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GRADED MODALITIES IN EPISTEMIC LOGIC®

W. VAN DER HOEK
J.-J. Ch. MEYER™

Abstract

We propose an epistemic logic with so-called graded modalities, in
which certain types of knowledge are expressible that are less absolute
than in traditional epistemic logic. Beside ‘absolute knowledge’ (which
does not allow for any exception), we are also able to express ‘accepting
¢ if there are at most n exceptions to ¢’. This logic may be employed
in decision support systems where there are different sources to judge
the same proposition. We argue that the logic also provides a link
between epistemic logic and the more quantitative (even probabilistic)
methods used in Al systems. In this paper we investigate some prop-
erties of the logic as well as some applications.

1. Introduction

‘Infallible’ computers are computers that have multiple processors (usually
each from a different company and programmed in a different way using
different programming languages) to check and double-check on the results.
Decisions are taken on a kind of democratic basis: the results that come up
most often as the results of a certain calculation, are the ones that matter
and are used to make a decision. The idea is just based on statistics: the
chance that n independent processors are faulty at the same time is p for
an already very small probability p. Typically, infallible computers are used
in situations where the failure of a computer would have disastrous conseq-
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uences, such as the stock exchange, certain security situations, and the so-
called flying-by-wire (i.e. using a steering computer) of an airplane like the
Airbus A320.

Decision Support Systems working on infallible computers, and devices
with several input sensors in general, may have knowledge that is source-
dependent. In this paper we will propose an epistemic logic that can deal
with knowledge (or some may prefer the term belief here) that is not abso-
lutely true in all worlds, but may have exceptions in the sense that there are
worlds in which the assertion (that was believed) is nevertheless not true,
such as in the case of a faulty processor or sensor in the situation described
above.

Consider an agent getting input from three different sources w,, w, and
ws. Suppose further-more, that two types of information are relevant for this
agent, say p and q. All the sources agree on p: they mark p as true. Finally,
in w, and w,, q is true, whereas in w,, it is false. When using ‘standard’
modal logic to model epistemic notions (cf. [MHV91] for an overview), one
would consider the resources w; (i < 3) to be worlds in an S5-Kripke model
(cf. [HC68] for an introduction to modal logic), and observe that the agent
knows p, i.e. Kp holds, but does not know q or —q, since he considers both
alternatives to be possible: Mq A M—q holds.

This is about the limit of the expressibility of standard modal epistemic
logic (we will formalize this claim in the next Section), where the only
operators that are available are K and M, to express ‘truth in all accessible
worlds’ and ‘truth in some accessible world’, respectively. Since the favour-
ite system for knowledge (S5) may be interpreted on Kripke models in
which the accessibility relation is universal (cf. [HM85, MHV91]), we may
leave out the reference to this relation, leaving one with a system in which
one can associate ‘K’ with ‘all (worlds)’ and M with ‘some (world)’ (cf.
[GP90)).

However, in the above example, it might be desirable to be able to express
that the agent has more confidence in q than in —q. (For instance, a robot
which (who?) is searching for block A, may choose to first look for it on
block B, if two of its sensors tell him it is there —while the third sensor
tells him it is on block C.) One way to achieve this is to add a qualitative
modality *>*, enabling the agent to judge (q > —q), as is done in [Ho91a]
(and, in a specifically epistemic context, see also [Le80]). Here, we will
take an alternative approach, in which we add quantitative modalities to the
language (M,, n € N), with the intended meaning that more than n suc-
cessors verify . Then, in the above example, we can describe the agent’s
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point of view in a more precise manner, like for instance the fact that he
considers exactly two g-alternatives possible (‘input-sources’), and exactly
one —q-alternative,

Actually, adding such ‘graded modalities’ to the modal language is not
new. We refer to [Ho92a] for some history, and a first investigation into
the expressibility, decidability and definability of this graded language. An
application of those graded modalities, especially of the graded analogue of
S5, has been studied in the area of Generalized Quantifiers, (cf. [HoR91)).
In this paper, we try to explain how the greater expressive power of graded
modalities may be used in epistemic logic. We already showed in [HoM92]
how these new modalities may help to make some issues in the field of
implicit knowledge explicit. However, there, the graded modalities are
motivated to establish some properties on a ‘meta-level’; adding them to the
language enables one to more precisely define accurate models for implicit
knowledge; in particular, we showed how one can employ graded modalities
to define the intersection of accessibility relations. Here, though, we try to
use the new operators directly in the object language in order to obtain a
more fine-tuned epistemic logic. We think that, using the enriched language,
one has an appropriate tool to deal with notions like ‘uncertain’, or ‘almost
certain’ knowledge (or belief). The new operators may then be helpful to
reason with degrees of acceptance. In fact, one may distinguish as many
degrees of belief as there are graded modalities. To support our claim, we
will sketch some directions in which such modalities might be employed.

The rest of this paper is organised as follows. In the following Section,
we will introduce our main system, together with its natural semantics. In
Section 3, we investigate how this system of Section 2 can be interpreted
epistemically. Then we give some examples in Section 4 and conclude by
indicating some further directions of research in Section 5.

2. The system Gr(S5)

Before plunging into the definitions of the graded language and the formal
system, it may be useful to keep in mind how standard modal logic (together
with its semantics) is used to model knowledge. There, K¢ (¢ is known)
is defined to be true in a Kripke model (M,w) iff in all worlds v accessible
from w, (M,v) is a model for ¢. Also, Mg is defined to be =K —¢, which
will be true in w iff ¢ is true in some accessible world v.

Now, consider the following Kripke model M, = (W, R, 7), where W
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= {w, Wy, W3, ... W} (k =2 4), R =W X W and w(w,)(p) = true for all
1< k; m(w)(qQ) = true iff i & {2, 3}; w(w)(r) = true iff i € {1,3} (cf.
Figure 1 below).

P.q,r p.&F pyr  p.gk  p,gi P.q.k
e ® [ ] ® * ... o
w, W, W, W, Wy Wy

Figure 1

At the end of this Section, we will demonstrate, in a precise way, that in
all purely modal formulas that are true in this model, one may freely inter-
change the role of q and r. In other words, despite the fact that q is true
‘almost everywhere’ in the model, and r is false ‘almost everywhere’, the
modal language is too weak to express this difference between q and r. We
claim that, both in the cases where worlds are interpreted in one-one corre-
spondence to counterparts in the physical world (e.g. like sensors —Section
1) and where worlds correspond to possible (but made up) situations for
some agent, a tool to distinguish ‘q-statements’ from ‘r-statements’ in the
above model is highly desirable.

We provide such a tool by adding graded modalities M,, M,, ... to the
modal language. The intended interpretation of M_p, (n € N) will be that
there are more than n accessible worlds verifying ¢. By defining K¢ =
“M~y,p, K, is true iff at most n accessible worlds refute ¢. In terms of
epistemic operators, note that K¢ boils down to Ko, so that we may inter-
pret K, as our (certain) knowledge operator. Generally, K ¢ means that the
agent reckons with at most n exceptions for ¢. Dually, M, then means that
the agent considers more than n alternatives possible, in which ¢ is true.
Now, what would be the appropriate properties of these ‘defeasible’ necess-
ity operators? For instance, what kind of introspective properties are desira-
ble? Many possibilities present themselves at this point, but for the time
being we will remain on solid ground by considering the graded analogue
of S5.

Our language L is built, in the usual way, from propositional atoms p, q,
..., € P, using the standard connectives L, T, A, V , =1, —» and .
Moreover, if ¢ € L, then so is M,¢ (n € N). From now on, we will
assume that n, m, k € N. We use K, as an abbreviation for =M_—. Finally
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we introduce the abbreviation M!, ¢, where M!gp = Ky, Ml p = (M, ¢
A T M,e), if n > 0. From the definitions above, it is clear that M!_ means
‘exactly n’.

2.1 Definition. The system Gr(S5) is defined as follows (cf. [HoR91]). It
has inference rules Modus Ponens and Necessitation:

RO, Fop2y=+y
Rl - o=+ Kp

It has also the following axioms (for each n € N):

A0 all propositional tautologies

Al Koe = ¥) = K¢ = K¥)

A2 Ke—>K.¢

A3 Kim(e A ) > (ML A MLY) > ML (e V ¥)
A4 K = K,7Kp

AS Kp—>op

Before elaborating on the impact of the axioms on our intended epistemic
reading of the operators, which we will do in the following Section, let us
pause for a moment to sharpen our understanding of the postulates as such.
The system with rules RO and R1, axioms AQ - A3 is the graded modal
analogue of K, the basic modal system —so let us refer to it with Gr(K).
In Gr(K), Al is a kind of ‘generalized K-axiom’ (cf. 2.3), A2 is a way to
‘decrease grades’ in the possibility operator (A2 is equivalent to M, ,,¢ —
M,¢) and using A3, one can go to ‘higher grades’. To ensure that the
definitions work out rightly, we take proposition 2.10 from [Ho92a]:

2.2 Proposition. The following are derivable in Gr(K) (and hence in
Gr(S5)):

B M AY)>Me A My)

(ii) Mo A Mlp— L (n # m)
(i) K,7pe Ml VM!Lp V A VML) (V denotes ‘exclusive or’)
(iv)  Mfe V §)—> My

V) Muiale V ) > Me Vv M,y)

(vi) Mo AMoe—> 1L (m = n)
(Vii) Mn(¢ A 'Ib) A Mm(‘p A -I,ib)‘_. Mn+m+l‘p
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(viil) Ko7 A ) A My A Mp¥)) > M,.u(e V )

To see the system in action, we will give a derivation of a theorem which
is a generalisation of the K-axiom from standard modal logic.

2.3 Proposition. The following is derivable in Gr(K) (and in Gr(S5)).
Kile = ¥) = Knp = K. oY)

Proof. We implicitly use the (Gr(K)-derivable) rule of substitution: — o <

B = + ¢ « ¢[*/5]. Then, observe that - Al & (Ki(¢ = ¥) =~ M,¢ —

M,¥)) (). To see this, note that - Ky(¢ = ) & Ky(—y = —¢), and —
M, = My) < K,y > K, 7p).

1+ Wa(e A W)V (e A DY) A0
2 FK(W=o(e A W)V (Do A YY) R1,1
3 F M WoM(e A YV (e A YY) (*),2
4 - Mi.lle A YV (Do A DY)~

M A 7Y) V M(Te A ) 2.2(v)
50 F (@AY= (e=¥) A ((De A DY) 1) A0
6 F Mg A W)=>M(e=>¥) A M A 1Y) >

M, ¢) R1,1, Al
7T F My =>M,2 (=) vV M,7g) Al, 34,6
8 F M, (= y¥)=> (M0~ M, ) A0,7
9 F Kile=y)—= Kop > K,.n¥) Def K,,8

Note that, by taking n = m = 0 in 2.3, we get the K-axiom in Gr(S5). In
the presence of the necessitation rule, this means that K, is a ‘normal’ modal
operator. In fact, the axioms A4 and A5 are graded versions of Euclidicity
and reflexivity, respectively. Before making this explicit, we give the defini-
tion of the models on which we want to interpret formulas of L.

2.4 Definition. A Kripke structure M is a tuple (W, 7,R), where W is a set
(of ‘worlds’ or ‘states’), w a truth assignment for each w € W and R a
binary relation on W. If R is both reflexive and Euclidean (i.e. vxyz((Rxy
A Rxz) - Ryz)), we say that M € S5. It is easily verified that the acces-
sibility relations R of M € S5 are equivalence relations. A model M € S5
is known to be a model of (standard) S5 (cf. [MHV91]).



GRADED MODALITIES IN EPISTEMIC LOGIC 257

2.5 Definition. For a Kripke structure M we define the truth of ¢ at w
inductively:

(i) (M,w) [ p iff w(s)p) = true, for all p € P.

(i) M,w) F ¢ iff not (M,w) F .

(i) (M,w) F o v yiff (M,w) | ¢ or M,w) | .

(iv) (M,w) F M,piff [{w € W | Rww’ and (M,w’) F ¢}| >n,nEN.

2.6 Remark. Note that (M,w) | K, iff |{w’ € W | Rww’ and M,w’)
F —¢}| < n. Also, note that the modal operators M and K (in the litera-
ture also written as M and L, or ¢ and () are special cases of our indexed
operators: Mg = Mg and K¢ = Kyp.

2.7 Definition. We say that ¢ is true in M at w if (M,w) | . If such an
M and w exist for ¢, we say that ¢ is satisfiable. Formula ¢ is true in M
M E o) if (M,w) E ¢ for all w € W, and ¢ is called valid (F @) ifM
= ¢ for all M. If C is a class of models (like S5), C |= ¢ means that for
Al M € C, Mk o.

With these semantic definitions, we can formalize our claim about the model
of Figure 1. For two propositional variables x and y, let [xey]e be the
formula obtained from ¢ by interchanging the x and y in ¢. (This can be
defined in terms of [*/,]¢, substitution of u for v in ¢, as follows: [xeyle
= [PLIl,[*/Je, where z is some atom not occurring in ¢.) We suppose
that the accessibility relation in the model of Figure 1 is universal, i.e. for
all w and v we have Rwv.

2.8 Theorem. Let ¢ be a (non-graded) modal formula, and M the model of
Figure 1. With the definition of [xeyle given above, we claim that M |=
¢ oM F [ger]e.

Proof. The theorem follows from the following observation. Let f: W = W
be the following function: f(w)) = w,; f(w,) = w,; f(w,) = w,, f(x) = W,
for all x € W\ {w,, w,, w,}. Then, we claim, that for all w € W and all
non-graded modal formulas ¢: (M,w) | ¢ & (M,f(w)) E [gerle. This
claim is established using a simple induction, of which we demonstrate the
modal case ¢ = My: suppose that (M,w) | My. By the truth-definition
of M, there must be some v € W such that (M,v) | y. By the induction
hypothesis, we obtain (M,f(v)) = [qer]y. Since R is universal, we have
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(M.f(w)) F Mlger]y which is of course equivalent to M.f(w)) E
[qerIMY, i.e. (M,f(w)) | ¢. The converse of this claim is proven simil-
arly. The proof of the theorem then proceeds as follows: M H ¢ & there
is some w such that (M,w) | ¢ © there is some w such that (M, f(w)) E
[qer] ¢ & there is some w such that (M, f(w)) F -lgerle e M B
[qer]e.

We end this introduction to Gr(S5) by recalling the following results:

2.9 Theorem. (Completeness: [Fi72], [FC88)). For all ¢ € L, Gr(S5) +
@ iff S5 | ¢.
Thus S5 is also a class of models characterizing Gr(S5).

2.10 Theorem. (Finite models: [Ho92a)). Any ¢ € L is satisfiable iff it is
s0 on a finite model.

2.11 Theorem. (Freedom of nestings: cf. [HoR91]). In Gr(S5), each formula
is equivalent to a formula in which no nestings of (graded) modal operators
occur.

Related to the last theorem, a popular slogan in modal logic is that in S5,
‘the inner modality always wins’, we have e.g. KMg = Mg, MK¢ = K¢
and MMg = Mg in S5. However, in the case of Gr(S5) this is not always
sufficient: we do have M;Myp = M,p, but instead of M;M,p = M.p we
now have M;M;p = M;T A M,p, accounting for the fact that MM,
implies that, so to speak, 5 worlds are around.

3. Epistemic Reading

Returning to the main point of this paper: how can Gr(S5) serve as an
appropriate starting point to study epistemic phenomena? To start with, RO
and AQ express that we are dealing with an (extension of) classical proposi-
tional logic: we may use Modus Ponens and reason ‘classically’ (AO). By
taking S5 as a ‘standard’ system for knowledge, the observations in the
preceding Section suggest that we interpret Ky as ‘¢ is known’ (by the
agent: for the moment, we focus on one-agent systems, although graded
modalities do not prevent us from studying multi-agent systems —on the
contrary, cf. [HoM92]).
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Then, RO, R1, A0 and A5 find their motivation in the same fashion as the
corresponding properties in S5, i.e., we may use Modus Ponens, the agent
knows all (Gr(S5))-derivable facts, we are dealing with an extension of
propositional logic (A0) and moreover the agent cannot know facts that are
not true (AS).

In order to interpret the other axioms, we need to have some intuition
about the meaning of K,¢. The semantics suggest, that it should be some-
thing like ‘the agent reckons with at most n exceptional situations for ¢’,
or ‘the agent “knows-modulo-n-exceptions” ¢’. Thus, the greater n is in
K¢, the less confidence in ¢ is uttered by that sentence. The latter observa-
tion immediately hints at A2, K¢ —= K, ,,¢: if the agent foresees at most
n exceptions to ¢, he also does so with at most n+ 1 exceptions. Of course,
the generalisation of A3, for n > 0; K,¢ — ¢ is not valid: if the agent does
not know ¢ for sure, i.e., if he allows for exceptions regarding ¢, he cannot
conclude that ¢ is the case. Thus K ¢ expresses a form of “uncertain know-
ledge”.

In standard S5, we have the axiom ~K¢ - K- K¢, expressing the agent’s
negative introspection: if he does not know a given fact, he knows that he
does not (this is of course an ‘over-idealised’ property of knowledge, espe-
cially if we have in mind capturing human knowledge; see [MHV91] for
a short discussion and further references). We may write this introspection
axiom equivalently as

(1) Mg = KMep,

saying that the agent has awareness (see [FH88] or [HoM89] for a discus-
sion on this ‘awareness’ —defined in a technical sense) of what he considers
to be possible. Now that we have at hand a more fine-tuned mechanism to
distinguish between ‘grades’ of possibility, it seems straightforward to
strengthen the bare introspection formula (1) to

) M,p = KM, 0,

saying that the agent is aware of the fact that he considers more than n -
situations possible. (2) is equivalent with our axiom A4. Note that (2) is at
the same time the ‘most general” way to generalise (1): it implies, (using
A2 m-1 times) for instance M,p - K M,¢.

In the same spirit, we can interpret A1: if the agent knows that ¢ implies
V¥, then, if he believes that there can be at most n exceptions to ¢, he will
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not imagine more than n exceptions to y, since every exception to y will
be an exception to ¢ as well, i.e. Ky(¢ = ¥) = (K, = K,), or equivalently
(cf. 2.3), Ko(e = ¥) > (M,¢ = M,y) (A1’). In epistemic logic, the K-
axiom, K(¢ = y) - (K¢ - Ky), has been considered a source of logical
omniscience ([FH88] or [Ho92c]), which yields too idealistic a notion of
knowledge (and certainly of belief). It would mean that the agent is capable
to close his knowledge (belief) under logical implication. However, now that
we allow for weaker notions of knowledge, it appears that the K-axiom is
only valid for K,, which we may consider as a kind of ‘ideal’ knowledge.
Instead of a K-axiom for each K,, we have the much more realistic (cf. 2.3)

) Kilp = ¥) = Ko > K, V).

This seems very reasonable (suppose n, m > 0): if the agent has some
confidence that ¢ implies ¥, and also has some confidence in ¢, his con-
clusion that ¥ holds should be stated with even less certitude than that of
the two assertions separately. This is reminiscent of plausible ([Re76]) or
defeasible reasoning, where reasoning under uncertainties is also the topic
of investigation. Note that (3) guarantees that, the longer the chain of rea-
soning with uncertain arguments, the less certain the conclusion can be
stated by the agent. Moreover, note that, although (3) holds, if n > 0 we
do not have K (¢ = ¥) - (K¢ = K,{): this makes it questionable to call
K, a modal operator (if n > 0). However, here we do so because of the
interpretation of such operators in Kripke models.

Finally, to understand A3, we must recall that M! ¢ means that the agent
is aware of exactly n possible situations in which ¢ is true. But then, A3
simply states this property of additivity: if the agent knows that ¢ and y are
mutual exclusive events, and he is thinking of exactly n situations in which
@ is true and, at the same time, m situations in which y is true, altogether
he has to reckon with (n + m) situations in which one of these two alterna-
tives is the case.

Up to now, we have been deliberately slightly vague about what M,¢ and
M!,¢ exactly should mean. For instance, is this index n within the scope
of the agent’s knowledge? That is, does the agent know himself of (exactly)
n concrete situations in which ¢ holds, and if so, is it possible that there are
still other situations he does not know about where ¢ holds as well? This
makes sense in situations in which the agent has to make decisions that
depend on rules that allow for exceptions. The alternative interpretation is,
that these n situations are only known to the reasoner using the system at
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a meta-level, interpreting K, as some abstract n-degree of knowledge (or
perhaps belief, if n is greater than some threshold)? We believe that the
logic can be used in both these cases, and will not fix the interpretation in
this paper.

It is argued (cf. [HM8S5]) that the axiom which distinguishes knowledge
(K) from belief (B) is (K¢ = ¢). Instead of (Bg — ¢), for belief, the weaker
axiom —BLl is added. Now that we have (infinitely) many operators
around, we might see how they behave in this respect. In Gr(S5), K, L
(meaning that more than n possibilities are reckoned with) is derivable only
for n = 0. If we would have (add) K, L, implying that he allows for more
than n possibilities, he ‘does not know too much’ (if n is big). And indeed,
as long as the agent considers at least one possible world, it means that he
does not know contradictions (mK L ). In case he has no epistemic alterna-
tive left his knowledge is all encompassing but inconsistent (K¢, for any ¢).
This is of course excluded in S5 (and hence in Gr(S5)), but so far, there was
no way to exclude the extreme case of an ‘omniscient knower’, i.e., one
for which (Ke « ¢) holds. Semantically speaking, there was no way to
define the class of Kripke models in which each world had more than one
successor. Using graded modalities this can be enforced by adding M, T
to any system.

4. Examples

When interpreting K, as an ‘n-degree of knowledge’, we recall that the
higher the degree, the less certain the knowledge. The picture is denoted
in the following chain:

Kop > Kip .. Ko > K, 0. 2. M,,,10 = Mg »..—> Mp > Mgp.

Here, the ‘=" denotes logical implication. If, semantically speaking, the
number of alternatives is infinite, the sequence is an infinite one, and ‘=’
denotes implication, in the sense that all M,-formulas are logically weaker
than all the K -formulas. We could, as argued above, interpret the strongest
formula in this chain (‘Kyp’) as “¢ is known”, and the weakest (‘Myp’) as
“¢ is not impossible” —but even as “¢ is believed”, cf. [HoM89].

If, however, the number of alternatives is finite, say N, we get the se-
quence
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Kop (= Myi0) > Kip (= Myap) = .. Kp (= My 0) = ..
Knae (= M) » Ky (=T)

In fact, this is the case in the situation of the introduction, where the agent
is capable to sum up a complete description of the model by listing a (finite)
number of possible situations determined by some finite set of propositional
atoms.

The property that each formula of L is equivalent to one in which no
nestings of the operator occur (2.11), supports to consider an S5-model to
be a collection of ‘points’ (worlds) that can have certain properties (summa-
rized by the atomic formulas that are true in each world), the language L
being sufficiently expressive to sum up the quantitative distribution of those
properties over the model. Alternatively, identifying worlds with truth
assignments to primitive propositions, as is usual in standard S5-models,
we can view a Gr(S5)-model as a multi-set of truth assignments rather than
a set of these as in standard, ungraded modal logic. A special case, of
course, is that situations (= truth assignments) occur only once in a descrip-
tion. We shall refer to these models as simple (referring to the original Latin
meaning of this word). Note that in simple models it is still sensible to use
graded modalities, since an assertion (even a primitive proposition) may
nevertheless hold in more than one situation, as e.g. p in the situations {p
is true, q is false} and {p is true, q is true}.

To be more specific, let us consider a simple example. Suppose we are
given that the agent knows (p v q) and also (p V r). Since q and r are
‘independent’ propositional atoms, we try to formalise our intuition that the
agent has more confidence in p than in q (or r). Given the three proposi-
tional atoms, the agent will consider five of the eight (a priori) possible
worlds: the worlds in which (=p A (—q vV —r)) is true, left out. Thus,
assuming that we have a simple model in the sense above, we get (M!,T
A Mlp A Mlg A MLr), indicating that indeed, p is the ‘most frequent’
atom. (This is perhaps more appealing when interpreting the premises as
(mq—p) and (—r - p), expressing that there are two (independent) reasons
for p.)

Michael Freund has proposed a formal system for defaults, in which the
number of worlds refuting some default is important when imposing an
order on such defaults. In Freund’s words: “... if we have to choose
between two assertions of a that are in conflict, our natural move is to drop
the one that is violated by the greatest number of worlds...” (Cf. Fr93)).
Graded modalities provide a tool to explicitly reason with such numerical
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values. However, in Freund’s general approach, the worlds themselves may
have attached weights to them, so that a full treatment seems to be out of
scope here; in our set up, all worlds would have the same weight (although
generalizing this to arbitrary weights seems to be feasible).

The following example is well known in the literature on probabilistic
reasoning ([Pe88]) and on non-monotonic reasoning ([Gi87]) where it is
called the lottery paradox. It deals with the situation of a lottery with n
tickets, numbered 1 ... n. Let w; denote ‘ticket i will be the winning ticket’
(I =i < n). Many default theories (cf. [Gi87]) allow one to obtain the
defeasible conclusion —w; for each i < n, using a default rule expressing
“if you can assume that —'w;, conclude —w,”. In particular, one derives
(7w, A ... 7w,), raising the question why we call the happening a lottery,
if we can derive on forehand that no ticket will (probably) win.

In our graded language, we would model the situation as follows, using
the premises P1-P2:

Pl Ky=(w; A w) (i # ) no two tickets will win simultaneously
P2 MI,T A Mi,w; (i < n) of all n possibilities, there is one
in which ticket i wins

From these premises, one safely deduces that Ko(w, Vv w, Vv ... vV w,), and
even Ko(w; Vw, V... V w,) (with V standing for exclusive or) expressing
that exactly one of the tickets will win. Moreover, one deduces K,—w,,
expressing, that, except for (at most one) possibility, ticket i will not win.
One should compare this with ungraded modal approaches, in which it is
possible to express P1 together with the fact that there are ar least n possi-
bilities (the latter is done by adding [M(w, A “w, A 2w, A ... A W)
AMEW AW, AW A LA W) A LA MOW A W, A T,
A ... A w))] but in which there is no way to guarantee that there are at
most n of such worlds (adding copies to the ‘intended model’ is never
excluded).

In the example of the introduction, the number of worlds (sources) was
fixed. This gives rise to considering Gr,(S5), with fixed k € N, which is
obtained from Gr(S5) by adding M!, T to it. Let k* = min{m € N | m
> '4k}. Using a preference modality (use belief in the sense of Perlis
[Pe86]) expressed by operator P as in [MH91], we may express the demo-
cratic principle of infallible computers in Gr(S5), with k denoting the
number of computers, as Py < K,.p, that is, ¢ is preferred (is a practi-
cal/working/use belief) iff it is true in more than the half of all sources.
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Note that there is no logical omniscience in this respect, in a way resembl-
ing the local reasoning approach of [FH88].

However, note that here, P is not a normal modality as it is in [MH91],
since, as follows from our discussion about the K-axiom, P(¢ = y) = (Pe
- Py) is not valid. To illustrate this, consider the case of an airplane with
three sensors w,, w, and w;, in which “it is foggy” (¢) is true according to
w; and w, (and not according to w,), and “permission to take off” (V)
according to sensor w, only. Then we have that both P(¢ — ) (since ¢ —
¥ is true in w, and w;) and Pe (since ¢ is true in w, and w,), thus both ¢
and (¢ — V) are working beliefs, without the conclusion “permission to take
off” () being one.

One might contrast this with the situation where rules are added to the
system (in the form of (certain) knowledge: cf. [MH91]). For instance, in
the above example, K(¢ = =) might be a rule (it is known by the decision
support system, independently of the information supplied by the sources,
that fog is sufficient to deny permission to leave). If in addition, Pe would
be the case (the systems supposes ¢ based on the information of its sources),
it would take as a working belief -y, i.e. there is no permission to fly!
(This follows directly from axiom Al: Ky(¢ = —¢) = (K¢ = K. 7y),
i.e., Ko(p = 7Y) = (Pp > Py).)

Recall that Gr,(S5) = Gr(S5) + M!, T . Using Proposition 2.2 we see that
for any ¢, Ml V Ml V ... V Ml ¢ is derivable in Gr,(S5). Here, a
formula of the form M! ¢ is rather informative, since we know the relative
number of occurrences of ¢. This is close to adding probabilities to (modal)
logic. In the literature, there have been several attempts to do so (Cf.
[FH89, HR87]). In order to avoid the problem of losing compactness (cf.
[Ho92b]) it was suggested to allow only for a finite number of probabilities
([FA89, Ho92b]). We will give the main idea now.

Let us denote the language with graded modalities with L_ (a language for
counting). The language L, (a language for probabilities) is like L., but
instead the operators M,, we now add operators P>, for each r € [0,1].
The intended meaning of P> ¢ is, that the probability of ¢ is greater than
r. Two interpret this language, we assume to have a finite set F, such that
0,1} €S Fc[0l]landvr,sc EFASEFATr+s<1)=(+s€
F). Now, a Probability Kripke model M over F is a tuple (W, =, R, Pp),
where W is a set of worlds, 7 as before, R is a serial relation on W
(vw3avRwv) and P;: W X P(W) - F is a function from the powerset of W
to F, for each w € W, satisfying:
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- XNY = @ = P(w,XUY) = P,w,X) + P,w,Y) X,Y € P(W)
- Pe(w,{v | Rwv}) = 1

The truth definition for L, formulas is obtained straightforwardly, with the
modal case

(M,w) | P? o iff P(w,{v | Rwv and (M,v) E ¢}) > r

We denote the class of all these models by PK;. In [Ho92b] a logic P;D is
given, such that we have P.D + ¢ @ PK; | ¢.

Let Gr(K) be Gr(K) + M!, T . This class is obviously sound and complete
with respect to K,, the class of Kripke models in which each world has
exactly k successors. Moreover, let

Given a model M, = (W, w, R) € K,, we straightforwardly associate a
model M, = (W, =, R, Py) € PKg with it by stipulating that Prdw,v) =
1 if Rwv holds, and Py (w,v) = 0 otherwise. The relation between the
classes of valid formulas of those two models is as follows. Let 7: L.-L,
be a translation from graded to probabilistic formulas, distributing over the
logical connectives and such that 7(M,¢) = L ifn > k and ™M, ¢) =
P> t(p), with r =-E", if n < k. We claim that for all ¢ € L, (M.,w) | ¢
iff (M,,w) | 7(¢). Conversely, we define g: L, = L. as a translation that
distributes over the connectives and for which moreover o(P~ o) = M, a(e),
where n = max {m | LIPS r}. In this case, we have for all ¢ € L,,
M,,w) E ¢ iff (M_,w) 'é o(p). Note that, although in general 7(o(p)) =
¢ and o(7(¢)) # ¢, wedo have M, |F ¢ « 7(0(p)) and M, | ¢ < a(7(¢)).

The above observation immediately ties up the ways to reason about
relative occurrences with ways to reason about probabilities, at least for the
minimal graded modal logic Gr,(K). However, we argued that the natural
graded system to reason epistemically with (or about) numbers, is Gr(S5).
So what is the counterpart, in the sense of the paragraph above, of S5,, the
semantic class of Gr,(S5)? Models for Gr,(S5) are M = (W, 7, R) in which
R is an equivalence relation, and for which vw(|{v | Rwv}| = k). But,
by an argument using generated models (which still holds for the graded
cases, cf. [Ho92a]), we can also conceive them as models in which R is
universal (vwvRwv) and for which vw(|{v | Rwv}| = k). In such a model,
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there is no need to explicitly refer to the relation R. So let U, = {M =
<W,n> | [W]|=k}, where (M,w) E M,piff |{vEW | M,v) E ¢}| >n.
Then we have that Gr,(S5) - ¢ © U, F ¢.()

On the side of probabilistic models , we add the following constraint in
order to compare them with U,. The class PKU, is a subclass of probabilis-
tic PK-models M = (W, «, R, Pg) in which Py, is such that va(PFk(w V)

_) In particular, we have a kind of reflexivity: Py (w,w) =-. We claim
that we have, for all ¢ € L.: U, £ ¢ @ PK, | 7(p) and for all ¢ € L;:

Uc F o(e) @ PK, FE ¢.

We now proceed by mentioning the use of graded operators to express the
‘numerical syllogisms’ as introduced in [AP88]. In the following, the left
hand side is our translation of the numerical syllogisms on the right hand
side.

M!.d exactly 7 days of the week are known
Mls(w A d) I know 5 of them to be working days
M.(s A d) at least 4 days are shopping days
“ Mi(w A s) .. Iknow atleast 2 days to go working and shopping.

T S

To prove such a conclusion formally, it turns out to be worthwhile to split
up the set of formulas (the formulas in d, w and s), in to a set of partitions
(cf. Figure 2).

The formal derivation now reads as follows (note I' = {«, 8, v, &, €, ¢,

7}):

(1) ML(yvévevn) translation of 1 (cf. Figure 2)
2) ML6Bvnr) translation of 2
3) Mpvm translation of 3
@) Ko ((9vm) A (yve) definition of G
5) M, (yvévevm) (1), def. M!
6) " M;(yvd) 2.2.(viii), (3), (4), (5)
(M) Ke@>(yV 8))>(My-M,(y V) A

Ko(6—(y v d)) Al’ and AO, R1
®) M A0, (6), (7)
9 MlggvM!svMLS (8), 2.2.(iii)

(") We will not prove this here, but the result is easily obtained by combin-
ing results of [Fi72] and [HR91].
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(10) "M;7->M! v M!;7) 2.2.(iii)
(11) Ko7 @A m—[(M!d v M6V ML) A Mlgrv M! 1)) -

Mly(dvm)vML (V) vMLGV ) A0, A3

(12) "Ma->M! Vv m)VM!LEVT)VMLGV T 9)(10)(11),

K, (6 A )

(13) [(MI BV T)VMLEV T VMLEV D)l M@EVT)  AO,def. M!
(14) (M,(6V T)>M,(BV 1) A M,V 7)>M,(V 1))  def. M!,A2 twice

(15) ("M,(6VT)AMLGEV T))>1 A0, (14)
(16) ("M A MGV T)—>1 A0, (12), (13), (15)
(17) M=(Q2), (16)
(18) M(mVe) (17), AU

For example, it is understood that w <
(@vpBvdévevn)IfT = {a,pB,
v, 8, €, ¢, w}, then for all different x1,
.xk€ET2 <k <7
*)= 2 (xl A ... A Xk)

Figure 2

We round off this Section by mentioning a link between the graded forma-
lisms presented here and so called terminological or concept languages, used
for knowledge representation (cf. [DLN91] for these languages, and
[HoR92] for a deeper analysis of the connection with graded modal syste-
ms). Such languages provide a means for expressing knowledge about
hierarchies of sets of objects with common properties. Expressions in such
languages are built up using concepts and roles. Compound expressions are
then made using a number of constructs.

Typical examples of such constructs are intersection, complement and
restricted quantification, yielding examples like the concept ‘mathematicians
whose pupils are all clever’ (m n ALL p ¢, with the modal counterpart (m
A [R;]c), where [R,] is the necessity operator for the relation R)). Many
of such concept languages also allow for number restriction, as in the con-
cept ‘mathematicians who have at least 4 clever pupils (m n = 4 p ¢).
Obviously, here the graded modalities come into play: the latter concept
would translate into the formula (m A < R,>c), where <R > is the dual
of [R;]. In [HoR92], one can find several results on relating several concept

languages in the hierarchy of concept languages to (some fragment of) some
graded modal logic.
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5. Conclusion

We have argued that extending the modal language with graded modalities
(taking into account the number of accessible worlds) gives some interesting
options for epistemic logic. We provided some examples of how this new
language can be used in an epistemic context. Particularly, we indicated how
these operators can be used in the context of a fixed number of sources. It
thus provides us with a framework for reasoning with exceptions.

We think the graded modalities are especially useful in ‘laboratory-like
situations’, where explicit bounds are prescribed. Areas of application that
may be worthwhile may therefore typically be found in situations where
numbers of counter-examples have a clear evidence and meaning. Typical
examples (that have not been worked out by us, yet) may thus be found in
‘laboratory situations’ like (reasoning about) a voting or in a legal context
(where for instance a petition is granted when at least n requirements are
met) or more generally, intelligent databases of which the quantities of the
data matters (cf. [Ho92c], for several examples).

We see two lines of future work. Firstly, we may transfer some standard
questions from ‘standard’ epistemic logic to the graded language. For in-
stance, it might be interesting to study the introspection properties more
systematically, like was done e.g. in [Ho91b]. Secondly, we think that
several of our proposals have natural generalisations. For instance, where
the P-operator models the notion of ‘more than-a-half”, we could have such
operators P, for ‘more than-an-n-th’.

Free University, Amsterdam

REFERENCES

[AP88]  P. Atzeni and D.S. Parker. Set containment inference and syll-
ogisms. Theoretical Computer Science, 62:39-65, 1988.

[DLN91] F. Donini, M. Lenzerini, D. Nardi & W. Nutt. The complexity
of concept languages, in Proc. 2nd. Conf. on Knowledge Repres-
entation, Morgan Kaufman, San Mateo, 151-162, 1991.

[FAB9] M. Fattorosi-Barnaba & G. Amati, Modal operators With
Probabilistic Interpretations, I, in Studia Logica 4 (1989) 383-
393.

[FC88] M. Fattorosi-Barnaba and C. Cerrato. Graded modalities III.



[FH88]

[FH89]

[Fi72]

[Fr93]

[Gi87]
[GP90]
[HC68]

[HMS85]

[Ho91a]

[Ho91b]

[Ho92a]

[Ho92b]

[Ho92c¢]

GRADED MODALITIES IN EPISTEMIC LOGIC 269

Studia Logica, 47:99-110, 1988.

R.F. Fagin and J.Y. Halpern. Belief, awareness, and limited
reasoning. Artificial Intelligence, 34:39-76, 1988.

R.F. Fagin & 1.Y. Halpern, Unertainty, Belief and Probability,
in: Proc. of the International Joint Conference on Artificial
Intelligence (1989) 1161 - 1167. Extended version: IBM Re-
search Report RJ 6191 (1991).

K. Fine. In so many possible worlds. Notre Dame Journal of
Formal Logic, 13:516-520, 1972.

M. Freund, Default extensions: an alternative to the probabilistic
approach. Unpublished manuscript, University of Orleans,
France.

M.L. Ginsberg (ed.), Readings in Nonmonotonic Reasoning,
Morgan Kaufmann, Los Altos, 1987.

V. Goranko and S. Passy. Using the universal modal ity: Gains
and questions. Preprint, Sofia University, 1990.

G.E. Hughes and M.J. Cresswell. Introduction to Modal Logic.
Methuen, London, 1968.

J.Y. Halpern and Y.O. Moses. A guide to the modal logics of
knowledge and belief. Proceedings IJCAI-85. Los Angeles, CA,
1985, pages 480-490.

W. van der Hoek, Qualitative Modalities, proceedings of the
Scandinavian Conference on Artificial Intelligence -91, B.
Mayoh (ed.) IOS Press, Amsterdam (1991), 322 - 327.

W. van der Hoek, Systems for Knowledge and Beliefs, in: In
J. van Eijck, editor, Logics in AI-JELIA’90, Lecture Notes in
Artificial Intelligence 478, Springer, Berlin, 1991, pp. 267 -
281. Extended version to appear in Journal of Logic and Comp-
utation.

W. van der Hoek. On the semantics of graded modalities. Jour-
nal of Applied Non-Classical Logics, Vol. 2, number 1 (1992)
pp. 81-123.

W. van der Hoek, Some Considerations on the Logic P:D, (a
Logic Combining modalities and Probabilities), in: Logic Prog-
ramming, A. Voronkov (ed.), LNCS 592, Springer, Berlin
(1992), pp. 474-485. Extended version to appear in Journal of
Applied Non-Classical Logics.

W. van der Hoek, Modalities for Reasoning about Knowledge
and Quantities, Ph.D. thesis, Amsterdam, 1992.



270
[HoM89]

[HoM92]

[HoR91]

[HoR92]

[HR87]
[Le80]

[MH91]

[MHV91]

[Pe86]

[Pe88]

[Re76]

W. VAN DER HOEK AND J.-J. CH. MEYER

W. van der Hoek and J.-J.Ch. Meyer. Possible logics for belief.
Logique et Analyse, 127-128, (1989), 177-194.

W. van der Hoek & J.-J.Ch. Meyer, Making Some Issues of
Implicit Knowledge Explicit. International Journal of Founda-
tions of Computer Science, Vol. 3, number 2 (1992) pp. 193-
224,

W. van der Hoek & M. de RiJke, Generalized Quantifiers amd
Modal Logic, in: Generalized Quantifiers Theory and Applicat-
ions, J. van der Does and J. van Eijck (eds), Dutch Network for
Logic, Language and Information (1991), pp. 115-142. To
appear in Journal of Logic, Language and Information.
‘Counting Objects in Generalized Quantifier Theory, Modal
Logic, and Knowledge Representation’” Report Free University,
IR-307, Amsterdam (1992).

J.Y. Halpern and Rabin, A Logic to Reason abour Likelihood,
in: Artificial Intelligence 32:3 (1987) 379 - 405.

W. Lenzen. Glauben, Wissen und Warscheinlichkeit. Springer
Verlag, Wien, 1980.

J.-J.Ch. Meyer and W. van der Hoek. Non-monotonic reasoning
by monotonic means. In J. van Eijck, editor, Logics in Al-
JELIA’90, Lecture Notes in Artificial Intelligence 478, Springer,
Berlin, 1991, pages 399-411.

J.-J.Ch. Meyer, W. van der Hoek, and G.A.W. Vreeswijk.
Epistemic logic for computer science: A tutorial. EATCS bulle-
tin, 44:242-270, 1991. (Part 1), and EATCS bulletin, 45:256-
287, 1991. (Part II).

D. Perlis. On the consistency of commonsense reasoning. Com-
putational Intelligence, 2:180-190, 1986.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, San Mateo,
California (1988).

N. Rescher. Plausible Reasoning, an Introduction to the Theory
and Practice of Plausibilistic Inference. Van Gorcum, Assen,
1976.



