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DISCRETE TENSE LOGIC WITH BEGINNING AND ENDING
TIME: AN INFINITE HIERARCHY OF COMPLETE
AXIOMATIC SYSTEMS *
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1. Introduction

The purpose of the present paper is to give semantically sound and
complete axiomatizations of all members in a certain infinite hierarchy of
systems of discrete (linear) tense logic with beginning and ending time. In
the semantics of any such system one conceives of zime as being simply the
closed interval [-m,n] of integers determined by a pair m,n of natural
numbers (so that it will always be the case that zero belongs to the time of
such a system). As far as the syntax of our tense-logics is concerned, it is
most closely related to that of two systems developed by Dana Scott in

* The present contribution reports research done under the auspices of the Swedish
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Logic”.



360 LENNART AQVIST

1964 and 1965 [see Prior (1967), ch. iv, §3, pp. 66-70 as well as Appendix
A,§§7.1 and 7.3]: it combines connectives for the next and the /ast moment
in discrete time (say, “tomorrow” and “yesterday”, respectively) with the
classical Priorean tense operators G, F, H and P (for, respectively, “always
in the future”, “once in the future”, “always in the past” and “once in the
past”), as in the Scott 1965 system; and with the Aristotelian omnitemporal
operators “always” (“at all times”) and “once” (“at some time”), as in the
Scott 1964 system. In addition to these eight tense-logical connectives, our
logics —referred to as the systems <7n,n with m,n > 0 in the sequel—
have a counterpart of the Kamp (1971) operator “now” (or “today™), which
is understood in a “non-pleonastic” sense to refer to the present moment.

The systems <7, n differ, however, from all existing treatments of tense
logic known to me in the following vitally important respect: in addition to
the syntactic resources just mentioned, our &7, n-language has a special set
of what I call systematic frame constants, for which straighttorward truth
conditions are laid down in the semantics (§4 infra) and which play a
highly important, characteristic role in our axiomatization. In spite of this
being so, I should point out that there seem to exist in the literature two
forerunners of our systematic frame constants in tense logic, viz. (i) the
Prior (1967) discussion of so called “world-state propositions” [see
especially ch. v, §§1-7 and Appendix B, §3], and (ii) the Gabbay (1981)
discussion of what he pertinently calls “the problem of irreflexivity in tense
logics™, on the basis of which he arrives at his famous irreflexivity rule,
first presented and investigated in that paper [see also my earlier
contribution Aqvist (1992) for some remarks on Gabbay (1981)]. The task
of examining in detail the relationship of my present systems to those
interesting sources of inspiration is quite complex, however, and must be
left for another occasion.

In order to get the “flavour” of my systematic frame constants, let us
quickly consider how to read formulae, or sentence schemata, involving
them. The two axioms in A3(d) [§5 infra], which express the idea that time
has an end as well as a beginning, are as follows, with appended readings:

R G B o “if we are at the end of time, then tomorrow
" anything whatsoever will be the case”.
A3(d).
“ r - . N . -
a, — wi: if we are at the beginning of time, then yes

terday anything whatsoever was the case”.
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The axiom A1(g) expresses the idea that we simply are in time, and reads:

Al(@). (@, Va,,V..Va, VaVaVv..Va,Va)y
“Either we are at the beginning of time, or we are at the moment right
after the beginning, or..., or we are at the moment immediately prece-
ding the present moment, or we are at the present moment, or we are
at the moment right after the present one, or..., or we are at the
moment immediately preceding the end of time, or we are at the end
of time”.

Again, the first axiom schema in A3(f) can then be understood as follows:

A3(f)[1st]. —a, = (ewA < A):
“if we are not [i.e. somewhere else than] at the end of time, then

it will be tomorrow that it was the case yesterday that A if and only
if A”.

A final, slightly more complicated example. The series of axiom schemata
in A4(c), expressing the truth conditions for sentences of the form GA [as
well as their “systematic ambiguity”, if you like], are read as follows:

a,>(GAe eAAEAA...Ae"mA):
“if we are at the beginning of time, then it will always
be that A iff tomorrow A and the day after tomorrow
A and... and the (n+m-1)st day after tomorrow A”,
a>(GAweAA AN ... Ae"A):
“if we are at the present moment, then it will always
be that A iff tomorrow A and the day after tomorrow
A and... and the (n-1)st day after tomorrow A”.
Ad(c). a,,~>(GAeeA):
“if we are at the moment right before the end of time,
then it will always be that A iff tomorrow [i.e. at the
next moment = the end of time] A™.
a,—~GA;
“if we are at the end of time, then anything whatso-
ever will always be the case”.
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The above examples of readings (“we are at such and such a moment™) of
our systematic frame constants seem to agree nicely with the following
assertion made by Prior (1967) on p. 188f.:

A world-state proposition in the tense-logical sense is simply an index
of an instant;... (his italics).

Moreover, our axiom schemata Al(a) and (b) again agree nicely with Pri-
or’s requirement that a world-proposition be true at one instant only [see
Prior (1967) e.g. pp. 83, 189].

The plan of this paper is as follows. After having presented the syntax of
the systems <m,n in §2, their model-theoretic semantics in §§3-4, and
their proof-theory in §5, we start making preparations for the Completeness
Theorem (given in §9) by proving various Lemmata in §6. Then, we pro-
ceed to a fundamental result on so called canonical <7, n-structures in §7,
and to an equally important “Coincidence Lemma” on such structures in
§8. These materials suffice to yield the desired conclusion that the proof
theory for our systems </, n is semantically sound and complete relatively
to their model theory, as asserted by the two Theorems of §9. I should
point out as well that my tense-logics &, n are formulated as Hilbert style
axiomatic systems, and that the completeness proof is straightforward Hen-
kin style, using maximal consistent sets of formulae.

Finally, a few comparisons and contrasts. Consider the following series
of “possible™ theorem schemata that have been proposed and discussed in
the tense-logical literature, where we use G, F, H, P in their normal strict,
non-Diodorean sense, e for “tomorrow”, w for “yesterday”, and H, < for
the Aristotelian “always” and “once”, respectively — just as in §2 infra.

(1) GA—eA; HA-»wA cf. T1, Y1 in the Scott 1965
system; see Prior (1967), pp.
67 and 178

(2) e AeeA; T woAewA cf. T2, Y2 in Scott 1965; ibid.

(3) GA-FA; HA-PA cf. A6a, A6b in Burgess (1979)
§1, and A4a, A4b in Burgess
(1984) §0.3

(4) GAVFGA; HA Vv PHA cf. ASa, A5b in Burgess (1979)

§1, and A3a, A3b in Burgess
(1984) §0.3
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(5) ewAeA; weAeA cf. the 5th postulate in the Scott
1964 system; see Prior
(1967) pp. 67, 178

(6) AAGA - PGA; AAHA - FHA  cf. ABa, A8b in Burgess (1979)
§1, and A6b, A6a in Burgess
(1984) §0.3

(7) AANGA - wGA; AANHA = eHA  cf. A21.1, A22.1 in Agqvist &
Hoepelman (1981) §10

(8) H (GA=A)Y>(GA—~HA) cf. the simplification of schema
101 given in Bull (1968), p.
27n. 3

We easily verify that the two schemata in (1) are valid (§4) and provable
(§5) in our systems. In the special case where we are at the end/beginning/
of time, GA/HA/ and eA/wA/ will both be true for any wit (formula) A,
so this special case cannot constitute a counterexample to the validity of
(1).

The situation is quite different with respect to (2). Here, that special case
affords the following counterexample to the validity of the right-to-left
implications in (2). Suppose that we are at the end/beginning/ of time.
Then, again, anything of the form eA/wA/ will be true, so that anything of
the form —eA/—~wA/ will be false, e.g. e A/=w=A/. This observation
also explains why we have no counterexample to the left-to-right
implications in (2), which are indeed valid without restriction [see axiom
schemata A3(b) in §5 infra]. But the right-to-left implications in (2) can
only be asserted on the condition that we are nor at the end/beginning/ of
time, as is done in our axiom schemata A3(c) [§5 infra).

The schemata in (3) are since long ago well known to express non-
ending-time and non-beginning-time principles [see also Prior (1967),
Appendix A, e.g. §§ 5.2, 5.5 and 5.6]; hence, they should most definitely
not be valid or provable in any tense-logic for beginning and ending time.
But how do we avoid (3) becoming provable in the presence of (1) and the
unrestricted (2)?

The schemata in (4) are again well known to express ending-time and
beginning-time principles [see also Prior (1967), ch. iv, §6, pp. 72-74]; so
they must be valid in our systems <#n,n and are indeed readily proved in
the latter.

For similar reasons as in the case of (2), the schemata in (5) cannot be
accepted as valid without restriction. Suppose again that we are at the
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end/beginning/ of time. Then anything of the form eA/wA/ is true, e.g.
ewA/weA/. But from this fact it cannot be inferred that A itself be true at
the end/beginning/ of time. This is a counterexample to the left-to-right
implications in (5), explaining why the two axiom schemata in A3(f) [§5
infra] are formulated as they are. (On the other hand, the right-to-left
implications in (5) are unrestrictedly valid and easily seen to be provable
in all &, n systems).

Interestingly, there are also counterexamples to the validity in our
systems of the Burgess schemata in (6) supra. Suppose now that we are at
the beginning/end/ of time and that A A GA/A A HA/ is true there: this
still cannot prevent anything of the form HA/GA/from being true there as
well, e.g. HF2A/GP—-A/, which is equivalent to the negation of
PGA/FHA/. In other words, PGA/FHA/ cannot fail to be false at the
beginning/end/ of time, regardless of what else be true there. Hence the
counterexamples in our logics to the schemata in (6). Note, then, that the
present argument does not apply to the schemata in (7), which are valid and
provable in every system <fm,n. It would work against (7), if the
succedents of its implications were strengthened to “w—GA and —e—HA,
respectively. But we now know such a strengthening to be inadmissible,
and we know why this is so.

The Bull-Prior schema (8) —like (6) claimed to express the discreteness
of time— remains valid in our systems.

2. Syntax of the systems <m,n of discrete tense logic with beginning and
ending time

The vocabulary (morphology, alphabet, language) of the systems <7m,n
(= 0) is identical to that of my system <71 dealt with in Aqvist (1992): it
is a structure made up of the following disjoint basic syntactic categories:

(i}  An at most denumerable set {p,, p,, p», ...} of propositional
variables.

(ii)  Propositional constants: T (verum) and L (falsum) for, respec-
tively, tautologyhood and contradictoriness (“absurdity”) as well
as a family {a} (i € Z) of systematic frame constants, which are
indexed by the set Z of all integers (positive, negative, and zero).

(iii) The Boolean sentential connectives , A, V , —, < for, respecti-
vely, negation, conjunction, disjunction, material implication and
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material equivalence.

(iv) Four groups of one-place tense-logical operators, viz.
(@) o (“now”/or “today™/, i.e. “it is now/today/ the case that™)
(b) e (“tomorrow™), w (“yesterday”™)
(¢) G (“always in the future”), F (“some time in the future”), H
(“always in the past”), P (“some time in the past”)
(d) B (“always™), ¢ (“once™).

For a fuller discussion of the readings of these operators, see Section 2 of
my Aqvist (1992), where, inter alia, certain suggestive spatial metaphors
are invoked (e for “at the next point east of here”, w for “at the last point
west of here”, etc.).

Again, for any natural numbers m,n > 0, we recursively define the set
W, of wffs (i.e. well formed formulae) of the system =7mn,n in such a way
that W . will have as members (i) all propositional variables, (ii) T, 1
and every systematic frame constant in the finite set
{a-m’ Amirs oo Ay, a(h 31, RPN a'n}s
moreover, W, is required to be closed under every connective (operator)
in the categories (iii) and (iv) supra.

Note here that, although the vocabulary of the systems ~7/n,n is common
to them and held constant, the sets W of their wffs will vary along with
variations of m,n over the natural numbers.

3. Semantics for S,n: frames

Consider the system <#n,n, for any m,n > 0. By a <m,n-frame or,
briefly, a frame we understand an ordered quintuple (U, (w,, u, €,), (m,n),
E, W), where

() U is a non-empty, finite set (heuristically, of moments in
time);
(ii) Wo, Uy, € are designated members of U (heuristically, w, is

the western limit of U, e, is the eastern limit of U, and u, is
the present moment in U);

(iii) m,n are the natural numbers under consideration;

(iv) E and W are partial functions defined on U satisfying the
following conditions:
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(CIE)

(C1w)

(C2E)

(C2W)

(C3)

(C4)

(C5)

(C6)

(o))

(C8E)
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For all u € U except e,, Eu is in U; there is no u € U such
that u = Ee, (E is a function from U — {e,} into U, but
Ee, & U).

For all u € U except w,, Wu is in U; there is nou € U
such that u = "Ww, (W is a function from U — {w,} into U,
but Ww, & U).

For all u,v € U except e, if u # v, then Eu # Ev (E is
one-one in U — {e,}).

For all u,v € U except w,, if u # v, then Wu # Wv (W is
one-one in U — {w,}).

For all u,v € U such thatu # e, and v # w,, Eu = v iff
Wv = u (E and W are the inverses of each other in the set
U — {wo, e}, the existence of inverses being guaranteed by
(C2E) and (C2W)).

For all w in U — {w,, e}, EWu = WEu (E,W commute in
U — {w,, &}.

For all uin U — {w,, e}, Eu # Wu (E,W are disjoint in
U - {wﬂs eO}'

wo = W™, and e, = E™, (location of limits relatively to u,).

For each u in U we have that

either u =y,
or u = E*u,, for some natural number k with 0<k<n,
or u = Why,, for some natural number k with 0<k<m

(finite accessibility from u,).

For each u in U except e,, E'u # u for all natural numbers
k
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n+m

: if u=wy=W ™u, (by(C6))

n+m-1, if u:W""'u0

with0 < k < n(=n+m-m), if u=W™" ™y =u,

n-1, if u=Eu,

1(=n-(n-1)), if u=E" 1u0

(E-analogue of Peano’s fourth axiom).

(C8W) For each u in U except w,, Wu # u for all natural

numbers k
m +n, if u=¢,=E "u, (by(C6))
m+n-1, if u=E" 'y,

with 0 < k < {m(=m+n-n), if u=E"™"u,=u,

-1, if u=Wu,

I(=m-(m-1)), if u:W’“'luo

(W-analogue of Peano’s fourth axiom).

Explanation. In conditions (C6), (C7) and (C8E)-(C8W) we understand the
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“exponents” in such a way that E* = E..._.E and W= W...W
k times k times

(for any natural number k = 0). Obviously, this operation can be defined
recursively in the usual fashion.

Remark. Although (C4) and (C5) can be seen to be redundant in the present
definition of a &7n,n-frame, we find it instructive to state them already in
this context.

4. Semantics for <Fm,n: models and truth conditions, validity and satis-
fiability

Let (U, (wo, uy, &), (m,n, E, W) be any &7 n-frame. By a valuation on
such a frame we mean any function V which to each propositional variable
pi (i =0, 1,2, ...) assigns a subset V(p) of U, and by a model (for <7m.n)
any ordered pair

o/l = (U, (W, Uy, &), (m,n), E, W), V)

the first term of which is a frame and the second a valuation on that frame.
Let o/ be any model for &fn,n. We now define the concept of truth ar a

point u € U in o/ for any wff A [in symbols: c/u [E A] by the fol-
lowing recursion:

=fu [ p; iff u € V(p) (for any propositional variable p;,_, , . )
sftu = T
not: sfu E 1

Let [-m,n] be the closed interval of integers determined by -m and n, i.e.

the set {-m, -m+1, ..., -1, 0, 1, ..., n-1, n}. For our systematic frame
constants in W we then adopt the truth condition:

u=E'u, if0<isn
~#u | a (i € [-m,n]) iff v ¥

u=Wu, if 0>i=-m
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If A is a Boolean compound, our recursive definition goes on as usual. If
A is of the form §B with § a one-place tense-logical operator, then we
stipulate (still using ‘v’, ‘v’ as variables over U):

efu | oB iff c#u, = B

) >/, Eu = B, ifu # g
S#u [ eB iff { e ’ :
offu | eBi for all v such that Eu=v:c/v |= B, ifu=eg,

. #, Wu | B, ifu # w
/, B iff { =% ’ 0 _
SHeN W for all v such that Wu=v:a/Z,v | B, ifu=w,

n+m,if u-w, =W ™y,

nm-Lif u=W™ly,

n (=n+m-m),if u=u,
o/,E*u|=B, for all k:0<k<
n-1if u-Euy,

1 (=n-(n D)ifu=E" 'y
ofu|=GB iff ’

for all v such that Eu = v: e#,v |= B, if u=e,=E"y,
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m+n,if u=¢,=E "y,

m+n-1,if u - E“"uo

m (=m-+n-n),if u-uy,
cf,W*u|=B,for all k:0<k<
m-Lif u-Wuy,

1 (Em-(m-D)if u-W" 1y
o/fu|=HB iff )

for all v such that Wu = v: o#,v |= B, if u=w,=Wmy,

The truth conditions for wffs of the forms FB and PB are the “dual” ones,
obtained from those for GB and HB just given by replacing the two occur-
rences of “all” by occurrences of “some”. Finally, we have

efu | B B iff for all vin U: o/ EB
ofu | © B iff for some v in U: o#v | B

The locution ‘e#u = A’ means that the wff A is true ar the point u in the
&m,n-model o/, We say that a wff A is &, n-valid iff c/Zu A for all
&Jn,n-models o# and all points u in U. Also, we say that a set T of wffs
(in W, ) is <7m,n-satisfiable iff there exists a m,n-model o/ and a
member u of U such that for all wffs in ' o/u F A. Clearly, for any
m,n 2 0, A is <An,n-valid iff the singleton { A} is not <Fn,n-satisfiable.
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5. On the proof theory of discrete tense logic with beginning and ending
time: the axiomatic systems <7m,n

For any natural numbers m,n > 0, the system <7n,n is determined by the
following rule of inference, rule of proof, and axiom schemata:

Rule of inference

RO (modus ponens) A—Ag_' B

Rule of proof A
R2 (universal necessitation) ——

HA
Remark. For the distinction between a rule of inference and a rule of proof,
see e.g. Aqvist (1992), §5 and Sundholm (1983).

Axiom schemata
A0. All truth-functional tautologies (over W, ).

Al. (a) oeH-a, A a, A GHa), if0<i<n
(b) ow'(H—a; A a, A G—a), if0>1i=-m

(¢) a, —>ea,,, if-m<i<n
(d) a, = wa,,, if-m<i<n
(e) 3, A A = 0¢'A, if0<i<n
) a, A A—>ow'A, if0>1=-m

@a,Va,, V..Vva VaVvaVv..Va, Va,.
(h) a;, > —a, for all integers i,j € [-m,n] with i # j.

Remark. In Al(a)-(f) i is assumed to be any integer in [-m.n]. And, as to

the “exponents”, we assume that, for each natural number k = 0, e*/w¥/

is the k-termed sequence e.....e  /w.....w/ of occurrences of the operator
e —

k times k times

e/w/. (Define e“/w*/ recursively, if you like).

A2. (aHa-o0A
(b) 0A & —0-A
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A3.

A4
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(c) o(A = B) = (0A = 0B)
(d) oA = HoA.

(@ A —seA; [1A->wA

(b) "enA = eA; "woA > wA

(©) ma, = (eA = meA); Ta, = (WA = TwA)
(da—=el;a —»wl

(€) e(A - B) > (eA — eB); w(A — B) - (WA — wB)
(f) —a, = (ewA = A); —a - (weA = A)

(@) HA > GA:H A - HA
(b) FA  7G—A: PA < “H=A

n-m

a, = (GA < eANCIAN . Ac™™A) [a,, = (GA < A ¢*A))
k=1

‘m

neno |
—=(GA = A c*A))
k=1

8., = (GA < eAAC?ANAc"™'A) [a

-mer|

n+l

a, = (GA = eAne?AA_ Ac™'A) l[a,—=(GA = A c*A))
k=1
(C) 2 n A k
a, = (GA < eANc?AA _Ae"A) [a,=(GA < A ¢*A)]
k=1
n-1
a,—(GA = eANeAN _Ne"'A) [a,—=(GA = A e*A)
k=1
n-(n-1)
a_,—(GA = eA) [a, , = (GA <= A c¢*A)]

k=1

a —GA
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m*n

a = (HA < WAAWIAA  AW™TA) [a,~ (HA <= A w*A)]
k=1

men-|
a,, = (A = WAAWIAA_AW™ D IA) (o —(IA = A w'A)|
k=1

m+|

a, = (IIA = WAAWIAA _Aw™IA) [a,—(HA < A w*A)]
k-1

d m
( ) a, = (“A - V"’Aﬂh\WzA/\._./\\V mA) Iao_'(“A ”/\ - RA)]
k=1
m-1
a I—.(”A - \\"A.”\WzAf\.../\.Wm'lA) Ia!-—o(IIA - A w l\A)]
k=1
m-(m-1)
a_m,]—b(I]A - WA) [aim'l_...(lIA - A w kA)]
k=1
a —IlA

(b) © Ae a[] A
(c) GA A A A HA-HA.

Remark. In the axiom schemata A4(c) and (d), we adopt and illustrate
within square brackets a notation for finite conjunctions that should be
familiar and self-explanatory.

As usual, the above axiom schemata and rules determine syntactic notions
of &, n-provability and Fm,n-deducibility as follows. We say that a wff
A is &n,n-provable [in symbols: + 4 . A, or just — A, when there is no
risk of confusion] iff A belongs to the smallest subset of W__, which
(i) contains every instance of A0, Al(a)-(h), ..., A5(a)-(c) as its members,
and which (ii) is closed under the rule of inference R0 and the rule of proof
R2. Again, we say that the wff A is <Fn,n-deducible from the set T (S
W....) of assumptions [in symbols: T' sna Al iff there are wffs B, ..., B,
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inT', for some natural number k = 0, such that 4 (B, A ... A B) —
A (i.e. the wff (B, A ... A B) = A is to be c&Zn,n-provable in the sense
of the preceding definition).

Moreover, letting I' © W, ., we say that I is <& n-inconsistent iff
I' & gn L1, and I, n-consistent otherwise (i.e. iff T' H . L). Finally,
we say that T' is maximal consistent (in <7m,n) iff T is <7/, n-consistent
and, for each wff A in W, either A € T or " A € T'; where this latter
condition is known as requiring I' to be negation-complete.

6. Some lemmata on the axiomatic systems <#n,n

6.1. LEMMA (Useful Properties of <A, n-deducibility and </, n-provabi-
lity).

Let T',A be any subsets of W, and let A,B be any members of W .
Then, by our definitions of I' = A and — A above (dropping the indices
m,n), those relations satisfy inter alia the following properties:

(PO) f '~ AandT + A—B, thenT - B.

(P2) If — A, then - HA.

P3) - Aiff & + A.

(P4) If AET, thenT — A.

(P5) If ' — A, thenT U A ~ A.

(P6) IfT' - A, then there is a finite subset T', of T' such that T, — A.

Proof. Immediate by the definitions of <7n,n-deducibility and <7m,n-
provability. Note (i) that the property (P2), corresponding to the rule of
proof R2, cannot be strengthened so as to have the import: if ' — A, then
I' - HA, and (ii) that, in the terminology of Bull & Segerberg (1984), the
property (P6) is known as syntactic (or proof-theoretical) compactness. See
my Aqvist (1992), §6, Lemma 6.1, where we also point out that (P6) does
not hold in the infinitary system <71 dealt with in that paper.

6.2. LEMMA (Deduction Theorem for <m,n).

LetT', A, B be as in the hypothesis of Lemma 6.1. If ' U {A} ~ B, then
' - A-B.
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Proof. Again immediate by the definition of </m,n-deducibility.
6.3. LEMMA (Derived Rules of Proof).

Let § be any of the six operators o, e, w, G, H and H . Then, in any
system <A, n, the following are derived rules of proof:

DR2 (§-necessitation) i
§A

DR3 (§-monotonicity) = —~-B_
§A — §B
DR4 (§-congruence) AeB
§A < §B

Proof.

Ad DR2. Use R2 together with A2(a), A3(a) and A4(a) in the respective
cases of § = o, e, w, G, H. For the case § = B, just use R2 alone.

Ad DR3. Use DR2 as just derived together with axiom schemata A2(c) and
A3(e) inthe cases § = oand § = e, w. For the cases § = G, § = H and
§ = B, use T9, T10 and T18 in the next Lemma, respectively.

Ad DR4. Immediate from DR3.

6.4. LEMMA (Useful Theorem Schemata).

All instances of the following theorem schemata are &, n-provable.
TO. a,— (e"A » —enA), for all k with 0 < k < m+n;
a, = (WA - = w*—A), forall k with0 < k < n+m
Tl. oAeHoA
T2. oA<(0nA— 1)
T3. HA-—=o0e"A;: HA - ow"A
T4. o0e"A & —0e"mA; oW™A & "ow™ A
T4.1. 0e"A e (0e""A = 1), oWw™A « (oWw™ A > 1)
Ts. —0e”L; Tow™ L
T6. -3, > (T »el);, 7a, > (WT = wl)
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d_. ~*(e k —a, —(e ka_m — 1)), for all k: 0<k=<n'm

a,,—~>c""a_, =@ ., =) foral k 0<k<nm I
T7.

a, —(e k —a, —>(c 1"ao — 1)), for all k: 0<k=n

an-l —’(C ﬁ‘an 1 _)(Can—l _’l))

a —(w . —a, = (w "'an — 1)), for all k: O<k<mn

a _, —>(w 5 —a ., > (w kan p —=4)), forall ki O<k<min |
TS8.

a, > (w k —a; —>(w I"aﬂ — 1)), for all k: 0<k=m

Aoy =W —a , , —lva_. . 1))

T9. G(A - B) > (GA - GB)
T10. H(A - B) - (HA — HB)
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T12.
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[

a, — (FA &

a_,,,— (FA <«

a, > (FA &

aﬂ—b(FAe

a, > (FA

a, > (FAec

a — —F-A

a — (PA <

a, = (PA «

ao—b(PAt-)

m1 > (PA &
a  — "PrA

n+m

V ekA)
k=1

n-m-1
AVARE-RY.N
k=1

\V e*A)
k-1
V ckA)
k-1
n-1

¢ *A)
k-1
cA)
\/ w *A)
k-1
m+n-1
\/ w *A)
k=1
AVARTRY-N)
k-1
wA)

377
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(The notation for finite disjunctions, employed in T11 and T12, should be
familiar and self-explanatory).

T13. PGA - A; FHA - A

T14. GA - GGA; HA - HHA

T15. (HA A A A GA)—- GHA; (HA A A A GA) - HGA
Ti6. HA < (HA A A A GA)

T17. © A< (PA vV AV FA)

Ti18. HBA-B)-» HA-HB)

T19. HA-HHA

T20. ©HA-=A

T21. “BHA-HHBHA

Proof. Elementary, but tedious. A detailed proof is available from the
author of this paper.

6.5. LEMMA (Scott’s Rule for </,n; terminology of Bull & Segerberg
(1984)).

Let T be a set of wffs (S W, ) and let A be a wff (€ W .). Let § be any
of the six operators o, e, w, G, H, H (all of which are “necessity modali-
ties” in an obvious sense). Then: if T' — A, then {§B: B € T} + §A.
Proof. Suppose that I' — A. By the definition of <7m,n-deducibility we
have, for some natural number k > 0 and some wffs B,, .... B, inT,

B A ... AB)=>A
which result is by A0 equivalent to
B =B, .. (B —=A)..).

Consider first the case where k = 0. This means that — A. Hence, by the
rule DR2 of §-necessitation (or by R2, when § = B )}, we obtain that +—
§A. Hence, by property (P5) in Lemma 6.1 [with A = {§B: B € T'}], the
desired result is immediate.

Consider next the case where k > 1. By DR2 (or by R2), we then get
= §B,»(B,~> ... (B, > A) w))

Hence, using axiom schemata A2(c) and A3(e) in the cases § = o and
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§ = e, w and theorem schemata T9, T10 and T18 in the cases § = G, H,
B, we obtain, after a sufficient number of applications of these schemata,

F §B, = (§B, - ... (§B, =§A) ..))
which result is by A0 equivalent to
= (§B, A §B, A ... A §B) — §A.

Since each §B; (1 < i < k) is such that B; € T, this last result obviously
amounts to the desired one. Q.E.D.

Corollary. Suppose that ' = A. Then {ow"B: B € T'}  ow™A as well
as {0e"B: B € T'}  oe"A.

Proof. By repeated applications of Lemma 6.5, leaving the details to the
reader.

6.6. LEMMA (Familiar Properties of Maximal <7m,n-Consistent Sets).

Let I be any maximal consistent (in <#mn,n) set of wffs. Then, for all wffs
A, B:

(HDIf— A, then A € T.

2)fAE€Tand A->B €T, then B € T (T closed under RO).

3 T E€ETland L €T

4) "AETIfAET.

BG)AABEeTIffAETandB €T

6) Av BETIffA € TorB €T (or both).
(MA-BETIiffif A€ I'thenB € T.

B A<BETIiffA € TI'ifand only if B € T.

(9) a; € T, for exactly one i in the closed interval [-m,n] of integers.

Proof. Clauses (1)-(8) are established as usual. To deal with (9), we first
observe that the disjunction Al(g) is in T' (by (1)), so that, by (6), at least
one of its disjuncts must be in I'. Hence the existence part of (9). The
uniqueness of “that” disjunct is then immediate by axiom schema A1(h)
supra.
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6.7. DEFINITION (The Lindenbaum Extension of a &#m,n-Consistent Set).

Let T be any <#n,n-consistent set of wifs, and let (A,, A,, ...) be an enum-
eration of the set W of all wffs of the system <#n,n. Define an infinite
sequence (I',) , < \ < » by the recursion:

I'"U{A,}, if this is consistent
ILU{=A,}, otherwise.

Pk+l =

Then, define

= U (=T, UL UT, U ..)

O<k<w
where, for future reference, we call ', the Lindenbaum extension of T".
6.8. THEOREM (Lindenbaum’s Lemma for </n,n).

Let T be a <An,n-consistent set of wffs. Then, as just defined, T, is
maximal consistent (in <#n,n).

Proof. Familiar. If not, see Aqvist (1992), §8. The proof there given can
be considerably simplified, since our present systems <7m,n, unlike <1,
lack infinitary rules of inference.

7. Canonical <In,n-structures. a fundamental result

7.1. DEFINITION. For any natural numbers m,n = 0, let U9™" be the set
of all maximal consistent (in &fn,n) sets of wffs. Let x be a fixed element

of U™, We now define the canonical <Fn,n-structure generated by x as
the structure

@# = ((Ua (WO! Uy, e0)5 (m’“): Es W), V)

where
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(i) U= {u € U™ for each wff A, if HA € x, then A € u}
(i) u, = {A: 0A € x}
w, = {A: oW"A € x}
g = {A: 0e"A € x}
(iii) m,n are the natural numbers under consideration
(iv) E and W are the functions on U defined by setting,
for each u € U: Eu = {A: eA € u}, and
Wu = {A: wA € u}.
(v) V(p) = {u € U: p, € u} (for all propositional variables p,
wherei =0, 1,2, ..).

Remark. Let us recall here our previous definitions (make them recursive,
if you like) of the “powers™ E*, W* and e*, w* of the functions/operators
E, W and e, w [given in the Explanation in §3 supra and in the Remark
under the axiom schemata A1(a)-(h) in §5, respectively|. In the light of
them we obtain from clauses (ii) and (iv) in Definition 7.1 just laid down
results like the following:

E'u = {A: A € u}
W = {A: w*A € u}
Eu, = {A: 0e*A € x}
Wy, = {A: ow*A € x}

o

for all u € U and all natural numbers k (= 0). We leave the verification
to the reader and go on to state, and prove, the following fundamental
result concerning generated canonical </n,n-structures.

7.2. THEOREM. As just defined, o/ is a </, n-model and its first term
(U, (Wo, ug, &), (m,n), E, W) is a &m,n-frame.

Proof. The crucial part of this Theorem is the second one, for, once we
have proved the first term of o/* to be a frame, it is obvious that o/ as
a whole is a model (leaving the reference to <7m,n tacit in the sequel).
What we have to do, then, is essentially the following. First, we must show
that, as defined, the designated sets u,, w, and e, are members of U. Sec-
ondly, we must show that, as defined, the functions E and W satisfy the

conditions (CIE), (C1W) through (C8E), (C8W) in the definition of a
&7m,n-frame.
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(1) uy, w, and e, all belong to U. Starting with the case of u,, our task is
to prove that {A: 0A € x} is

(a) consistent,

(b) maximal in the sense of being negation-complete, and

(c) “x-adequate” in the sense that for all wffs A, if H A € x, then
A € {A: 0A € x} (= u) [cf. clause (i) in the above definition of
the canonical &7, n-structure generated by x|.

Ad (a). Assume that {A: 0A € x} is not consistent, i.e. that

1. {A:0AEx}+ L counterassumption
2. {oA: A € {A:0A €E x}} o0l from | by Lemma 6.5 with § = o
3. {PAt0AEx} ol simplifying 2
4. x ol from 3 by the fact that
{0A: 0A € x} € x
5. FoT, o Ll,  mol DR2-DR4 with § = o, A2(b)
6. x - "ol immediate from the third item in 5

where 4 and 6 contradict the consistency of x. Hence, u, (= {A: 0A € x})
is consistent.

Ad (b). Assume that {A: 0A € x} is not negation-complete, i.e. that

oB ¢ x[B ¢ uy) ¢ .
0-B ¢ x[-B ¢ uj] or some w

counterassumption

2. —oB € xand —0B € x from 1 by the maximal consistency
ofx e U
3. oBE x from 2 [2nd conjunct] by A2(b)

where 3 and the first conjunct in 2 contradict the consistency of x. Hence,
u, is maximal,

Ad (c). We are to show that if H A € x, then A € u,, i.e. 0)A € x. So,
1. HA€Ex assumption

2. HA—=0A € x axiom schema A2(a), x max cons
3. 0A Ex x closed under RO, from 1, 2
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where 3 is our desired conclusion. This completes the proof that u, belongs
to U.

We next proceed to the case of the “western limit” wy,.

Ad (a). Assume that {A: ow™A € x} is not consistent, i.e. that

1. {A:ow™A € x} + L counterassumption

2. {ow™A: A € {A:ow"™A € x}} + ow™ L from 1 by the Corollary
of Lemma 6.5

3. {ow™A: ow™A € x} + ow™ L simplifying 2

4. X = ow™ L by 3 and the fact that
{ow™A: ow™A € x} S
X

5. - mow™ L by TS of Lemma 6.4

6. x - mow™ 1 immediate from 5 (by

(P3), (P5) in Lemma 6.1)
where 4 and 6 contradict the consistency of x. Hence, w, (= {A: ow™A €
x}) is consistent.

Ad (b). Assume that {A: ow™A € x} is not negation-complete, i.e. that
ow™B ¢ x|B ¢ w)
1. for some wff B counterassumption
ow™B ¢ x[B ¢ wy]
2. 7ow™B € xand "ow"B € x from 1 by the maximal
consistency of x

3. ow™B € x from the second conjunct in 2 by
T4 in Lemma 6.4

where 3 and the first conjunct in 2 contradict the consistency of x. Hence,
W, is maximal.

Ad (c). We want to show that if H A € x, then A € w,, i.e. ow™A € x.

1. HA € x assumption
2. HA »ow"A € x T3 in Lemma 6.4, x max cons
3. ow™A € x from 1, 2 by the fact that x is

closed under RO, x being max cons
where 3 is our desired conclusion.
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This completes the proof that w, belongs to U. The case of the “eastern
limit” e, is handled similarly —just appeal to the Corollary of Lemma 6.5
and appropriate items in Lemma 6.4.

For the remainder of our proof of Theorem 7.2 (as well as for that of the
Coincidence Lemma to be dealt with in the next Section) we need the fol-
lowing

7.3. LEMMA. Let u,v be any members of U, let i be any member of the
closed interval of integers [-m,n]. Then:

(i) Foreach wff A, HA € uifftHA € v.
u-E'uy, if0<i<n

(i) a, € uiff _
u=-W-u, if 0>i= -m

(i) a, € uiffu =e; —a, € uiffu # e,
(iv) a, € uiffu=wy,; na, € uiffu = w,

Proof.

Ad (i). Beginning with the left-to-right direction, we have:

1. HA €u assumption

2. OBA € x from 1 by an equivalent formula-
tion of the condition of x-ade-
quacy

3. HHA € x trom 2 by T21 in Lemma 6.4

4. HAEV from 3 by the x-adequacy of
vel

where 4 is our desired result. The converse direction is handled similarly.
Ad (ii). Starting with the left-to-right direction, suppose that some i with 0
<1 < nand some u € U are such that

4, € u, whereas }

u # Ely,

A € uand oe'A€u (for some A) from 2 by the definition of E'u,
[see the Remark under Definition
7.1], Tl in Lemma 6.4 and clause
(i) of the present Lemma; x, u€ U

; : counterassumption
3.
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4. 0eA € u from 1 and 3 [Ist conjunct] by
Al(e), since u € U so that u max
cons

where 4 contradicts the second conjunct in 3. Suppose next that, for some
iwithO > i = -m and some u € U, we have

1. a € u, whereas }

. counterassumption
5. u # Wy,

6. A € uand ow’A € u (some A) from 5 by the definition of Wy,

etc.
7. ow'A € u from 1 and 6 [Ist conjunct] by
Al(D),u € U

where 7 contradicts the second conjunct in 6.
To handle the right-to-left direction, suppose that 0 < i < n and that

1. u=Ehy, assumption

Then (with a view to showing that a, € u):

2. u= {A: 0¢A € x} from 1 by definition [Remark
under Definition 7.1 supra)

3. u= {A:0e'A € u} from 2 by T1 [Lemma 6.4] and
clause (i) of the present Lemma; u,
x €U

4. Forall A, A € uiffoeA € u  immediate from 3

5. a € uiffoela, € u from 4 by instantiation

6. oela, €E u by axiom schema Al(a), u max
cons

7. 34 €u from 5 and 6

where 7 is our desired result.

The remaining case where 0 > i = -m goes through by analogous
reasoning: just appeal to axiom schema A1(b) in the crucial step 6!
Ad (iii) and (iv). These clauses are easily obtained as special cases of (ii):
Just use the definitions of e, and w,, while bearing in mind our Remark
under Definition 7.1 above.

The proof of Lemma 7.3 is complete. Armed with this Lemma, we now
deal with our remaining task, viz. to establish the following fact:
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(I) As defined in clause (iv) of Definition 7.1 supra, E and W are partial
Junctions on U satisfying conditions (C1E), (C1W) through (C8E), (C8W)
on a &f,n-frame (§3 supra).
Ad (C1E). We are to show that, for each u € U with u # e,, {A: eA €
u} (= Eu) is consistent, maximal and x-adequate. Furthermore, we must
show that {A: oe""'A € x} (= Ee,) does not belong to U. We deal with
the first task here as follows, beginning with consistency. Suppose that

u

W =

# e, and

. {AreAE€Eu} - L
{eAzeA €Eu} el
. {eAieA €Eu} S u
ukel

On the other hand, we have:

B
6.
7.
8.

9.

HeT andeT € u
na, > (eT —- el)
-3, €u

eT - el)Eu

el Eu

10. u - —el

counterassumption

from 1 by Lemma 6.5 with § = e
immediate

from 2,3 by (P5) in Lemma 6.1

R2, A3(a); u max cons

by T6 in Lemma 6.4

by clause (iii) of Lemma 7.3, since
u Z e, ex hypothesi

from 6,7 since u is closed under
RO

from the second conjunct in 5 and
8, u closed under RO

from 9 by property (P4) [Lemma
6.1]

where 4 and 10 contradict the consistency of u (u € U). Hence, the coun-
terassumption 1 is reduced ad absurdum and Eu is seen to be consistent.
As for maximality, assume that {A: eA € u} is not negation-complete,
where still u # e,. Then, for some wff B we have

Oh Wi B L B9 =

eB € u[B & Eu] }
e B & u[-B & Eu]
—eB € u

e B € u

eB €Eu

ukF L

counterassumption

by 1 and u max cons

by 2 and u max cons

from 4 by A3(b) [first item]

from 3,5 by a tautology under AOQ;
etc.
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where 6 contradicts the consistency of u. Hence, Eu is maximal.
Finally, as to x-adequacy, assume that for any wff A:

1. HA €x ‘ assumption

2. HA € from 1 by clause (i) of Lemma
7.3;x,u€ U

3. eAE€Eu from 2 by A3(a) [first item], u
max cons

so that A € Eu, as desired.

It remains to show that Ee, (= {A: 0e""'A € x}) is nor a member of U.
Assume otherwise, i.e. that it is. Then:

1. Ee, H L1 (i.e., is consistent) by the conditions of membership
inU

2. a, € g by Lemma 7.3, clause (iii)

3. Fa,—el,a —»el Eeg by A3(d) [first item], e, € U

4, el € g, from 2,3 since ¢, € U and is
closed under RO

5. 1 € Eey,, Egg 1 from 4 by the definition of Ee,

where 5 contradicts 1. Hence, our counterassumption is reduced ad absur-
dum and Eg, is seen not to belong to U.

This completes the verification that, as defined, E satisfies our condition
(C1E).
Ad (C1W). In the light of the proof just given, this case presents no novel-
ties and can be left to the reader: just make use of the right items in Lem-
mata 6.4, 6.5 and 7.3!

Ad (C2E). Suppose, contrary to (C2E), that some u, v € U are such that
I. uzyv

2. u # eyand v # e, whilst } counterassumption
3. Eu =Ev
Then:

4. For all wffs A, eA€u iff eA€Ev  from 3 by definition:
Eu={A:eA€u}={A:eAEV}=Ev
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5. "3, €uand na, E v from 2 by Lemma 7.3, clause (iii)

6. BEu and BEv, for some wff B immediate from 1

7. ewB € uiffewB € v from 4 by instantiation [A = wB]

8. ewB € u : from 5 [Ist conjunct] and 6 [Ist
conjunct] by axiom schema A3(f);
ue U

9. ewB E v immediate from 7 and 8

10.BE€v from 5 [2nd conjunct] and 9 by
A3(f), since v € U so that v max
cons

where 10 contradicts the second conjunct in 6. Hence Q.E.D.

Ad (C2W). The argument is a “mirror-image” of the preceding one: use the
second schema in A3(f) in the crucial steps 8 and 10!

Ad (C3). Consider any u, v € U with u # ¢, and v # w,: we are to show
that Eu = v iff Wv = u. Starting with the left-to-right direction, we
assume for reductio ad absurdum that there exist u,v € U with

1. {B:eB € u} = v [Eu = v]
2. 7a, €uand 7a, € v[u # e, v # w

. counterassumption
whilst, for some wff A: P

3. AE Wy, A& u[Wv # u]

Then:

4. wA EvV[A € {B: wB € v}] from 3 [1st conjunct] by the defini-
tion of Wy

5. ewA €Eu from 1 and 4

6. A€ from 2,5 by A3(f) [1st item]

where 6 contradicts the second conjunct in 3. Hence Q.E.D.
To do the opposite direction, suppose there are u, v € U with
1. {B:wB € v} = u[Wv = u]

whilst, still assuming 2 above, we have for some wff A"
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3. A€ Eu, A €& v][Eu#v] counterassumption

Then:

4. eA € u[A € {B:eB € u}] from 3 [1st conjunct] by the defini-
tion of Eu

5. weA E vy from 1 and 4

6. AEv from 2,5 by A3(f) [2nd item]

where 6 contradicts the second conjunct in 3. Hence the desired result.

Ad (C4) and (C5). The verification of these redundant conditions is left to
the reader.

Ad (C6). The verification is immediate by the definition of w, and e,
[clause (ii) in Definition 7.1 supra] and by the Remark under that definition
[k=m and k=n, as the case may be].

Finally, we deal with the somewhat more complicated remaining conditions
(C7), (C8E) and (C8W).

Ad (C7) [finite accessibility from u]. Suppose, contrary to (C7), that some
u € U is such that

l. u # u,, and
2. u # E,, forall k with 0 < k < n, and } counterassumption
3. u # Wy, for all k with 0 < k < m.
4. Eithera, € uora,,, € uor..or
a4 € uor.ora, Euora €Eu from axiom schema
Al(g) by the maximal
consistency of u (€ U)

We must now consider these m+ 1+n cases in turn:

5. a,€u assumption
6. A€ uand A € WMy, from 3 withk = m > 0
(for some wff A)
7. ow™A € u from 5,6 [1st conjunct] by A1(t) [u
max cons]
8. A € Wmy, from 6 [2nd conjunct] by the maxi-

mality of W™y, (= w, € U)
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9. ow™A €y

10. L €u
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from 8 by the definition of W™u,,
T1 [Lemma 6.4], clause (i) [Le-
mma 7.3]

from 7,9 by T4.1 in Lemma 6.4

where 10 contradicts the consistency of u € U.
Similar arguments take care of the cases where a,., €u,.., a, €u

We then proceed to the case:

11. a, € u

12.A € uand A & u,
(for some wif A)

13.0A € u

14. ~A € y,

15.07A €

16. L € u

assumption
from 1

from 11, 12 [lst conjunct] by
Al(e) [i = 0, u max cons]

from 12 [2nd conjunct] by the
maximality of u,

from 14 by the definition of u,, T1
and clause (i) in Lemma 7.3

from 13 and 15 by T2 [Lemma
6.4]

where 16 contradicts the consistency of u € U.
Analogous arguments take care of the remaining cases: consider e. g.:

17.a, € u

18. A € uand A € E"y,
(for some A)

19. 0e"A € u

20. NA € E™y,

21. 0e" A €y

22. 1 €

assumption
from2 withk = n > 0

from 17, 18 [lIst conjunct] by
axiom schema Al(e) [u max cons]
from 18 [2nd conjunct] by the
maximality of Ey, (= ¢, € U)
from 20 by the definition of E"y,
and Lemma 7.3, clause (i); TI
[Lemma 6.4]

from 19, 21 by T4.1 in Lemma
6.4

Thus, one and the same conclusion to the effect that L € u can be
derived, whether we assume that i, €uera,,, € uor. ora; € nor.
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ora,, € uora, € u. Hence, by a step of “disjunction elimination”, the
dependency of that conclusion on any of those m+ 1+n assumptions is
eliminated and replaced by dependency on their disjunction, i.e. line 4,
which in turn just depends on the initial counterassumption that some u €
U satisfies lines 1, 2 and 3. Hence, the conclusion that L € u just so
depends and, as already noticed, contradicts the consistency of u (€ U).
Therefore, this counterassumption to (C7) is reduced ad absurdum. This
completes our verification that, as defined, the functions E and W satisfy
condition (C7).

Remark. In the above proof we assumed, in lines 2 and 3 and in lines
depending on them, that n,m > 0. In the three cases where n or m or both
= 0, our proof can obviously be simplified — the reader should tell us
how!

Ad (C8E) [E-analogue of Peano’s fourth axiom]. (C8E), as formulated in
§3 above, is clearly equivalent to the following statement:
for eachu € U withu # e,,

if u=W™u, (=w,), then Eu#u and Eu#u and...and E"'™u#u, and

if u=Wm'y,, then Eu#u and E'u#u and...and E"™*™'u#u, and
if u=u,, then Eu#u and E®u#u and...and E'u#u, and
if u=Eu,, then Eusu and E°u#u and...and E*'u#u, and
if u=E"'u,, then Eu#u.

Thus, in the scope of the universal quantifier, we have a conjunction of
n+m implications, the succedents of which form a decreasing series of
conjunctions (the first having n+m conjuncts, the last just one).

Having premised this observation, we can now easily formulate our coun-
terassumption to (C8E): it asserts that some u € U with u # e, is such
that either
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u=W ™y, and (Eu-=u or E*u=u or... or E™™u=u)
or u=W™ 'y, and (Eu-u or E?u=u or.. or E"™ Iy -y)
or .

1. {or u-u; and (Eu=u or Eu=u or... or E "u=u) counterassumption

or u=Eu; and (Fu=u or E*u=u or... or E™'u=u
0

or .

or u=E™"'y; and Fu-u.

We must then consider each of these n+m disjuncts in turn (with a view
to showing its absurdity), and begin with the first one:

2. u=Wmy, and assumption
(Eu=u or E'u=u or...or E"*"u=u)

3. u={A: A€}, from 2 [2nd conjunct] by the
for some k with 0<k<n+m definition of E*u

4. For all wifs A, A€u iff immediate by 3

e“’A€u (0<k<n+m)
5. For all wffs A, A€u iff ow"A Eu from 2 [1st conjunct] by the defini-
tion of W™u,; Lemma 7.3, (i); T1
6. HHa,Aa ,AGHa, ) € uiff
ow"H=-a,Aa,AGoa,) € u from 5 by instantiation

7. ow"H-a,Aa,AG™a,) €Eu by Al(b) withi = -m, u max cons

8 a_,€uand GHa, Eu from 6,7 etc.

9. a,€uiffea,€u (0<k<n+m) from 4 by instantiation

10. eka,, € u from 9 and the first conjunct in 8

11. e—a, €Eu from 8 by the first axiom schema
in Ad(c) [A = —a_]!

12. 1 € from 8 [1st conjunct], 11 and 10

by T7 [1st item] in Lemma 6.4

where 12 contradicts the consistency of u € U. Note the crucial step yiel-
ding line 11.

Analogous arguments take care of the disjuncts in 1 where u = W™y,
u = W™,... down to, say, u = Wu, (= W™Dy ). We then proceed to
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the following disjunct in 1:

13. u=u, and
(Eu=u or E®u=u or...or E"u=u)
14. u={A: e’AE€u},
for some k: 0<k<n
15. For all wffs A, A€u iff
e’A€u (0<k<n)
16. For all wifs A, A€u iff )A€ u

17. (HDagAa,AGay) € uiff
o(Hoa,Aa,AGHa) € u

18. o(HHa,Aa,AG—a) € u

19. a,€u and GHa,€Eu

20. a,€u iff e"ay€u (0<k <n)

21. e, €u

22. e, Eu

23. L €u

assumption

from 13 [2 nd conjunct] by the
definition of E*u
immediate by 14

from 13 [Ist conjunct] by the
definition of u,; Lemma 7.3 clause
(i); T1 in Lemma 6.4

from 16 by instantiation

by Al(a) with i = 0, u max cons
from 17, 18 etc.

from 15 by instantiation

from 20 and 19 [1st conjunct]
from 19 by the (m+1)st axiom
schema in A4(c) [A = —ay]!
from 19 [1st conjunct], 22 and 21
by T7 [(m+1)st item] in Lemma
6.4

where 23 contradicts the consistency of u € U.
Again, similar arguments work for the remaining n-1 disjuncts in our
counterassumption 1. Considering the last one among them, call it

24. u=E""y, and Eu=u

we proceed as above and end up with

30.a,,€uand G—a, ,Eu

32. ea ,Eu

33.ema,,€u

assumption

Justified as usual, using Al(a)

by 24 [2nd conjunct] and 30 [1st
one]

from 30 by the (m+n)th axiom
schema in A4(c) with A= —a_,
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34. L €u from 30 [Ist conjunct], 33, 32 by
T7 [last item]
contrary to the consistency of u € U.

Thus, we have shown that each of the n+m disjuncts in our counter-
assumption 1 to (C8E) implies the conclusion that L € u. Hence, that
counterassumption is reduced ad absurdum, and the proof that, as defined,
the function E satisfies (C8E) is complete.

Remark. The present proof, like that of (C7), can obviously be simplified
in certain special cases. For instance, if the sum n+m = 0, so thatn = m
=0, e = w, = u,and U = {u,}, the condition (C8E) will be “vacuously”
satisfied and the need for a proof vanishes almost altogether. If n = 0,
whereas m > 0, the last n disjuncts disappear from the counterassumption
1 and don’t have to be considered in the proof. Again, if m = 0, wheras
n > 0, the first m disjuncts disappear from the counterassumption 1, and
the proof starts with line 13 supra. Finally, if n = 1, so that E"'u, = u,,
the part of our argument consisting of lines 24-34 can be dropped, since
they simply reduce to lines 13-23.

Ad (C8W) [W-analogue of Peano’s fourth axiom]. In the light of the prece-
ding proof, the validation of this condition can safely be left to the reader
as a tedious exercise. Note the usefulness of the axiom schemata in A4(d)
in the present context!

The proof of Theorem 7.2 is hereby complete.

8. Coincidence lemma for canonical <#n,n-structures

In this section we show that, as applied to any wffs, the notions of truth
and membership coincide (are co-extensive) with respect to the points in
generated canonical <m,n-structures. More precisely, we have the
following

8.1. COINCIDENCE LEMMA. Let x be any fixed maximal consistent (in
&, n) set of wffs, and let o# = (U, (w,, u,, &), (m,n), E, W), V) be
the canonical &, n-structure generated by x. Then, for each wff A and
each u in U,

efu = Aiff A € u.
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Proof. By induction on the length of A.

Basis. A is either (a) some propositional variable p;, or (b) T, or (c) L,
or (d) some systematic frame constant a, with i € [-m,n]. The three cases
(a)-(c) are immediate. We then deal with case (d) as follows.

Suppose first 0 < i < n. Then we have the following chain of equivalen-
ces:

e/t [ a iff u = E, iff a, € u.

Here, the first “iff” holds by virtue of the truth condition for a, and the
second by clause (ii) of Lemma 7.3 supra [when 0 < i < n]. Hence the
desired result in this case.

Suppose next that 0 > i = -m. Now, we have these equivalences:

offu [ a iff u = Wiy, iff a, € u.

Again, the first “iff” holds by the truth condition for a; and the second by
clause (ii) of Lemma 7.3 [when 0 > i > -m].

This settles case (d) as a whole.

Induction Step. The cases where A is a Boolean compound are left to the
reader. Consider next

Case A = 0B (for some wff B). The case will be clinched if we establish
the following chain of equivalences:

e/t | oBiff e/ u, | Biff B € y, iff 0B € x iff oB € u.

Here, the first “iff” is guaranteed by the truth condition for oB, the second
by the inductive hypothesis [u, € U], the third by the definition of u, in
canonical &, n-structures, and the fourth “iff” is provided by Lemma 7.3,
clause (i) together with theorem schema T1 of Lemma 6.4 [x,u € U].

Case A = ¢B. Suppose first that u # e,. Hence Eu € U by the fact that,
as defined, E satisfies (C1E). We then argue as follows:

ef,u [ eB iff o/#,Eu | B iff B € Eu iff eB € u,

where the first “iff” is given by the truth condition for eB, the second by
the hypothesis of induction [Eu € U], and the third by the definition of Eu
in canonical ¢#n,n-structures.

Suppose next that u = e, Then, the above argument does not work,
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because Ee, (= Eu) & U and the inductive hypothesis is simply not ap-
plicable. Instead, we argue as follows: since there is no v € U with v =
Eey (= Eu) [by the second item of (C1E)], we have o/#,u [ eB for any
wit B whatsoever (including 1), the truth condition for eB being vacuously
satisfied on the present assumption that u = e,. In like manner, we have
el € uandeB € u, for any wff B whatsoever [cf. the validation of the
second item in (C1E) in the preceding Section]. Hence our desired result
that for each wff B, o/*,u |= eB iff eB € u, also in the present case where
u = e,

Case A = wB. The treatment is perfectly similar to the one just given:
according to the truth condition for wB, two subcases will be considered
and handled in the spirit just indicated.

Case A = GB (for some wff B). Inspecting the truth condition for (wffs
of the form) GB, we see that m+n+ 1 subcases have to be dealt with, viz.
according to whether u = W™, u = W™y, ..., u = u,, u = Eu,, ..., or
u = E"'y, [in which m+n subcases the inductive hypothesis is clearly
applicable] or, finally, u = ¢, = E", [in which subcase the inductive
hypothesis is simply not applicable, because Ee, & U]. These subcases are
now considered in turn.

Subcaseu = wy, = W™u,. By Lemma 7.3 above, clause (iv), we get a,, €
u. We then have the following chain of equivalences:

eff'\u | GB iff o/AE% | B for all natural numbers k with

0<k<n+m
iff B € Efu for all k with0 < k < n4+m
iff B € u forall k with0 < k < n+m

n+m
iff A eB € u (for this notation, see the Remark
k-1

relating to A4 in Section 5 supra)
iff GB € u

From this chain of “iff”s, the desired result is of course immediate. So,
Just observe that the first “iff” is supplied by the truth condition for GB,
the second by the inductive hypothesis [all the E*u are in U by virtue of
(CIE)], the third by the definition of E*u in canonical &, n-structures, the
fourth by the fact that u is maximal consistent and hence closed under finite
conjunctions, and that the fifth, indeed “characteristic”, “iff” is provided
by the first axiom schema in A4(c) by virtue of the fact that a, € uu
being maximal consistent since belonging to U.
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Subcases u = W™y, ..., u = u,, u = Eug, ..., u = E"'u,. By Lemma
7.3, clause (ii), we obtain in these respective cases that a_,, € u, ..., a,
€ u,a €u,..a, € u We then argue just as in Subcase u = W™y,
keeping track of the “right indices”, when applying the relevant axiom
schemata in Ad(c).
Subcase u = e, = E"u,. Here, as in Case A = eB, previous reasoning does
not work, because Ee, (= Eu) & U and the inductive hypothesis does not
apply. Instead, we argue as follows: the truth condition for GB being va-
cuously satisfied in the present subcase, we have o/ ,u | GB for any wff
B whatsoever (including L ); similarly, since a, € u here, we obtain GB
€ u for any wff B whatsoever, by the last axiom schema in A4(c). Hence
our desired result.

This completes the treatment of Case A = GB as a whole.
Case A = HB. The proof is a mirror image of the preceding one; details
are left to the reader. The relevant axiom schemata are those in A4(d), of
course.
Cases A = FB and A = PB. These are also taken care of in a straightfor-
ward way: just argue “dually”! Don’t forget the schemata in A3 and in
T11-T12 of Lemma 6.4!

Case A = H B. The case will be settled, if the following equivalences go
through:

eftu | EHBiff for all vin U: e#v E B
iffforallvinU: B € v
iff HB € u.

Here, the first two “iff”s are verified as usual. And the “if” half of the
third “iff” is obvious in view of Lemma 7.3, clause (i) together with the
x-adequacy of any v € U. To establish the crucial “only i half, then, we
argue as follows. Suppose that, for any u € U, we have

1. HB&u assumption

2. © "BE€u from 1 by the maximal con-
sistency of u € U

3. P Bv "BV F-B)€Eu from 2 by T17 of Lemma
6.4

4. Either P"BEu or "B€u or F-"BEu from 3 by u max cons

We consider these three cases in turn:
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5. PnB&u assumption
6. Either a,€Eu or a,,€u or...or
a%€uor...ora,, ,Euora_€Eu from axiom schema A1(g) by
- u max cons

Again, we must consider these n+ 1 +m subcases in turn:

7. a,€u (=¢gy) assumption
8. w*BEu, for some k: 0<k<m+n from 7,5 by the first item in
T12 of Lemma 6.4,

V w=BEu, u max cons
k-1

9. "BEWH from 8 by the definition of
Wy

10. For some v in U, B&v from 9 by the fact that
Wieu

We then go on to establish the same conclusion 10 in the remaining n+m
subcases. Only the last one calls for special treatment:

11. a_ Eu (=w,) assumption

12. =PBEy from 11 by the last item in
Ti12

13. L €u from 5, 12 by u max cons
and AQ

14. "B€u from 13, u max cons, AQ

15. For some v in U, B&v from 14 by the fact that u (=
wo) €U

Hence, whichever a,, i € [n,-m], is assumed to be in u, we obtain the
conclusion that B is a non-member of some v in U. By disjunction elimina-

tion, that conclusion will depend just on the assumption 5. Consider next
the case:

16. "BE€u assumption
17. For some v in U, B&v from 16 since u€U

Consider then the third and last case:

18. F7BE€u assumption
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Bearing in mind that u (€ U) still satisfies line 6 supra (by Al(g)), we
must consider the subcases in 6, say, in reverse order:

19. a,€Eu (=w) ‘ assumption

20. e~ BEu, for some k: 0<k<n+m from 19, 18 by the first item
in TI1 of Lemma 6.4,
n+m

V é&-BEu €U
k=1

21. "BEEM from 20 by the definition of
Efu

22. For some v in U, B&v from 21 by the fact that
EueU

We then go on to establish the same conclusion 22 in the remaining m+n
subcases. Again, only the last one calls for special treatment:

23. a,€u (=¢y) assumption

24, "FBEu from 23 by the last item in
TI11

25. L €u from 18, 24 by A0, u max
cons

26. "B€E€u from 25 by A0, u max cons

27. For some v in U, BEv from 26 by the fact that u
(= e)€EU

Once again, whichever a, i € [-m,n], is assumed to be in u, we can derive
the conclusion that B is a non-member of some v in U, so, by disjunction
elimination, that conclusion will depend just on the assumption 18.
Hence, that very conclusion is derivable from any of the three
assumptions 5, 16 and 18. Therefore, by another step of disjunction
elimination, that conclusion follows from 4 and, ultimately, from the initial
assumption 1. Clearly, this result is equivalent to the desired “only if” half
in our third, crucial “iff”.
The induction is complete (leaving Case A = < B to the reader).
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9. Semantic soundness and completeness of the axiomatic systems <Fn,n

9.1. Soundness theorem.

Weak version: Every ¢7n,n-provable wff is <Zm,n-valid.

Strong version: Every <7m,n-satisfiable set of wffs is <#n,n-consistent.
Proof. As usual, the weak version is established by showing (i) that every
instance of the axiom schemata A0, A1(a)-(h), ..., A5(a)-(c) is &fm,n-valid,
and (ii) that the rules RO and R2 preserve <#m,n-validity. This is tedious,
but entirely routine.

As to the strong version, it is easily obtained as a corollary of the weak
one; see e.g. Aqvist (1987) §10. (The situation is different as regards the
infinitary system <71 dealt with in my Aqvist (1992); see Theorem 5.3 of
that essay.)

9.2. Completeness theorem.

Weak version: Every <7n,n-valid wff is <7m,n-provable.

Strong version: Every <7n,n-consistent set of wffs is <7, n-satisfiable.
Proof. As the weak version is immediate from the strong one, let us con-
centrate on the latter.

Let I be any <An,n-consistent set of wffs. Form the Lindenbaum extension
I’y of T' as defined in Definition 6.7: by Theorem 6.8, I', is maximal
consistent (in ¢#n,n). Again, form the canonical &m,n-structure generated
by T's, i.e. the structure (c#)™ as defined in Definition 7.1 supra: by the
fundamental Theorem 7.2, then, (e#)™ is a Tm,n-model. By the Coin-
cidence Lemma 8.1 for (generated) canonical <7m,n-structures, we obtain
in particular that for each wff A:

(), T, = Aiff A € T,

since I';, is known to belong to the “universe” U of (c#)™ [appeal to axiom
schema A5(a), if necessary]. Hence, since ' € T';,, we have (/)™ T,
A for every A € T. In other words, assuming I'" to be any <#n,n-consis-
tent set of wffs, we have constructed a <#n,n-model, viz. (e#)"™, such that
for some u in its universe U, viz. Ty, (e#™, u |= A for each AinT; i.e.
we have shown I' to be 7n,n-satisfiable. Q.E.D.

Uppsala University
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