M is the result of substituting N for the free occurrences of x in M. For details of
the definition and the full axioms and rules for equality see Hindley and Seldin [6].

() For full details see Hindley and Seldin [6].

70 M.W. BUNDER

oy

X: oo

I

Y: B 1)
Ox.Y). o B

4

X: ofs B Y:o
XY): %8

Here is a formal definition of a type of a A-term and also of the principal
type scheme of a A-term.

Definition of Type and Principal Type Scheme (p.t.s.)

If X: o/can be derived by —, and —»; in a deduction that has no uncancelled
hypotheses then X is said to have type o%.

Every A-term that has a type has what is called a principal type scheme
(p-t.s.) built up from type variables and —»s . All other types of a A-term
X will be substitution instances of the p.t.s.

Note that some A-terms such as (Ax.\y.xyy)(Az.z) have no types assigned
by the rules.

Type Assignment in Combinatory Logic

The primitive terms of a combinatory logic are a finite set of operators
called combinators. Other combinators are formed by application.
Each combinator has associated with it an axiom; for example:

KXY = X
SXYZ = XZ(YZ)
X=X

These combinators correspond to the following A-terms: X to AX.Ay.X,
§ to Ax.Ay.Az.xz(yz) and I to Ax.x.

Given this identification and the type assignment rules of the lambda

COMBINATORY LOGIC AND A CALCULUS WITH CLASSICAL TYPES 71
calculus we can derive the following p.t.s.s :

K:a-»(b—=a) :
and S:(@a->(b—=c)—=((a—+b)—=>(@—=0).

In this paper we will take these assignments of p.t.s.s to K and § as
axioms and not use, directly, any of their substitution instances. To compen-
sate for this we replace —, by the following rule:

Condensed Detachment (D)

If X:o%and Y: %Band o, and g, are the substitutions, of those for which
0,(c®) = 0,(B) - Fhas the least number of —s , for which o,(e%) has
the maximal number of distinct type variables, then (XY) : &

(This formulation is a somewhat more consice one than that in Hindley and
Meredith [6].)

The type assignment axioms for K and § and rule (D) lead exactly to the
p-t.s.s of combinators. In the same way p.t.s.s. of A-terms can be generated
using —i and a generalised version of (D), provided that all hypotheses are

initially of the form x:a.
Formulas as Types

A special case of (D), where v, and v, are identity substitutions, is given
by:

X:of» B Y:oof
XY): &

which, ignoring the terms, looks like modus ponens if - is read as implica-
tion and o¥and YBare formulas rather than types.

As the types for K and § are exactly the usual axioms for intuitionistic
logic and (D) encorporates some substitution and modus ponens it is not
surprising (for details see Hindley and Meredith [5]) that the types are
exactly the theorems of implicational intuitionistic propositional logic.

72 M.W. BUNDER

Classical Theorems as Types

The aim of this paper is to extend the type theory and if necessary the
combinatory logic or lambda calculus in such a way that the type theory
becomes a full classical propositional logic rather than just an intuitionistic
implicational one.

The extension to classical logic can be achieved most simply by adding
a constant proposition f and an axiom:

(@a=f—->f)—a

The usual logical connectives can then be defined by:

~o= o> f
SV B= ~of—» B
and AN B= ~(cf> ~B).

We will assign a “new” combinator or A-term U the above type as p.t.s.
i.e.

U.(@a=hH—-=fH—a

The constant f seen in type terms, will be an empty type. What U does
as a combinator will be investigated later.

First we will look at certain classical theorems and their corresponding
(extended) combinators. We will use some further combinators (definable
using § and K) and their types (derivable from those for § and K):

X=X I = SKK

BXYZ = X(YZ) where B = §(KSK
CXYZ = XZY " C = S(BBS)(KK)
WXY = XYY " W = CSI

I :a—>a

B :(@a=b)>(c—>a)—=(c—b)
C :@a->®b-c)=>(b-(@—-c)
W :(@a=(@->b)—-(a-b).

COMBINATORY LOGIC AND A CALCULUS WITH CLASSICAL TYPES 73

Using (D) we obtain successively:

BU:(c—»((a=f)—=f)—~(c—>a)
BUK : f—a

Thus the p.t.s. of BUK is the well known theorem that false implies all
propositions. Note also that BUK gives us exactly the proof of f — a using
the axioms or theorems B, U, and K and rule (D).

The classical theorem a A b — a can be written as

(@=@®->0)—>0—>a
Its proof given by BU(CB(BK)) can be written out as follows using (D).
B: (@a—=b) = ((c »a) - (c »b))
K: e— (d —»e)
BK: (c =e) = (c = (d —e))
C: (g = =i)) = (h >(g »i))
CB: (c —a) = ((a =b) = (c —=b))
CB(BK): ((c—= (d—e)) >b) > ((c»>e) > D)
U GD)=)—j
BU: &= (G =) >) > (k—j)

BU(CB(BK)): (c—»@-f)—=H—c

The following are the results of the substitutions induced by the use of (D)
in the above proof.

k = (c—>(d—»e)—>b,
i=c,
f=e=b

The theorem of classical implicational logic (Peirce’s law) which reduces
intuitionistic logic to classical logic corresponds to the following combinator:

BU{(IBS(CB)) [B(BUK)]} : (a—=>b)>a)—>a.

74 M.W. BUNDER

Proof Transformations

Combinators (or equivalently A-terms) do not only give a precise representa-
tion of a proof, they also allow a proof to be transformed easily into one
where the more basic axioms (of some weaker system) are used first and
ones needed to extend the system to a stronger one as late as possible. We
will treat the p.t.s.s of I, B, C, K and W as potential axioms for these
weaker systems.

The proof of aAb — a can be rewritten as follows using the properties
of B and C:

BU(CB(BK)) CB(CB(BK))U

CB(B(CB)BK)U
= B(CB)(B(CB)B)KU.

o

As the equations for B and C preserve type (see Curry and Feys [3]) the
combinator B(CB)(B(CB)B)KU also represents a proof of a A b-»a. Its initial
part B(CB)(B(CB)B) represents the proof of a theorem in the very weak
logic based on the p.t.s.s of B and C and Rule (D) and the proof is comple-
ted by just two applications of (D) with respectively the types of X and U
as minor premises. Note that as W is not used this is a theorem of a
“classical BCK logic”.

We can summarise results of this kind in the following theorem.

Theorem 1 Any proof in a (sub-) classical logic having at least B and C as
theorems can be reorganised to the form:

Z..IK..KW..WU...U 1)

where Z is a BC combinator and each of I, K, W and U will appear zero
Or more times.

Proof A proof can be represented by a combinator involving zero or more
of B, C, K, I, Wand U . Using B and C this combinator can be rewritten
in the form (1). The two combinators will be equal and will as above have
the same p.t.s. i.e. prove the same theorem.

Note 1. In a logic that has B, C and K, I can be defined so the I's can be
left out of (1).

COMBINATORY LOGIC AND A\ CALCULUS WITH CLASSICAL TYPES 75

Note 2. ZI...1 represents a proof in a BCI (or linear) logic. Logics similar
to this have been studied by C.A. Meredith, J.Y. Girard and others.

ZI...IK...K represents a proof in a BCK logic, versions of which have been
studied by Meredith, Ono and Komori and the author.

ZI..IK...KW... W represents an intuitionistic proof, ZI..IW... W a proof in
the relevance logic R.,.

In each case the Is, Ks Ws and Us are minor premises in (D) steps.

Note 3. The order of the combinators in (1) can be altered to for example
Z I.IK..KU...UW...W, so that the theorems proved are first BC then BCI
then BCU then “classical BCK” and then classical. Also we could have

Z, L.1U..UW...WU...U where an intuitionistic theorem is proved before
the classical etc.

Note 4. It might be thought that using W (1) could be simplified even
further to Z, IK W ...WU , but while this is true for the combinator, a W

step does not necessarily preserve type. III for example has typea —a , but
WII has no type.

Note 5. It was shown in [1] and [2] and also by Hindley in [4] that every
BCK-term has a p.t.s. However not every BCKW or BCKU term has ap.t.s.
A term ZI..IK...K, if Z is a BC term, therefore always represents a proof,

but given a term of type (1) one of the W or U (D) steps may not be able
to be carried out.

U as a Combinator

One choice for the “new” combinator U is a unifier with the property
UX=T

where T is a terminator combinator with the property
IZ=T.

U can clearly be defined as KT.

T can be defined as YK where Y is the paradoxical (or fixed point)
combinator defined by WS(BWB) with property

76 M.W. BUNDER
¥X = X(¥X).

Alternatively T can be the A-term (Axy.xx)(Axy.xx) and U the A-term
AZ.((Axy.xx)}(Axy.xx)).

Types for U and T by Type Assignment

If Rule (D) and the axioms for K and § are used to assign types, neither ¥,
T'nor U will have a type. In fact any reasonable type assigned, as an axiom,
to ¥ will cause the inconsistency of the corresponding propositional logic.
For example the choice Y: (a = a) - a gives Y7 : a, which in terms of the
logic gives an arbitrary propositional variable as a theorem. This problem
fortunately need not arise with T (nor obviously with U as classical logic
is consistent). In fact the following is sufficient as a type assignment rule
for T:

Ti X: o

T: o

The rule says that:

Theorem 2 T has every nonempty type.
Also we have:

Theorem 3 KT has every nonempty type.

Proof Every nonempty type is of the form o/ 23 Thus for some term
X:

)
X: o> B X : o
Xx: B
T:®)
KT: /- B

This however does not give KT the type (o f) = f) - ounless we

COMBINATORY LOGIC AND A CALCULUS WITH CLASSICAL TYPES 77

know this to be nonempty.

The further rule:
fe X:f
Y : o

allows us to prove:

Theorem 4 KT: ((c¥— BYy>RB) »o
(i) If e=fis nonempty.
(i) If ois f.

Proof

(i) If is a nonempty type then so is 98— o/for any 98 Hence by
Theorem 3

KT: (o9~ f) = f) > o,

(ii)
@
I1:f—>f X:f->H->f
xI:f
Tt

KT:(f>DH->0)—>f.

The type assignment for KT (=U) can be derived generally (as above) if
the following rule is added:

X: oo Z . oA—>f
Y: B Y: B -(1) 2)
Y: B

As Z : o/ f only if o¥is f, we can read this as:
If'Y : 98 follows if oo/is nonempty (X : oof and if o/is empty

78 M.W. BUNDER
(Z : of—>f)then Y : Bholds.

It can therefore be seen as an "or elimination" rule using excluded middle
(P or not P).

Types as sets

If { A,,..., A,} is a set of basis types and J is the closure of this set under
— , the standard set of types of say K could be seen as

{(cf> (B> o) | oo BE]},
and that of I as
{c— o | oA E I} .

In the extended type theory J , ¢ will be a basis type and every old type

will be augmented by {7}. The new sets of types for K and I will therefore
be

{TIU (o> (B> o)) | o2 BE I}
and {T}U (o> o) | /€ 1}

In this set of sets T is therefore a universal element.

The University of Wollongong

References

[1] Bunder, M.W., “Corrections to some results for BCK logics and
algebras” Logique et Analyse, Vol. 31 (1991) pp 115-122.

[2] Bunder, M.W. and Meyer, R.K. “A result for combinators, BCK logics
and BCK algebras” Logique et Analyse, Vol. 109 (1985) pp 33-40.

[3] Curry, H.B. and Feys, R. Combinatory Logic, Vol. 1, Amsterdam,
North Hollland (1958).

COMBINATORY LOGIC AND A CALCULUS WITH CLASSICAL TYPES 79

[4] Hindley, J.R. “BCK-combinators and linear A-terms have types”
Theoretical Computer Science Vol. 64 (1989) pp 97-105.

[5] Hindley, J.R. and Meredith D. “Principal type-schemes and condensed
detachment” Journal of Symbolic Logic, Vol. 55 (1990) pp 90-105.

[6] Hindley, J.R. and Seldin, J.P. Introduction to Combinators and A-
Calculus, Cambridge University Press (1986).

