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NON-MONOTONIC EPISTEMIC ASPECTS
OF SCIENTIFIC EXPLANATIONS

Yao-Hua TAN
Abstract

In this paper we show that explanations based on incomplete information
do not always comply with Hempel’s Covering Law Model of scientific
explanation. We show that the relevant covering law is usually not
known beforehand in this type of explanations. This results in a break-
down of the symmetry between prediction and explanation in Hempel’s
DN-model in the case of explanations based on incomplete information.
We argue that in this type of explanations it is possible to derive from
the observed facts a weaker type of law, which we call unspecific laws,
which are strong enough for explanation, but too weak for prediction.
Furthermore, we argue that this derivation of unspecific laws from
observed facts presupposes a new type of arguments, which we called
Law-Finding-From-Facts or L3F Arguments, which are supplementary
to Hempel’s covering law model. These L3F arguments cannot be mod-
elled in classical logic, and should not be considered as inductive ar-
guments either. We show that Shoham’s non-monotonic epistemic logic
is the best logic to model these L3F arguments.

1. Introduction

Inrecent years several non-monotonic epistemic logics have been developed.
The best known ones are autoepistemic logic which was developed by
Moore in [M0085] and Konolige in [Kon89], and the non-monotonic epis-
temic logic that was developed by Shoham in [Sho88a, b]. In this paper we
will not introduce yet another new non-monotonic epistemic logic, but
instead we will advocate a new application of the existing non-monotonic
epistemic logics, in particular the logic of Shoham. This new application
is the modelling of explanations based on incomplete information.

From the sixties on numerous philosophers of science, in particular logical
positivists like Carnap and Hempel, have tried to develop a logical model
for scientific explanation (for an extensive survey of this research tradition
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see [Ste83] and [Sal90]). The most influential model of scientific explanation
is Hempel’s so-called Deductive-Nomological Model, or short DN-Model
also called Covering Law Model, that he introduced in his famous article
Aspects of Scientific Explanation (see [Hem65])("). For several decades,
philosophers of science considered the covering law model basically correct.
However, in recent years Hempel’s model of explanation has been severely
criticized (see e.g. [Sal90]). In this paper we add yet another critical com-
ment on the covering law model; in particular we will argue that the cover-
ing law model is not adequate to deal with situations in which there is
incomplete information. The covering law model presupposes complete
information. It can only be applied to cases where everything is known: the
relevant empirical law, initial conditions and absence of potential distorting
factors. However in science these conditions are seldom met. In this paper
we focus attention upon situations in which the relevant covering law is not
known. We will show that in the case of incomplete knowledge intuitive
appealing explanations are still feasible. However, in order to model these
explanations based on incomplete information we had to introduce a new
type of arguments, the so-called Law-Finding-From-Facts (L3F) arguments,
of which we claim that they are different not only from any classically
deductive argument but also from any other non-deductive argument such
as inductive or abductive arguments. To clarify the logical structure of these
L3F arguments we give a formalization of this type of explanation in non-
monotonic logic, which is supplementary to the deductive scheme of Hem-
pel’s covering law model. We will show that in particular the non-mono-
tonic epistemic logic (NMMEL) that was introduced by Shoham is very suit-
able to formalize explanations based on incomplete knowledge. This paper
is a further development of earlier research that was reported in [Tan88] and
[JT91].

This paper is organised as follows. In Section 2 we briefly discuss the
covering law model of scientific explanation, and we present an example
of an electric circuit in which a large part of the circuit is hidden, and hence
unknown to the observer. The example serves a dual purpose. It elucidates
the concept of explanation based on incomplete information and the role of
L3F arguments in these explanations., Moreover, some more substantial
points about explanation and prediction based on incomplete knowledge can
be learned from this electric circuit example. Among other things it is

(') In this paper we will use the terms DN-model and Covering Law Model interchan-
geably.
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shown that there is an asymmetry between explanation and prediction, which
can not be accounted for in the covering law model. In Section 3 we present
Shoham’s non-monotonic logic NMEL. And in Section 4 we show how L3F
arguments can be very neatly modelled in NMEL, and we discuss its applica-
tion to the electric circuit example. It turns out that within NMEL a natural
account of the asymmetry between explanation and prediction can be given.
Finally, in Section 5 some results of this paper will be summarized.

2. Explanations Based on Incomplete Information

In [Tan88] an example of an explanation with incomplete information is
discussed which is not covered by Hempel’s Covering Law Model of causal
explanations. The essence of this example is that, due to the incompleteness
of the available information the relevant law is not fully specified. In this
section we will study this counter-example more closely.

2.1 Hempel’s DN-Model of Deductive Explanation

According to Hempel an explanation is a deductive inference which can be
roughly presented as follows:

1) P(a)
2) vx (P(x) = Q(x))
Q(a)

Q(a) is an observed event, which is caused by the occurrence of P(a). The
second premise Vx(P(x) - Q(x)) is a law, which constitutes the core of the
deductive explanation. Such laws are usually derived from a more general
theory. An important aspect of Hempel’s deductive account of explanations
is the symmetry between explanation and prediction. The Symmetry Thesis
says that if we can deductively explain with hindsight (ex post) the occur-
rence of Q(a) from the premises 1 and 2, then we could as well have pre-
dicted in advance (ex ante) that Q(a) will occur if P(a) occurs. This symme-
try can be illustrated with the following example.
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Fig. 1 Electric circuit at t, and t,

This figure represents an electric circuit at two consecutive stages, ¢, and
1,. At timepoint ¢, the switch §, is off and the lamp L is off too. At the next
moment #, the switch S, is turned on, with the consequence that the lamp
goes on. This causal relation can be expressed by the following law W.

vt [((z, §, = on) A (¢, S, = on)) = (¢t, L = on)] (W)

Substituting this law for the second premise in Hempel’s DN-model, it is
clear that the burning of the lamp is deductively explicable. Moreover, it
is also obvious that the symmetry thesis holds in this case. When we know
in advance that at ¢, switch S, will be turned on and that S, will still be on,
we could use W to predict that at ¢, the lamp will be on.

2.2 Two-Step Refinement of Hempel’s DN-Model

The real difficulty of an explanation is not to perform the deduction, but to
find the specific empirical law that does the job. Try to remember how you
solved physics problems at secondary school. The real difficulty was usually
not how to calculate the solution, but to figure out how to apply the few
fundamental laws that you had memorized to the specific data in the excer-
cise. The basic problem was to make the appropriate derivations from the
basic laws that would yield an empirical law which is specific enough to be
directly applicable to the actual situation given in the excercise. After you
made the appropriate derivations you just plugged in the figures, and the
remaining calculation was usually routine.

According to Hempel this “law-finding” of the specific law that applies
to a particular situation also has a DN-structure. He claims that a specific
law can be deductively derived from the general background theory and the



NON-MONOTONIC EPISTEMIC ASPECTS OF SCIENTIFIC EXPLANATIONS 201

description of that actual situation. Let T denote in the sequel the General
Background Theory, and let DA denote the Description of the Actual situa-
tion. For example, in the case of the electric circuit the background theory
T is the theory about electricity, and the DA of this circuit is a description
of the constituent components such as the two switches S, and S,, the power
supply, the lamp and the wires that connect these components etcetera. We
could refine Hempel’s DN-model into a so-called Two-Step DN-Model. In
this two-step model we distinguish two consecutive steps. In the first step,
the so-called law-finding step, we try to find a law which is specific enough
to be applicable to the specific data of the actual situation we want to ex-
plain via a deduction from the relevant 7 and DA. In the second step, the

so-called law-applying step, this specific law is actually applied to these
specific data.

Two-Step DN-Model
1. Law-Finding Step:

DA
T

vx (P(x) = QO(x))

2. Law-Application Step:

P(a)
vx (P(x) - Q(x))
Q(a)

With this two-step model we can better pin down those aspects of explana-
tion that make it problematic. Step 1 is the real challenge, whereas step 2
is a simple logical excercise. In the next section we will see that step 2 is
especially problematic in the case of explanation based on incomplete infor-

mation.
2.3 Explanations based on incomplete information

Our claim is that there are cases in which the symmetry in the DN-model
breaks down. We illustrate this claim with the following counter example.
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Fig. 2 Hidden electric circuit at t;, and t,

The situation in Figure 2 is similar to Figure 1, except that now the circuit
is hidden in a black box and only S, and the lamp are observable from the
outside. Suppose person P doesn’t know what is in the box. At ¢, he turns
§, on, and observes that the lamp goes on. When asked for an explanation,
nobody will be surprised if P answers that the pressing of S, caused the
burning of the lamp. This seems to be a perfectly normal causal explanation,
but from a Hempelian point of view something strange is going on here.
First of all there is no symmetry. P can explain with hindsight why the lamp
went on at #,, but he could not have predicted this event beforehand, as he
does not know what is in the box. The box might have been empty, i.e. no
battery and no wires at all. To know the law W, one has to know the in-
terior of the box. And without knowledge of W, one cannot predict the
burning of the lamp. Though P’s ignorance accounts for the fact that he
could not predict this event, it leaves P’s explanation a mystery. According
to Hempel’s DN-model, knowledge of covering laws is essential for explan-
ations. However, the example above clearly shows not only that the symme-
try thesis does not always hold, but also that causal explanations are not
necessarily based on fully specified laws. Due to the lack of information it
is obvious that P is not in the position to conclude W, because W contains
the necessary condition that switch S, has to be on, but P is not even aware
of the existence of this second switch. However, P could come up with a
close approximation U of W, i.e. something like -

vt [((z, S, = on) A (¢, 2DF)) = (t, L = on)] )

The expression ~DF, which stands for “there are no distorting factors in
the system under consideration”, is a kind of unspecified ceteris paribus
clause. We will call a law that contains such an unspecified ceteris paribus
clause an unspecified law. P assumes that there is some sort of electric
circuit hidden in the black box which is not influenced by distorting factors
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in the sense that the current is somewhere interrupted in the circuit, or that
the power supply is not functioning properly, or that simply another switch
in the circuit is open. (*)It is only when this ceteris paribus clause holds,
that pressing S, causes the lamp to burn. Thus we arrive at an argument of
the following type:

I. 1) (2, §, = on)
2) (2, L = on)

vt [(t, S, = on) A (t, "DF) > (t, L = on)]
(The dotted line indicates that this is not a classically valid argument.)

From the observation that at moment #, the lamp went on when he turned
on the switch, P concluded that pressing the switch caused the burning of
the lamp. Note that in this argument the unspecified law is, so to say,
‘derived’ from observed facts.

Our analysis of this example is the following. If possible we use the DN-
model of law-finding from general theories to derive from the background
theory T and the description of the actual situation DA the specific law W,
i.e. we have the following law-finding derivation.

II. DA
T

vt [((#, S, = on) A (1, §, = on)) = (¢, L = on)]

However, if we have incomplete information about the actual situation, i.e.
its description DA is incomplete, then this derivation of specific empirical
laws becomes problematic. Instead we have in explanations based on incom-
plete information law-finding from observed facts, i.e. argument I. Note that
argument I is almost the converse of argument I1, i.e. the DN-model of law-
finding as given in the two-step DN-model. Instead of deriving a specific

() The important role of the unspecified ceteris paribus clause in scientific explanations
is also discussed in [Kui86]. For a comparison between his ideas and ours see [Tan88].
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law from a more general theory T (combined with the DA), we derive the
law from much more specific information; namely the observed facts!
Moreover the general background theory T is not used as premise in this
argument. We will later explain the role of T.

This argument above suggests a new type of argument of which the general
form could be written as follows. For obvious reasons we call this type of
argument law-finding-from-facts argument:

Law-Finding-From-Facts Argument:

1) Q(a)
2) R(a)

vx ((Qx) A ~DF(x)) - R(x))

In the sequel we will usually abbreviate Law-Finding-From-Facts arguments
to L3F arguments. The basis idea of an L3F argument is that a specific law
is ‘inferred’ from observed facts. Prima facie this argument scheme looks
rather curious. It is a non sequitur in classical logic, as is indicated by the
dotted line. This paradox will be solved in Section 3. We will see that the
non-monotonic logic NMEL is an excellent logic to model L3F arguments.

Although the general background theory T'is not used as a premise in the
L3F argument, it does play a very important role in assessing the adequacy
of an L3F argument. In the case of the hidden electric circuit the general
background T about electricity does play a crucial role in P’s explanation.
If we accept the L3F argument given above, then there is prima facie no
reason why we should not accept an analogous L3F argument with the
causal direction reversed, i.e. concluding the law vx ((R(x) A —DF(x)) —»

Q(x)) from the premises Q(a) and R(a), which would give the following L3F
argument.

1) Q(a)
2) R(a)

vx ((R(x) A ~DF(x)) > O(x))



NON-MONOTONIC EPISTEMIC ASPECTS OF SCIENTIFIC EXPLANATIONS 205
In the case of the hidden electric circuit this would mean that we have the

following pair of L3F arguments. Here CU denotes the following unspecifiec
law

vt [(t, L = on) A (t, 7DF)) = (¢, §, = on)] (CO)

with the reversed causality. The pressing of the switch S, is caused by the
fact that the lamp went on.

1.1 t,, §; = on) 1.2 (t, S, = on)
(t, L = on) (t, L = on)
U CcU

This law CU is not as weird as it might look like. Since the two events of
turning on the switch and the lamp occurred at virtually the very same
moment, P could in principle still have been in doubt about the direction
of causality. One can imagine that if P has no knowledge about electricty
at all that, given the observed facts, he might have jumped to the reversed
causal law CU. For example, he might have answered that some Powerful
God, by turning on the light, forced him to press the switch. Obviously
these explanations are not acceptable, because they are not in accordance
with our general knowledge about electricity. Hence, the general back-
ground knowledge T is used to narrow down the set of laws that could
account for the burning of the light; i.e. it acts like a set of very strong
boundary conditions for the adequacy of explanations. Before P observed
that pressing S, was followed by the burning of the lamp, it was still poss-
ible that there were no wires in the box and henceforth that there was no
causal link whatsoever between S, and the lamp. And it was only after this
observation that he could exclude this possibility. The possibility that press-
ing the switch was caused by the burning of the lamp was immediately ruled
out by his background knowledge. Thus P arrived at the only sensible
conclusion that was left; i.e. turning on the switch caused the lamp to burn.

This pruning away by the general background theory T of unintended
unspecific laws can be formally described as follows. The law CU is ex-
cluded by general theory T, whereas U is not excluded by T. We model this
exclusion of CU with the classical entailment of the negation of CU. In
other words, CU is excluded by a general theory T if T classically entails
the negation of CU; i.e. T | = CU. On the other hand U is not excluded
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by 7, hence T | —U. If we add these classical entailments to the L3F
arguments as given above we expect, assuming that classical derivations are
preserved by L3F arguments, the following pair of L3F arguments to hold:

Iv.1 T IvV.2 T
(t2, Sl = On) (t21 Sl = On)
(2, L = on) (&, L = on)
U CU

Argument IV.2 is also classically valid, whereas the argument IV.1 is not.
However, in the next section we will see that this L3F argument is valid in
NMEL. Generally speaking, we can say that there is a very subtle balance
between L3F arguments and their relevant general background theory. The
L3F arguments usually generate too many unintended laws, which are
pruned away by the relevant background theory 7. Perhaps one could even
say that without knowledge of such a background theory L3F arguments are
often non-sensical.

The morale of our analysis of the electric circuit example can be summar-
ized as follows. The real problem of a Hempelian style deductive explana-
tion is not performing the deduction itself; i.e. explanation is not just a
logical exercise, but the real problem is to find the specific law that does
the job. The basic problem is how to apply a general theory to a specific
situation. Hempel also paid attention to this problem. According to Hempel
the finding of a specific law that applies to a specific situation is also a
deductive argument. However, this simple deductive account of finding a
specific law usually fails for explanations based on incomplete information.
Since P has only incomplete information about the electric circuit, he is
unable to derive the specific law W, even if he would know T by heart. The
L3F argument provides the best guess, the unspecified law U, that P can
come up with. Hence, L3F arguments are supplementary to Hempel’s deduc-
tive account of explanation in the sense that it applies to cases with incom-
plete information which cannot be dealt with in Hempel’s DN-model. One
could perhaps argue that our hidden electric circuit example is too simple
to justify such claims. However, In [JT91] we showed that the same analysis
of explanations based on incomplete information holds for much more
complicated explanations. We actually showed that Friedman’s well-known
explanation of the monetary history of the U. S. A. (see [Fri69]) can be
analysed as an explanation based on incomplete information in which L3F
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arguments play a very prominent role.
2.4 Law-finding-from-facts versus indiction or abduction

In existing Al research there are currently two types of reasoning that are
studied which differ from deductive reasoning: inductive reasoning and
abductive reasoning (for further references see e.g. [LZSB87], [LZ89],
[SS86], [Tan90] and [Fl1a92]). Although there are some obvious similarities
between L3F arguments and these other types of non-deductive reasoning,
we think it is substantially different from each of these types of non-deduct-
ive reasoning.

The similarity between Law-Finding-From-Facts and inductive reasoning
is that in both cases laws are inferred from observed facts. However, in
inductive reasoning the main objective is to discover and corroborate new
empirical laws, whereas the main objective in L3F arguments is to approxi-
mate well-established laws. In L3F arguments there is absolutly no claim
to novelty. If we use the unspecified law U to explain what happend in the
hidden circuit, there is no claim that we have discovered a new empirical
law about electricity. It is only that due to our lack of knowledge we have
to jump, or perhaps it is better to say that we stumble, to our best guess.
Furthermore, we pointed out that L3F arguments only make sense against
the background of a well-established general background theory 7. Without
the boundary conditions provided by 7, L3F arguments could produce
unintended conclusions such as the ‘Powerful God’-explanation. We have
presupposed the existence of such a background theory. The question how
to discover and corroborate such general theories is beyond the scope of this
article.

Law-Finding-From-Facts is also different from abductive reasoning. In
abductive reasoning it is argued that one ’infers’ from the two premises
Vx(P(x) = Q(x)) and Q(a), that P(a) is the most probable candidate to have
caused Q(a). However, in L3F arguments it is the causal law that is inferred
and not the fact P(a).

3 Shoham’s Non-Monotonic Epistemic Logic (NMEL)
In this section we will give the syntax and semantics of Shoham’s non-

monotonic epistemic logical NVEL as it was defined in [Sho88). NMEL is
a point-based temporal logic augmented by the modal operators (J and <.
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NMEL is a slightly simplified version of Shoham’s non-monotonic epistemic
logic CI as it is defined in [Sho88a, b]. NMEL is simpler than CI, because
NMEL is point-based, whereas Shoham’s logic is interval-based. This simpli-
fication is not essential for this paper.

Syntax of NMEL

Let P be a set of primitive propositions, TV a set of temporal variables, e.g.
t, TC the set of temporal constants {..., -2, -1, 0, 1, 2, ..} U {r'}, Uthe
union 7C U TV, and < a binary relation symbol, the set of well-formed
Jormulas (wffs) of NMEL is defined inductively as follows:

1) fu, € Uand u, € U, then u, = u, and u, < u, are wifs.

2) Ifu € Uand p € P, then (i, p) is a wff.

3) If ¢ and y are wffs, thenso are —p, ¢ A Y, ¢ V ¥, ¢ =y, Oo
and < .

4) If ¢ is a wif and ¢t € TV, then vte and 3ty are also wiff.

We say that an NMEL-formula is base if it does not contain the modal
operators (] or ©. With respect to negation we have the following conven-
tion (u, 2¢) © (u, ¢). In expressions like (1, S, = on) the subexpression
§; = on is considered to be a primitive proposition, to keep NMEL as
simple as possible. The generalization to a full predicate logical version of
NMEL, i.e. not just quantification over temporal variables but also over
object variables, is straightforward. NMEL contains two epistemic operators:

Oe: P knows that ¢ is the case.

O @: P can assume that ¢ is the case, unless he knows that ¢ is not the
case.

For example the formula [J(2, S, = on) expresses that person P knows that
the switch §, is on at timepoint #,. The © -operator is definable in terms of
the [J-operator:

Cp =4 U e
Readers familiar with Hintikka’s epistemic logic [Hin62] will observe that

< is not the same as Hintikka’s belief operator B. From a technical point
of view ¢ behaves as a possibility operator in modal logic. This has the
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effect that a formula of the form G ¢ A © =g s not inconsistent in NMEL,
whereas the formula B ¢ A B —¢ is inconsistent in Hintikka’s epistemic
logic.

Semantics of NMEL

We start with the following definitions. The symbol N is used to denote the
natural numbers with the standard ordering <. A model M is an S5 Kripke
structure < W, R, I >, where W is a non-empty universe of possible
worlds, and 7 is an interpretation function with I: P - 2"*N_ The accessibil-
ity relation R between worlds is universal, i.e. vw, w € W: wRw’. An
example of such an NMEL-model is the following structure:

Fig. 4 Example of an NMEL-model

Here w, is a possible world, and ¢ a timepoint. A variable assignment is a
function VA: TV —» N. If u € U then we define VAL(x) to be VA(u) if u
€ TV, and the standard interpretation of u, if u € TC. A formula @ is true
in a world w of a model M under the variable assignment VA, written M,
w | ¢[VA], under the following truth definition:

M,wFE u =u[VA] iff VAL, = VAL(u,)

M,wF u < u,[VA] iff VAL(u,) < VAL(4,

M,w [ (u,p)[VA] iff (w, VAL@) € I(p)

M,wE @A y[VA] iff M, wl ¢[VAland M, w |  [VA]

M, w | - [VA] iff M, w Fe [VA]

M, w | vt ¢ [VA] iff M, w [ ¢ [VA’] for all alternative assign-
ments VA’ that agree with VA4 everywhere
except possibly on t.
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M, w [ O ¢ [VA] iff M, w | @[VA]l forallw € W
M, wE O ¢[VA] ifft M, w | ¢ [VA] for at least one w’ € W

Because of the universal accesibilty relation we will be able to omit the
specific world, and write simply M | Og [VA] and M B Oy [VA] with-
out fear of ambiguity, and analogous for © ¢. Note that from the identity
of time across worlds follows the validity of the so-called Barcan formula,
i.e. Uvt ¢ » vt p. An NMEL-formula ¢ is valid if for all models M and
all worlds w in M and all assignments VA holds M, w | ¢ [VA].

With respect to the semantics defined above we can define two entailment
relations; a monotonic and a non-monotonic one. The monotonic entailment
relation yields the monotonic version of NMEL, also referred to as EL. This
logic corresponds to 7K in [Sho88a, b]. The non-monotonic entailment
relation yields NMEL itself. This logic corresponds to CI in [Sho88a,b].

Definition 1 (Monotonic Entailment)

Let & be a set of NMEL-formulas, and ¥ an NMEL-formula, ® monotonic-
ally entails , written ® |= , if for all models M and all worlds w in M:

IftM, wlE ¢ [VA] forall ¢ € &, then M, w =  [VA].

Before we can define the non-monotonic entailment relation we first have
to introduce some extra notions.

Definition 2

The latest time point (Itp) of a base formula is the latest time point men-
tioned in it.

1) The ltp of (¢, p) is .

2) The ltp of ¢, A ¢, is the latest between the itp of ¢, and the Itp of
P2

3) The Itp of ~¢ is the ltp of ¢.

4) The Itp of wte is the earliest among the /tp’s of all ¢’ which result

from substituting in ¢ a time point for all free occurrences of ¢, or 0
if there is none.
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Definition 3
A model M, is more ignorant than a model M,, written M, C M., if there
exists a time point ¢ such that
1) for any base sentence ¢ whose ltp < ¢, if M, F O then also M, |
Oe, and

2) there exists some base sentence ¢ whose /fp is ¢ such that M, E O,
but M, e

If M, is more ignorant than M,, then M, satisfies less formulas of the form
Oe (with ¢ a base wff) than M,.

Definition 4

M is a minimal knowledge model of ¢, written M = ¢, if M | ¢ and
there is no other M’ such that M" = ¢ and M C M’.

The non-monotonic semantic entailment can now be defined as follows.

Definition 5 (Non-monotonic Entailment)
Let ® be a set of NMEL-formulas, and y an NMEL-formula, ® non-monoto-

nically entails , written ® |= . v, if for all models M and all worlds w in
M:

IfM, wlc ¢ [VA] forall ¢ € &, then M, w | y [VA].

In other words, if ® is true in a world w of a minimal model M, then y is
true in this world w.

We will now present some results that are relevant for the arguments in
this paper. Subsequently we show how some of the arguments discussed in
Section 1 that were not valid in classical logic can be modelled very neatly
in NMEL.

As every NMEL-model has an accessibilty relation R that is universal, all
the S5 valid formulas are valid in NMEL.(*) Let «, 8 and y be well-
formed formulas, then the following S5-theorems hold in NMEL.

(*) For further details about S5 modal logic see [HC82].
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Proposition 6
For all NMEL-models M holds

ME OVt o= NI=ME O Vvt[(F o) A O L) = 7)]

Proof. Use the S5 valid formulas ¢ = (¢ = ¢) and (¢ = (Y = ¢)) =
(e A )=o)

Proposition 7
For all NMEL-models M holds

MEDOW[((t o) A@R)= N =ME WO A O B) -
O, vl

Proof. Use the Barcan formula (] vt ¢ < vr (¢ and the S5 valid formulas
U= y) = Qe > 0Oy) and O(e A y) = (Oe A Oy).

Proposition 8
The unique set of base sentences that are known in any minimal knowledge
model of a theory is exactly the set of all those formulas that are S5-entailed

by all positive and negative atomic base sentences that are known in that
minimal knowledge model.

Proof. See Corollary 4. 5 in [Sho88b].(*)

To illustrate the difference between NMEL and its monotonic version EL,
consider the following argument. In the sequel a dotted line will indicate
that the argument is valid in NMEL.

V. 1)B
2Y)BA O C->D

(") Actually Shoham claims that proposition 8 only holds with respect to special theories;
what he calls ‘causal’ theories. However, closer inspection of his proof of corollary 4.5

shows that this restriction is not necessary. Anyway, all the examples in this paper are about
causal theories in Shoham’s sense.
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This argument is not valid in EL, because the premise ¢ C is lacking. In
NMEL however this argument is valid. This can be argued as follows.
Consider an arbitrary minimal model M of this set of premises, i.e. M =
B A (B A O C)—D. This implies that

MEBandME®BA © Q) —D (1)

Since the formula (0 —Cis not a classical §5 deductive consequence of this
set of premises, this formula will not be satisfied by the minimal model M,
i.e. M FO ~C.() Consequently, we have M = [0 —C. So, by defi-
nition, it follows that

ME o C @)

From (1) and (2) it follows that M |= D. Hence, the argument above is valid
in NMEL.

Note that if a model is minimized with respect to the number of [J-form-
ulas, then it is in a sense maximized with respect to the number of © -form-
ulas. Because, if M does not satisfy (J —¢, then it does satisfy = [0 —¢, and
hence by definition it does satisfy ©¢. This corresponds to the intuitive
reading of the ¢ -operator, which says that one can assume ¢, unless one
already knows that —¢ is the case.

4 Applying NMEL to Explanations Based on Incomplete Information

After the brief introduction to NMEL in the previous section, we can now
explain how NMEL can be used to formalize the explanation of person P
of the burning of the lamp in the electric circuit. The problem was that
although P is unable to predict the burning of the lamp, he can very well
explain afterwards why the lamp went on at #,. This asymmetry of prediction
and explanation is due to the fact that P, not having complete knowledge,
is unable to use the empirical law W. However in his explanation P is
supposed to arrive at an empirical law U, which is a close approximation
of W. First, we will present the NMEL analysis of P’s explanation. After
that we will show how NMEL accounts for the fact that P is unable to

(%) It is assumed that B is not logically equivalent with [J—C.
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predict the burning of the lamp.

At timepoint £, person P is pressing switch §;, and subsequently he obser-
ves that the lamp L goes on. Hence, P knows that at ¢, both S, and L are
on, which is expressed by [1(2, S, = on) and (J(2, L = on). These obser-
vations led P to the conjecture that the burning of the light was caused by
switching §,. The L3F argument I can be formalized in NMEL as follows:

VI. 1)0O (@, S, = on)
2) 0 2, L = on)
O VLI, S, = on) A O (t, ~DF)) = (t. L = on)| )

So, this argument formalizes the Law-Finding-From-Facts argument.(®)
It expresses that, given the factual knowledge P has about the circuit at I,
he can assume that the unspecified law

ve [((z, S, = on) A O (¢, °DF)) - (¢, L = on)]

holds. This law says that turning on the switch will cause the lamp to burn,
provided one can assume that there are no distorting factors in the circuit.
This argument is valid in NMEL, and not valid in its monotonic version EL.
This can be argued as follows.

Proof of argument VI:

Consider an arbitrary minimal model M which makes the premises 1 and
2 true of argument VI. Due to the minimality of M it is obvious that 1 and
2 are the only atomic base formulas known in M. It is also obvious that the
formula J vz [(7, S, = on) > (r, L = on)] is not S5-entailed by the
premises 1 and 2. Hence, due to the minimality of M and Proposition 8 it
follows that

(®) The proof of VI indicates that C) is not the strongest conclusion entailed by the prem-
ises 1 and 2; the strongest conclusion is < wt[(t, S, = on) = (t, L = on)]. However in VI
we mention U instead of this stronger conclusion to emphasize the analogy the L3F argu-
ments in the previous section.
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ME ~O=wvr[(t, S, = on) = (¢, L = on)]
e ME Ovt[(t, S, = on) - (t, L = on)]
Hence, by Proposition 6,
ME Ovt[((t, S, =on) A O, "DF)) - (t, L = on)]

Hence the argument is valid in NMEL.

Argument VI is not valid in the monotonic version EL. This can be shown
by the following counterexample. Consider a model M’ that satisfies the
formulas (1(2, §, = on), O(Q2,L = on), JG, S, = on) and 0@, L =
off). However, as M’ is not minimal with respect to the knowledge at t,,
it is not a minimal model of the premises 1 and 2. O

The NMEL analysis also accounts for the fact that person P cannot before-
hand predict at ¢, that the light will go on, when S, is turned on at the next
moment #,. At £, P only knows that he will turn on the switch §, at the next
moment z,. As P is not even aware of the existence of the other switch S,
he certainly doesn’t know that this switch is on at r,, and neither does he
know the law W, i.e.

ve [((z, S, = on) A (1, S, = on)) = (¢, L = on)].

At £, person P may use the following L3F argument to find the unspecified
law U:

VIL 1) O 2, S, = on)

ove[((r, S, = on) A O (t, "DF)) > (t, L = on)] )

However, the law U is not strong enough to derive in NMEL from the
premise 1 that at #, person P knows that the light is on, i.e. (0 (2, L = on).

Actually, the following law is needed to derive this conclusion in NMEL
from premise 1.

O v [((z, S, = on) A © (t, "DF)) = (t, L = on)]

In other words, it is not enough that the uspecified law is simply assumed,
but this unspecified law itself must be really known. But L3F arguments only
yield assumed laws, and not known laws. For knowledge one needs more
information. A subtle but albeit crucial difference! If P would know the
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unspecified law, then we would have the following argument in NMEL.

VIII. 1O @, S, =on)
2) 0wt [((z, S, = on) A © (t, "DF)) - (t, L = on)]

O 2, L = on))

This argument is valid in NMEL (the proof is analogous to the proof of
argument V), and not in EL. But P does not know this unspecfied law,
therefore, although P intends to turn S, on at z,, he does not know that the
lamp will go on. This means that P cannot predict whether the light will be
on at ¢, or not.

If person P had complete knowledge about the circuit, then he really could
predict that the light will go on. This can be argued as follows. At #, P
intends to press S, at 1,, so he knows that this switch will be on at 1,; i.e.

U (2, 8, = on). Furthermore, having complete knowledge, P knows the law
W, i.e.

O wt[(¢ S, =on) A (¢ S, =on) - L = on),

and he knows that the other switch S, will still be on at 1., i.e. (2, S, =
on). Thus, at 7, P could argue as follows:

IX. 1)0O@, S, =on)
2)0 @, S, = on)
3) 0wt [((z, §, = on) A (£, S, = on)) = (1, L = on)]

O (2, L = on)
Due to Proposition 7, premise 3 implies
ve[(Q @ 8§, =on) A O S,=o0n)->0( L = on).

Hence, it is obvious that this predictive argument is valid in NMEL as well
as EL. The reason that we mention this example is that it shows that Hem-
pel’s covering law model is simply a special (ideal!) case in NMEL. If P has
complete knowledge, the NMEL analysis of predictions is analogous to
Hempel’s analysis.

With respect to P’s explanation, i.e. argument VI, we have to make one
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final comment. The following explanatory argument is also valid in NMEL:

X. 1) 0 @2, S, = on)
2) O (2, L = on)

.................................................................

O wt[(t, L = on) A O(t, "DF)) > (1, S, = on)] (CU)
Proof of argument X:
Analogous to the proof of VI. Observe that O -z [(r, L = on) = (t, S,
= on)] is not §5-entailed by the premises 1 and 2. O

The difference between arguments VI and X is that in the conclusions of
these arguments the causal direction is reversed; CU says that S, being on
is caused by the light going on. The arguments VI and X model exacly the
arguments III. 1 and III. 2 respectively, that were discussed in the Section
2. In that section we argued that the unintended unspecific law CU was
excluded by the background theory T. Presupposing that T excludes CU,
i.e. T | —CU, and that T does not exclude U,ie. T U, we would
get the following arguments in NMEL, which model exactly the arguments
IV. 1 and IV. 2 that we discussed in the Section 2.

XLLl. )T XI.2. )T
2) 0 (2, S, = on) 2)0 @2, S, = on)
30O R2,L=on 3)0@2,L =on
....... U : .. —.CU

Proof of arguments XI.1 and XI.2:

Consider an arbitrary minimal model M that satisfies the premises 1, 2 and
T. It was presupposed that ~CU is S5-entailed by 1,2 and T, i.e. 1,2, T
[~ CU. Furthermore it is presupposed that 1, 2 and T do not exclude U,
i.e. 1,2, T - U. Hence, —U is not S5-entailed by 1, 2 and T. If we can
provethatM |= Uand M | —CU, then it follows immediately that M |= U
A 2CU. M | —CU holds, because M 1 A2 A Tand 1, 2, T

[F 7 CU. The proof of M |= U is more complicated. First observe that 1,
2, T B U implies that
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1,2, T RO =vt[((r, S, = on) A O(t, "DF)) = (t, L = on)].
Hence, there is a model N such that N |, A 2 A Tand

N EO —wt[((f, S, = on) A O, °"DF) - (t, L = on)].

It is simple to see that then also N (O —wvt[(, S, = on) = (¢, L = on)].
Consequently, we also have 1, 2, T B0 —wt[(t, S, = on) = (t, L = on)].
As this last formula is of the form [J ¢, with ¢ a base formula, we can
apply Proposition 8 with the result thatM | -~ —wvt[(z, S, = on) = (t, L
= on)]. This implies, due to Proposition 6 and the definition of ¢, that

ME Owt[((t, S, = on) A O(t, "DF)) = (t, L = on)].
Hence, we have M | U. O

If we would really take all of P’s general background knowledge into
account, we arrive at exactly the intended explanatory argument. Hence,
we showed that the L3F arguments I, III.1, III.2, IV.1 and IV.2 that are
characteristic for explanations based on incomplete information can be very
neatly modelled in the non-monotonic epistemic logic NMEL.

4. Conclusions

In this paper we have shown that explanations based on incomplete informa-
tion do not always comply with Hempel’s covering law model. Using the
example of a ‘hidden’ electric circuit we have shown that the relevant
covering law is usually not known beforehand in this type of explanations.
This results in a breakdown of the symmetry between prediction and expla-
nation in Hempel’s DN-model in the case of explanations based on incom-
plete information. We argued that in this type of explanations it is possible
to derive from the observed facts a weaker type of law, which we called
unspecific laws, that are strong enough for explanation, but too weak for
prediction. Furthermore, we showed that this derivation of unspecific laws
from observed facts presupposes a new type of arguments, which we called
Law-Finding-From-Facts or L3F Arguments, which are supplementary to
Hempel’s covering law model. These L3F arguments cannot be modelled
in classical logic, and should not be considered as inductive arguments
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either. We showed that Shoham’s non-monotonic logic NMEL is an excellent
logic to model these L3F arguments.
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