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B, A BURIDAN-STYLE PROPOSITIONAL LOGIC (%)

Ian HINCKFUSS

In Hinckfuss [1991], it was claimed that there was no reason to believe that
a paradox free Buridan-style(') of propositional logic, extended to include
a truth predicate for locutions, was not possible. In this paper, I present
such a system of propositional logic with a metatheoretic model and show
that it is sound and complete with respect to that model. In conclusion, a
possibility of the system going unsound when extended to handle formulae
of its own metatheory is considered and rejected.

Primitive symbols of B
Propositional variables: p,, p., P, -.-
Locution constants: |,, 1,, 1, ...
Propositional operators: ~, &
Predicate: T (to be read ‘states truly’).
The Set of Well-Formed Formulae for B. (WFF)
Basic WFFs

1,. Any propositional variable e WFF.
l,. Foranyle{l,l,l, ...}, Tl ¢ WFF,

Complex WFFs

2. If « e WFF, s0 is ~a.
2,. If {«,B} © WFF, (a&B) ¢ WFF.

(*) Thanks are due to Graham Priest and Greg Restal for helpful encouragement and
discussion.

(') Hughes [1982] gives a thorough account of Buridan’s treatment of the liar paradox.
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Terminal Clause

3. WFF is included in any set, which, like WFF, satisfies conditions 1,,
129 21! 22'

Definitions

Formulae of the form (« D B), (o V B), (ee=8) and (« #B) are defined in the
usual way.

Deductions in B.

Deductions in B are sequences of lines of the form

Pla

where P is a set of wffs called the premise set, ‘I’ is called the label and is
a member of {1, 1,, 15, ... }, a is called the content of the line and is a wff,
We shall allow that reference to a line, P 1 o, may be made using its label,
‘I’, or by using what we shall call the full display of the line, namely, P 1 .

A wif, o, may be the content of more than one line, but each line has one
and only one content. We shall use [l] to refer to the content of 1. Thus if
o, is the content of 1, [l.]=«,.

The premise set, P, is the set of premises from which the content of | is
derived.

As well as stating its content, each line in a B-deduction is deemed to state
its metacontent. The metacontent of any line, 1, is the statement that Tl, that
is, that the line states truly. Unless ambiguity would result, we shall use “TI’
not only as a shorthand for ‘Line 1 states truly’, but autonomously also.
Similarly for formulae such as (p&q) and formula surrogates such as .

Some lines within a deduction are distinguished as assumptions of the
deduction. For any assumption, P | [l], within a deduction, P={[1]}. Lines
within a deduction which are not assumptions within the deduction are said
to be derived lines of the deduction.
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The New Label Condition.

Any label may or may not appear as a part of the content of a formula, e.g.
when [1] is T, or (p& ~T,), etc., except that, for any two lines, |, and 1,
within a deduction, if I, precedes 1., then 1, will occur neither as label or
as part of the content of |,. Nor will any label of any line within a deduction
occur as either the label or as part of the content of any other line external
to the deduction whose label is part of the content of any line within the
deduction. In short, any new lines are to have new labels.

The description of a line as new with respect to preceding lines implies
an ordering of the lines. We shall assume that this ordering is a strict orde-
ring denoted by ‘is later than’, or * > for short, and that the ordering shall
include any lines that are mentioned in the deduction but which are not lines
of the deduction itself. Any lines within the deduction shall be deemed to
be later in the ordering than lines that are mentioned in the deduction but
which do not occur in the deduction.

All and only the derived lines within a deduction will be the consequents
of the application of one of the following deduction rules.

&l P, 1, o

P, I B

(P,UP) 1, (a&h) where both [,>1_ and 1,>1..
&E P 1, (a&B) or P, 1, (a&B)

) P, 1, o SOoPL LB
where 1,>1.

~&E P, I, ~ (a&B)

P, 1, a

P,UP) I, ~h where both I,>1, and 1,>1,.
~~E P, 1, ~ -~

P, 1, o where 1,>1_.
TI {a} L, o
{TI_} 1, Tl, where |, is an assumption and

IL>1
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or
P, I o
P, I, Tl wherel  isderived and1,>1_.
TE P, I, Tl,
7 P, I, o where [l]=a,l, > and |, >1 .
~1 {a} I a where | is an assumption,
P, 1, (B& ~ B)
P-{a}) 1, ~a where I,>1, and 1,> 1.
or
{a} 1, o where 1, is an assumption.
P, 1, (B& ~ B)
(P-{Tl,,a}) 1, ~TI, where I, >1, and 1, >1,.

Metatheoretic Modelling for B

A model, ¢, is any function whose arguments are all the basic wiffs and
whose values are taken from the pair {1,0}.

The value, if any, of a WFF, «, in model ¢, ¢Val'a, is given by the
following recursive definition.

If « is a basic WFF, then ¢Val‘a = o‘a.

i If a=~B, then ¢Val‘a=1iff Val‘8=0, and ¢Val‘a=0 iff ¢Val‘b=1.

2, If a=(B&5), then ¢Val‘a=1 iff $Val'B=1 and ¢Val'é=1,and
¢Val‘a=0 iff $Val‘B=0 or $Val‘6=0.

3. The function ¢Val is included in any function which also satisfies condi-

tions 1, 2, and 2,.

BN —

It follows by a simple recursive proof that all wffs have a value in all mo-
dels,

A model, ¢, is said to be a B-model (short for Buridan model) iff, for any I,
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(i) if ¢*TI=1, then ¢Val‘[l]=1;
(i) if ¢Val‘[1]=0, then ¢‘TI=0;
(iii) if (a) ¢Val‘[l}=1 and,
(b) for some model, 6, §Val‘[Il]=1 and 6‘TI=1
then ¢‘Tl=1.

 ;

Note that this allows the possibility, in a B-model, that ¢Val‘[l]=1 and
¢“T1=0. This is a place of departure from standard Tarski modelling.

A B-model, ¢, is a B-model for a premise set, P, iff, for all aeP,
¢Val‘a=1.

A model, ¢, is a countermodel for a line, 1, with premise set P, iff ¢ is
a B-model for P and ¢‘T1=0.

A line is B-valid iff there is no countermodel for the line. It follows that
if ¢ is a B-model for the premise set P of any B-valid line, 1, then
¢oVal‘Tl=1.

Note that the B-validity of some line, 1, does not entail that | states truly,
that is, that TI.

Note also that not all assumptions are B-valid. For example, any assumpti-
on of the form { ~T1} 1 ~TI will yield ¢Val‘T1=0 for any model, ¢, which
is a B-model for {~TI}.

Theorem. The Soundness of B.
There is no B-deduction which contains a derived line which is not B-valid.

Proof.
The proof is by induction on the generation of B-deductions.

Basis.

No assumption is a derived line. However we note that any B-model for the
premise set {[l]} of any assumption, 1, yields ¢Val‘[l]=1; and that, since
B-models are functions to the pair {1,0}, in no such B-model is it the case
that ¢Val‘[1]=0.

Inductive Steps.

For the inductive part of the proof it is necessary to show that any appli-
cation of any of the deduction rules on lines that are either assumptions or
B-valid lines yields a B-valid line.
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Proof for &I.
Assume that lines P 1,, « and P, 1, B are both either assumptions or B-valid.
Then we are required to prove that the line

P,UP)I, (cx&B)
where 1, is later than both |, and 1, is also B-valid. Assume for the purposes
of a reductio that the line 1, is not B-valid. Then there is a B-model for
(P,UP,) in which TI, has value 0. Let that model be ¢. It follows that ¢
is a B-model for both P and P,, whence, since I, and I, are both either
assumptions or B-valid, both ¢Val‘a=1 and ¢Val‘B= 1; whence
¢Val‘(a&B)=1, that is, ¢pVal‘[l ]=1.
Now 1, is later than both 1, and ... It follows, given the new label condition,
that °l,” and hence TI, are not a part of any member of P, or P, or of [1.]
(that is, o) or of [l,] (that is, B). We can therefore construct a model b,
which, like ¢, is a model for P, and P,, and in which, therefore,
¢,Val‘a=1, ¢,Val'B=1, and hence ¢,Val‘(a&B)=1, but in which, unlike
¢, ¢,"Tl,=1. Hence there is a model in which both Tl, and [1,] evaluate to
1. Whence, since ¢ is a B-model and ¢Val‘[l,]=1, by condition (iii) for
B-models, ¢‘Tl,=1, contrary to our hypothesis.

Proofs for &E, ~ &E, and ~ ~E
These follow similarly to the proof for &I.

Proof for TI.
We first have to show that the line {TI_} I, Tl is valid, where I, is an as-
sumption and 1,>1,.

Now any B-model, ¢, for {Tl,} will yield ¢Val‘Tl_ =1, whence
¢Val‘[l,]=1, whence, given the new label condition, ‘Tl =1.

Secondly, we have to show that if a derived line, P, 1, «, is B-valid, then
so is line P 1, Tl,, where 1,>1_.

Assume 1, is not B-valid. Then there is a B-model, ¢, for P, such that
¢“Tl,=0. Given the new label condition for derived lines, it follows that
¢Val‘[l,]=0, that is $Val‘TI,=0. But if I_, is B-valid, there is no B-model
for P, in which Tl evaluates to 0. Qur assumption is therefore false and
the theorem holds for TI.

Proof for TE. ¢
In this case we have to show that if line P, 1, Tl is an assumption or is
B-valid, then so is P, I, o, where W=e, 1,>1, and 1,>1,.

Assume 1,, is either an assumption or is B-valid, and that 1, is not B-valid.
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If 1, is not B-valid, then there is some B-model, ¢, for P, such that
¢Val‘Tl =0.

Now if I, is an assumption, P,,={[l.]}={Tl}. Hence if ¢ is a B-model
for P,, ¢Val‘Tl,=1, whence ¢Val‘a=1, whence, given the new label
condition, ¢*‘Tl =1.

Again, if 1 | is B-valid and ¢ is a B-model for P, then ¢‘Tl,=1; whence
¢Val‘[l,]=1, that is, ¢Val‘e=1, and as before, the new label condition
would then ensure that ¢‘Tl,=1, contrary to our hypothesis.

Proof for ~1.

We have to show firstly, that if {a} |, & is an assumption and the line
P, 1, (B& ~B) is either an assumption or is a B-derived line, then the line
(P,-{a}) 1, ~ is B-valid, for 1,>1,>1,.

Assume first that 1, is an assumption. Then P,={(8& ~ B)} and hence P,
evaluates to 0 in all models.

Assume now that I, is B-valid. Then since [l,]=(B&~8) and since
(B& ~ B) evaluates to 0 in all models, TI, evaluates to 0 in all models. If I,
is B-valid, there is no model for P, in which TI_ evaluates to 0. It follows
again, therefore, that there is no B-model for P,.

So whether 1, is an assumption or is derived, there is no B- model for P,.

Assume then, that ¢ is a B-model for (P,-{e}). Then if there is no
B-model for P,, it must be the case that ¢Val‘a=0, that is, ¢Val‘ ~a=1,
whence, given the new label condition, ¢Val‘TI =1.

For the second form of ~I, we have to show that for assumption
{a} 1, « and line P, 1, (8& ~B) where |, is either an assumption or is
B-valid, then the line (P,-{Tl,,a}) 1, ~Tl, is B-valid, for I,>1,>1,.

As before, it follows that there is no model for P,. So if ¢ is a B-model
for (P,-{Tl,,a}), either ¢TI, =0 or ¢pVal‘a=0. If ¢Val‘a=0, ¢TIl =0.
So in either case, if ¢ is a B-model for (P,-{Tl,,a}), ¢‘Tl_ =0, whence
¢‘~Tl,=1, whence, by the new label condition, ¢*Tl,=1.

This completes the proof of the soundness of B.

Theorem. Completeness of B

For any B-valid line, P 1, a, given the full displays of any lines whose labels
occur in either the premises or the content of P 1, o, we can construct a
B-deduction which ends in P 1, c.
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Proof
We show that there is a method for such a construction which involves

(a) constructing a Jeffrey-style tree and
(b) transforming the tree to the required B-deduction.

We first examine « to see if it is of the form Tl _, where ‘1> does not
occur as a part of any member of P or as part of the contents of any line
whose label is a part of any member of P, that is, ‘1’ is new. If so, then
P 1, Tl is B-valid if and only if P 1, [l,] is B-valid, and we derive 1, by
deriving I, and then using TI. Again, if [I,|]=TI,, where ‘I’ is new, we
derive 1, from I, again using TI. Proceed backward in the derivation from
the line P |, o in this way until a line is reached whose contents are either
not of the form TI, or, if they are, then ‘I’ is not new. The problem then
reduces to generating the residual deduction.

A tree, call it a B-tree, for the residual deduction is constructed with initial
formulae comprising the premises of the line in question and the negation
of the contents of the line. The B-tree rules are:

TE TI P - ey &E (a&B) ~&E ~(a&B)
Wl o o I\
B ~o ~B

Closure rule: A path of the tree is closed when there appears within the path
any formula « and its negation, ~ a.

The tree is constructed by applying each of the rules in turn to all relevant
formulae appearing in any branch of the tree, giving preference to lines
closer to the top when dealing with any one rule. After applying ~&E to
every possible formula, we go back to rule TE and proceed again until there
are no more lines in the tree to which any of the rules are applicable.
The B-tree system is complete, which is to say, that for any initial formulae
for which there is no B-model, all paths in the tree will close in a finite
number of operations. The proof for this follows the style of the proof for
the completeness of trees for classical propositional logic as given in Ri-
chard Jeffrey [1967].

Only two new issues are to be addressed and both concern TE. The first
is whether the use of TE in the tree could lead to infinite trees. That this
is not so is apparent from the fact that there will be only a finite number



B, A BURIDAN-STYLE PROPOSITIONAL LOGIC 341

of lines whose complete description is given and on which, therefore, TE
could apply. Since the tree rules do not include TI or any other mechanism
for the generation of new formulae of the form TI to which TE could appl Y,
applications of TE will be limited by the number of occurrences of formulae
of the form Tl appearing as parts of the initial formulae or of other formulae
whose complete description is given.

The second concern is whether a finished open path would be upwardly
B-valid, that is, whether any B-model for the set of formulae which are
either basic formulae or the negations of basic formulae which appear in the
path is also a B-model for the total set of formulae appearing in the path,
including the initial formulae. The proof of this for trees of classical propo-
sitional logic involves showing that each of the tree rules is upwardly valid.
With the exception of TE, all of the rules for B-trees are rules for classical
propositional logic, and all of these are upwardly B-valid. The TE rule is
not upwardly B-valid, since it is possible to have a B-model in which [l]
evaluates to 1 and in which TI evaluates to 0. But this does not matter,
because any formula of the form TI is itself basic and so will receive a
valuation of 1 should it occur in an open finished path all of whose basic
formulae evaluate to 1.

This completes the proof for the completeness of B-trees.

To generate a B-deduction from a B-tree, begin with the assumptions
whose contents are the formulae of the initial lines of the tree, taking care
to label these assumptions differently from any fully described lines. Then
proceed down the left-most path in the following manner.

()  Where the formula in the tree path is produced by a non- branching
tree rule, use the corresponding deduction rule to generate a new line
of the proof.

(i) Where the formula is produced by the rule ~ &E, make an assumption
whose content is the formula on the left branch.

(iii) When the closure of the path has been reached, apply &I to produce
a line with contents of the form (83& ~B8) and apply ~1 and also,
where applicable, ~ ~E. Use ~&E to give a line whose content is
the right-hand formula of the last application of ~&E in the tree and
carry on down this path as before.

(iv) Proceed in this way until the right-most closure is reached. Use &I,
and ~I to produce a line whose content is the negation of the content
of the last line of the initial formulae.

(v) Use ~~E and TI, if necessary, to produce the required line.
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Example:

IAN HINCKFUSS

Given [1,]=p, [l,]=q, derive the line {Tl,, ~(p& ~q)} 1,5 Tl,

We first proceed backward from 1,5 via TI to produce 1,,, namely, {TI

I»

~(p&~q)} 1,, q. We then produce a B-tree for I, as follows:

(i) T,

i)  ~(p&~q)
(iii) ~q

(iv)

p
/\
(v) i e

X (iv,v) X (iii,v)

We then convert this tree into a B-deduction as follows:

{Tl,}

{~(p&~q)}

{~q}

{Tl;}

{~p}

{Tlla —"p}

{Tl,}

{TL,}

{Tlls ~ (P& ~Q)}

{Tlla "‘(P&"Q), “‘CI}

{Tl, ~(p&~q)}
{Th, ~(p&~q)}
{Th, ~(p&~q}

Extensions of B

3

Fy

A

- o

8

10
11

12

-

13
1

s

I
1
1
1
1
|
Ly
1
I
I
|
!
|

15

TI,
~(p&~q)
=

p

~p
(p&~p)
i

p

~~q
(~qé~~q)
~~q

q

Tl,

(premise)
(premise)
(neg. of concl.)
(i, TE)

(ii. ~&E)

(Assumption)
(Assumption)
(Assumption)
(|31 llv TE)
(Assumption)
(g, 15, &I)
(7, 1y, ~1)
(Iov - "'E)
(I4.- IIU' ""E)
(ISS Il]! &l)
(ISs- l|?- "'l)
(ll:\, - E)
(I, 1y, TI)

Any logic can be rendered unsound with an inappropriate extension. Howe-
ver, it is desirable that any logic should cope with an extension to its own

semantic modelling.

The interpretation of ¢Val‘@=1 as ‘« is true in ¢’ and of ¢Val‘a=0 as
‘o is not true in ¢’, and the allowance that one of the ¢‘s, ¢, say, is the
model corresponding to the real world, might make one wonder whether
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the semantic paradoxes can be reintroduced along the following lines:

1. ¢, Val‘[l,]=0 (Assumption)
{1} 2. ¢, Val‘[l]=1 (1, Truth Intro)
{1} 3. ~¢,Val‘[l,]=1 (1,Metatheory)
{1} 4. ¢, Val'[l,]=1 & ~o¢ Val‘[l|]=1 (2,3, &I)
{} 5. ~¢,Val‘[1,]=0 (1,4, ~01)
{} 6. ¢, Val‘[l,]=1 (5, Excl. middle)
{} 7. ¢, Val‘[l,]=0 (1,6,Metatheory)
{} 8. ¢, Val'[,]=0 & ~ ¢, Val‘[l,]=0 (7, 5, &)

The wrong step here, from the point of view of B-logic, is step 2. Line
2 does not follow from the contents of 1, but rather from its metacontents.
Making this explicit as demanded by B- logic, we have instead:

{¢.Val‘[l,]=0} 1. ¢, Val‘[l,]=0 (Assumption)
{T1,} 2. Tl, (1, TD
{T1,} 3. ¢, Val'[l}]=1 (2, Meta-theory)
{6 Val'[l]=0} 4. ~¢.Val‘[l,]=1 (1, Meta-theory)
{T1,,¢,Val‘[l,]=0} 5. ¢,Val‘[l]=1 & ~¢,Val‘[l,]=1 3, 4, &)
{TI,} 6. ~¢,Val‘[l,]=0 [, &, =1
{T1,} 7. ¢.Val'll]=1 (6. Excl. middle)
{Tl} 8. ¢, Val‘[l,]=0 (1,7, Metatheory)
{Tl.} 9. ¢, Val'[l;]=0 & ~¢,Val‘[l,]=0 (8, 6, &I)

Again we have our contradiction, but only with TI, as a premise. Dischar-
ging this premise, we obtain,

{} 10. ~TI, (1,9, ~D
No paradox there. Line |, does not state truly and that is because its meta-

content, namely the proposition that it states truly, is inconsistent with its
content, namely the proposition that its content is not true.

University of Queensland.
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