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A GENERALISATION OF THE TARSKI-HERBRAND
DEDUCTION THEOREM

S.J. SurRMA

The paper provides a condition which characterises the implicational frag-
ment of classical sentential logic in the same way as the Tarski-Herbrand
deduction theorem together with its conversion characterises the implica-
tional fragment of intuitionistic logic.

The deduction theorem, Tarski-Herbrand-style, can be looked at as pro-
viding a general framework for the formalisation and justification of a wide
class of intuitively sound, direct proofs. Typical logical theorems provable
in this way may be called ascending conditionals or ascending implications
because they fall under the schema

M) Co,Co,Ce;...Cor, v,

where n is a positive integer number and Ca is a conditional or implication
with the antecedent o and the consequent (. Clearly, not all provable con-
ditionals are ascending. For instance, Peirce’s law CCCafaa is not. The
widest class of directly provable conditionals must include what is called
here descending conditionals, ie. conditionals of the form

(1) CC...CCx 0.0 10,

The purpose of this note is to come to a Generalization of the above men-
tioned framework which would allow for the formalisation and justification
of intuitively sound, direct proofs of all logical theorems which fall under
schema () as well as under schema ({). Clearly, a direct proof of a (¥)-
conditional statement involves exclusively properties of the connective of
conditional C alone. In practice, however, a typical proof of a (4 )-con-
ditional statement is indirect in that it depends also on properties of negation
and/or disjunction.

Below we make use of some of standard set-theoretic notation. In par-
ticular, symbols €, N, U, & and {«,, o, ..., o,} denote set-inclusion,
intersection, union, the empty set and the set containing o, o, ..., @, as
its only members, respectively.
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Let § be the least set containing a denumerable stock of sentential variables
and closed under the formation of conditionals using the connective of
conditional C as the only sentence-forming connective.

Thus, if « € Sand 8 € S, then also Cap € S.

Let Cn be a closure operator on the power set 2° of S. This means that, for
any X,Y,Z € §,

@) X € Cn(X),
(ii) the fact that X € Y implies that Cn(X) S Cn(Y), and
(iii)  Cn(Cn(X)) € Cn(X).
For the sake of simplicity, expressions of the form

Cn(XU{a,, an, ..., o))
are abbreviated hereafter as

CnX, a), o, ..., o)

We also assume that lower-case Greek characters, with or without sub-

scripts, belong to the set S while Latin capitals X, Y, Z, ... are subsets of

The condition

Cof € Cn(X) iff 8 € Cn(X, a)

is the classical deduction theorem and is due to A. Tarski [3] and J. Her-
brand [1]. This theorem can be generalised to the following one.

(D"t) CoCeCa;..Cay 0, € Cn(X) iff o, € Cn(X, @, s, 03, ..., @)

It may be remarked at the outset that by calling (D" 1) the deduction theorem
we depart slightly from the prevailing terminological convention according
to which the term “deduction theorem” applies only to the “if” part of the
biconditional condition (D"t) while the “only if” part of (D"1) is (equi-
valent to) the rule of detachment. To be sure, X is said to be closed under
(generalised) detachment iff, for any o and B, the fact that « € Cn(X) and
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Caf € Cn(X) implies that 8 € Cn(X).

We have the following well-known fact which settles the scope of applica-
tion of the Tarski-Herbrand deduction theorem.

LEMMA 1
The following conditions are equivalent.

() (D"*) for any n;

(i) (D),

(iii)  Cn() includes the set of all theorems of the intuitionistic implica-
tional logic and is closed under detachment.

It may be noticed that condition (iii) of the above Lemma can be improved
by making a reference to an explicit axiom system for the logic involved.
For instance, we could re-write (iii) as follows.

(iii’)  Cn(Q) is the least set closed under detachment and containing the
formulae CaCBa and CCaCByCCaBCory.

Clearly, condition (D"*) does not cover the case of (4)-conditionals. In
other words, we cannot simply place CC...CCa0ta0%s... 0, 0, instead of
Co,Ce,Caxs...Ca, cx, in (D'1).

We may proceed now to the problem of formalisation of intuitive proofs of
(¥)-conditionals. Consider the following condition.

(D'd) If nis even, then

CC...CCa\o015... 00,40, € Cn(X) iff, for any i € {2, 4, 6, ..., n},
Cn(X, ) N Cn(X, o, )N Cn(X, e, )N ...NCn(X, o) € Cn(X,ex,,y).

Clearly, the formula on the right of the biconditional formula (D" {) above
abbreviates the following condition.
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Cn(X, a)NCn(X, a)N...NCn(X, o) S Cn(X, o))
Cn(X, a)NCn(X, aN...NCn(X, a,) S Cn(X, a,)
Cn(X, ag NCn(X, a)N...NCn(X, o) S Cn(X, as)
Cn(X, a,)NCn(X, &) € Cn(X, o) and

Cﬂ(x, c‘Irl) g CH(X’ an—l)

b
3

b

The substitution of n = 2 in (D"}) gives
Cayo, € Cn(X) iff Cn(X, o) € Cn(X, «,)
which coincides with (D*1) and which, in turn, is equivalent to
Caje, € Cn(X) iff a, € Cn(X, ;)

Thus, (D" }) generalises the Tarski-Herbrand deduction theorem. The theo-
rem below establishes the scope of application of (D"}).

THEOREM 1
The following conditions are equivalent.

(i) (D"V), for any even n;

(i) (D*), for any even n < 4;

(iii)  Cn(D) is the set of theorems of the C-fragment (ie. the implicational
fragment) of classical sentential logic, closed under detachment.

As it is well-known, condition (iii) of the above Theorem can be rewritten
equivalently as follows.

(iii’)  Cn(Q) is the least set closed under detachment and containing the
formulae CaCpBa, CCaCpyCCaBCay, CCCafac.

To get this theorem proved we must do some preparatory work. First, let
us define an auxiliary sentential formula

Alo,...cr,)

where n is an arbitrary positive integer number, by making use of the
following recursive schema.
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(i) Al) = a,
(ii) Aloy...o0,,) = CCa,, Aloyon...0) Ao, ts...cx,).

The following property of A can be established easily using induction on i.

LEMMA 2
If Cn(D) contains all theorems of intuitionistic implicational logic and is
closed under detachment, then, for any i such that 0 < i < n,

CoA(o,...a,) € Cn(D).

LEMMA 3
If Cn(D) is the set of theorems of the C-fragment of classical sentential

logic, closed under detachment, then

CCa,fCCaxyB...CCax, SCA(to-..c0,)8 € Cn(D).

Proof. The proof is inductive. That line

L CCa,fCa,,8

belongs to Cn(J) follows directly from the assumption about Cn(&). To

show that the fact that Lemma 3 holds true of k implies that it also holds
true of k + 1, we assume that

II. CCu,BCCayB...CCx,CA( cta...0, )

and we need to show that

II1. CCa,fCCapB...CCxBCCa, ,BCA(tt,ts...ct, 0%, . )8

To do so suppose that

1. Ca,f, Casfs, ..., Coyf3

2' Cak+lﬂ
and
3. Aloyo,...0n00., )

From 3 and the definition of A
4. CCoy, Ay 0y... ) At cx,....0tp)
From II, 1 and 4 i
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5. CCay, Aloqyct,...c0)8
From 2, 5 and the logical theorem CCCayCCaryy
6. B

so line III is proved. From I, II, I and the principle of mathematical
induction, Lemma 3 is proved true of any n.

Q.E.D.

LEMMA 4

Let n be even. If Cn(J) is the set of theorems of the C-fragment of clas-
sical sentential logic, closed under detachment, then, forany i € {2, 4, 6,
.oy N}, CCC...CCo ct,00... 00, 10, Cr A0ty 001; ,..0,)) € C(D).

Proof. In case n = 2 Lemma 4 reduces to line

I. CCa,Caj, € Cn(D)

which follows directly from our assumption about the set Cn(D). To prove

the lemma for n > 2 we proceed by induction on n. Accordingly, we show
first that Lemma 4 holds true for n = 4, ie. that

II. CCCCu y00,0t,Caxy Alevery) € Cn(D), for any i € {2, 4}
To do so we first show that

1. CCCCoay000,Car; A(tocx,) € Cn(D)

Assuming

1.1. CCCa o501,

and

1.2, g«

we need to derive A(ana,), ie. CCoaa, 50 let
1.3. Coo,

From 1.1, 1.3 and the transitivity property of C

1.4, CCCoey050x,

By another use of the transitivity of C we may infer from 1.4 and the
logical theorem CaCBa that

1.5. CCCaa,a,Cox,ct,
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From 1.5 and the logical theorem CCCafac

1.6. Coo,
From 1.2 and 1.6
1.7. o,

so line 1 is proved. Next we show that
2. CCCCa,m,0,0,Catsexy, € Cn(D)

Assume that
2.1. CCCaa0;0,

and

22, a

From 2.2 and the logical theorem CaCBa
2.3. CCojaa,

From 2.1 and 2.3

24, o

which proves line 2. Lines 1 and 2 complete the proof of II. As the next
thing we need to show that if Lemma 4 holds true of an arbitrary even p,
then it also holds true of p + 2. To do so we assume, as an inductive
hypothesis, that

II1. CCC...CCO(,&:O&...ozp_lapca-,_lA(aia,-ﬁaiN...ozp) S Cn(z).
foranyi € {2,4,6, ..., p}

Now, to prove line

IV.  CCCC...CCa 0.0, 10, 4 . Cti  A(Qi ;2 40,0, 1) €
Cn(QD), forany i € {2,4,6, ..., p, p+2}

we assume that

1, CCC...CCo o0, 05... 00,1, , 1
and

2. iy

we must deduce A(ee, 0, q...0,0,5), ie.
CCaN,A(aiamam..Aap)A(a;ai,,zaH,,...aP) so let
3. Cap+2A(aiai+2ai+4'?‘ap)

p+2
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From 1, 3 and the transitivity of C

4, CCC...CCo 5.0ty | A (0001 205 4. 01)

On the other hand, from III and 2

Ds CCCC...CCo . .. gty 10, A (i, o0 4o 0X,)
From 4, 5 and the logical theorem CCCaffyCCaryy
6. A(aiai+2ai+4'“ap)

The case o, = «,,, is easily fixed by using the logical theorem CaCfa.
Thus line IV is proved. From II, III, IV and the principle of mathematical
induction, Lemma 4 holds true for n > 2.

Q.E.D.

LEMMA 5

Let n be an even positive integer number greater than or equal to 2. If
Cn(Q) is the set of theorems of the C-fragment of classical sentential logic,
closed under detachment, then

CCa A(o0ty05. .0, )JCCo A (000t 00). < o o oo oo
CCa, A(e,,0,)CCa,.,,CC...CCo 0,010, 0, € Cn(D).

Proof. The case of n = 2 is obvious. Assume that the Lemma is true of an
even p and suppose that

1. Coy A0ty ),
CosA(a,0t. .., 1),

Co, A0, o)
2. Cop 0042
and

3. CC...CCa 0.0 01,

From 1 and the definition of A
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4, Ca,CCa;, ,A(0ry01,.... 0 ) Aty ..
Ca;,CCa, 2 A0y .00, ) Aty . .,

Ce,.,CCu,, .0,

From 4

5. CCa; 2 A0y, 00,)Cay A0y, ..
CCa;, Aoy 00, ) Catz Aoty . .

CCa,y.,0,Co, cx,
On the other hand, from 2 and 3

6. CC...CCo v 0x;...ct 0,

An application of the inductive assumption to steps 5 and 6 gives

7. CCaNZA(aza‘;...aP)CCapQA(maﬁ...ap). .. CCa, 00,0

From 7 and the logical theorem CCCafac

8. CCap+2A(aga4...aP)CCaP+2A(a4a6...aP). + 3 GO bl 500,

327

Repetition of an argument similar to that leading to step 8 gives, finally,

9. 00

It follows from 1-9 and 1 that the conclusion of our Lemma holds true of

p+ 2
Q.E.D.

Proof of Theorem 1

The proof that (i) implies (i) is obvious so let us proceed to the proof that

(ii) implies (iii). Substitution of n =
Lemma 1

2 in (D"V) gives (D°1). Hence by

1. Cn(J) includes the set of theorems of intuitionistic implicational

logic
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and
2. Cn() is closed under detachment

Clearly,

3. Cn(B)NCn(a) S Cn(w),
Cn(a) € Cn(a)

From 3 by (D"{), in which we put n = 4,
4. CCCafaa € Cn(A)

Formula CCCofaw extends the intuitionistic implicational logic to the C-
fragment of classical logic. Hence, from 1 and 4

. Cn(QD) is the set of theorems of the C-fragment of classical senten-
tial logic

This proves that (ii) implies (iii).

Proof that (iii) implies (i). Let n be an even positive integer number. We
have to show that, on the assumption of condition (iii) of Theorem 1, con-
ditions (*) and (**) are equivalent where (*) and (**) are as follows.

(*)  CC..CCaama...ap ., € Cn(X)

and

(**) Cn(X, ai)m Cn(xs ai+2)n Cn(x’ ai+4)n"' N Cn(xa an) £ Cn(xrai-l)s
foranyi € {2,4,6, ..., n}

First, we will show that (*) implies (**). To do so suppose that, for any
i€ {2,4,6,..n},

1.1. B € Cn(X, e)NCn(X, a;,)NCn(X, a;, )N ...NCn(X, o,)
By Lemma 1, condition (iii) of Theorem 1 implies that (D?1) holds true.
Hence and from 1.1

1.2, Caf, Co,of, Cey,iB, ..., Copof8, Ca,8 € Cn(X)
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From 1.2 and Lemma 3

1.3,  CA(ee. .04, 4-.00,0,)8 € Cn(X)

From 1.3 and the transitivity of C

1.4, CCo  Aloe, 20, 4e..00,0)Ca 8 € Cn(X)
From 1.4 and Lemma 4

1.5. CCCC...CCaa,0...ap 0, ,0,Cet, 8 € Cn(X)
From condition (*) and 1.5

1.6. Ce.,8 € Cn(X)

From 1.6 and (D’t)

1.7. B € Cn(X, «;,)

Lines 1.1-1.7 prove that
1. Cn(X, a)NCn(X, a,.)NCn(X, a,,,)N...NCn(X, a)) € Cn(X, a.,)

so we may conclude that condition (*) implies condition (**).
To see that (**) implies (*) assume that

2.1, CnX, epNCn(X, o, )N...NCn(X, o) S Cn(X, o),
foranyi € {2,4,6, ..., n}

From condition (iii) of Theorem 1 and Lemma 2

22, Almogog..q,) € Cn(X, o), forany j € {2, 4,6, ..., n},
Alayaeas...) € Cn(X, o), for any j € {4, 6, 8, ...
Alo,.a,) € Cn(X, o), for any j € {n-2, n}

From 2.1 and 2.2, for any i € {2, 4, 6, ..., n},

23, Aoioy 20, 4...0000,) € Cn(X, o)

Cn is a closure operator s0 o, € Cn(X, «,). Hence and from 2.1

24, o, € CnX, a,,)

From (iii), 2.3 and 2.4, for any i € {2, 4, 6, ..., n}

25, Co A, o0 0y, ..oy @) € Cn(X)

From 2.5, (iii) and Lemma 5

2.6. CC..CCamas...0,0, € Cn(X)

b4

This proves that (**) implies (*). We may conclude, then, that conditions
(*) and (**) are equivalent and so that (iii) implies (i). This proves Theo-
rem 1.

Q.E.D.
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As we have seen, condition (**), which appears in the above proof, is both
sufficient and necessary for the provability of a conditional referred to in
condition (*). It may be noted, in this context, that a related condition,
presented in the Polish paper [2], although sufficient was not necessary and,
besides, it was built into a less simple metalogical framework.

It follows from Lemma 1 and Theorem 1 that condition (D" ) stands to
the C-fragment of classical sentential logic in the same relation as condition
(D™1) stands to the C-fragment of intuitionistic implicational logic. It is for
this reason that (D"{) may be called the deduction theorem for classical
sentential logic.

Clearly, our classification of conditional statements into (1)-conditionals
and (¥)-conditionals is not disjoint. For instance, condition Ce,a, is both
ascending and descending. To get the classification improved in this respect
we may simply treat Co,c, as ascending. Also, the difference between
(D"t) and (D"V) does not consist in that the first condition generates as
logical theorems exclusively ascending conditionals because one of the
consequences of (D"t) is that, for any n,

CCCC...CCCu 0ty .. 01y ¥, 00ty € Cr(D)

where, clearly, CCCC...CCCoyo,00,01,...0x, @, 000, is descending.

However, the point here is that, unlike (D" 1), condition (D"{) generates
as logical theorems also all those ( § )-conditionals which are intuitionistically
unprovable.

Let us distinguish between even (¥ )-conditionals and odd (4 )-conditionals
according to whether n is even or odd. Clearly, Theorem 1 provides charac-
terization of even ({)-conditionals only. However, it may be remarked that
no genuine odd (¥ )-conditionals are provable as theorems of the C-fragment
of the classical sentential logic. Indeed, no conditional of the form
CC...CCax 0,0x;... 04,4, is a theorem of the C-fragment of classical sentential
logic where n is odd and «;, «,, s, ..., a, are sentential variables.

Modifications or specifications of (D"}) can be used to provide a full
characterization of the C-fragments of some non-classical logical systems.
One such modification of (D"V) provides a full characterization of the C-
fragment of system S5 of C. I. Lewis.

Let §° denote the set of all conditionals of S, ie.

§ = {CaB: &, f € 5}
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and let us consider the condition

DCY) If XU {oy, o, o, ..., a,} S 5, then (D"4).

We have the following theorem.l

THEOREM 2
The following conditions are equivalent.

@) (DC{) for any even positive integer number n;

(ii) (DC{) for any even positive integer number n < 4;

(iii)  Cn(Q) is the set of theorems of the C-fragment of Lewis’s system
S5, closed under detachment.

The proof of this theorem is similar to that of Theorem 1.
It follows from Theorem 2 that the logic, which condition (DC'V) deter-

mines, is precisely the C-fragment of Lewis’s sentential logic S5 based on
the rule of detachment as the only inference rule.

University of Auckland
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