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HYPERFINE-GRAINED MEANINGS IN CLASSICAL LOGIC*

Reinhard MUSKENS

1. Logical Omniscience

Let us call two expressions synonymous if and only if they may be inter-
changed in each sentence without altering the truth value of that sen-
tence.(') With the help of an argument by Benson Mates (Mates [1950])
it can be shown that synonymy is a very strong relation indeed. Consider,
for example, the following two sentences.

(1) Everybody believes that whoever thinks that all Greeks are courage-
ous thinks that all Greeks are courageous

(2) Everybody believes that whoever thinks that all Greeks are courage-
ous thinks that all Hellenes are courageous

Some philosophers indeed believe that whoever thinks that all Greeks are
courageous also thinks that all Hellenes are courageous.(*) But certainly
not everyone agrees, and so (2) is false. We may assume, on the other hand,
that (1) is true, and since (1) can be obtained from (2) by replacing ‘Helle-
nes’ by ‘Greeks’, the latter two words, somewhat surprisingly, are not syn-
onymous. By a similar procedure any pair of words that are normally de-
clared synonyms can be shown not to be synonymous after all, if our defini-
tion of the term is accepted.

"A preliminary version of this paper appeared as ‘Logical Omniscience and Classical Logic’
in D. Pearce and G. Wagner (eds.), Logics in Al, Lecture Notes in Artificial Intelligence
633, Springer, Berlin, 1992, 52-64. I would like to thank Ed Keenan, Heinrich Wansing
and the audiences at JELIA ‘92 and the Epistemic Logic Colloquium for comments and
criticisms.

(') This essentially is Mates’s [1950] formulation of the interchangeability principle. Note
how close Mates’s formulation is to Leibniz’s:

Eadem sunt quorum unum potest substitui alteri salva veritate.
(3 E.g. Putnam in Putnam [1954].
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Worse, it seems that the relation of synonymy is even stronger than the
relation of logical equivalence is. Sentences that are normally accepted to
be logically equivalent need not be synonymous. Suppose(’) Jones wants
to enter a building that has three doors, A, B, and C. The distances between
any two of these doors are equal. Jones wants to get in as quickly as pos-
sible, without making detours and he knows that if A is locked B is not.
Now, if our agent tries to open door B first and finds it locked there might
be a moment of hesitation. The reasonable thing for Jones is to walk to A,
since if B is locked A is not, but he may need some time to infer this. This
contrasts with the case in which he tries A first, since if he cannot open this
door he will walk to B without further ado. The point is that one may well
fail to realize (momentarily) that a sentence is true, even when one knows
the contrapositive to hold. For a moment (3) might be true while (4) is
false.

(3) Jones knows that if A is locked B is not locked
(4) Jones knows that if B is locked A is not locked
It follows that the two embedded sentences are not synonymous, even
though logically equivalent on the usual account.
All reasoning takes time. This means that
(5) Jones knows that ¢
need not imply
(6) Jones knows that y

even if ¢ and ¥ are logically equivalent. If the embedded sentences are
syntactically distinct then, since Jones needs time to make the relevant infer-
ence, there will always be a moment at which (5) is true but (6) is still false.

Of course, the easier it is to deduce ¥ from ¢, the shorter this time span
will be and the harder it is to imagine that Jones knows ¢ without realizing
that y. We ascribe to Jones certain capacities for reasoning, even if we do
not grant him logical omniscience. For instance, if Jones knows A and B,

(%) This example is adapted from Moore [1989].
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then it is hard to imagine that he would fail to know B and A as well. But
even here there may be a split-second where the necessary calculation has
yet to be made. Therefore ‘Jones knows B and A’ does not follow from
‘Jones knows A and B’. ‘

A real problem results if we try to formalise the logic of the verb to know
and its like. All ordinary logics (including modal logics) allow logical
equivalents to be interchanged, but epistemic contexts do not admit such
replacements. It thus may seem that the logic of the propositional attitude
verbs is very much out of the ordinary and that we must find a logic that
does not support full interchangeability of equivalents if we want our theory
of the propositional attitudes to fit the facts.

Systems that do not admit replacement of equivalents do in fact exist. For
example Rantala [1982%, 1982°], working out ideas of Montague [1970],
Cresswell [1972] and Hintikka [1975], offers an ‘impossible world seman-
tics” for modal logic in which the interchangeability property fails. In the
next section I'll criticise Rantala’s system for not being a logic in the strict
sense, but I think that its main underlying idea, the idea that we can use
‘impossible’ worlds to obtain a very fine grained notion of meaning, is
important and useful. Despite appearances however, this idea is compatible
with classical logic and in section 4 I shall show in some detail how we can
use impossible worlds to treat the propositional attitudes without resorting
to a non-standard logic. The logic that I shall use is the classical type theory
of Church [1940]. Section 3 will be devoted to a short exposition of this
logic for the convenience of those readers who are not already familiar with
it.

2. Rantala Models for Modal Logic

The basic idea behind Rantala’s interpretation of the language of proposi-
tional modal logic is to add a set of so-called impossible (or: non-normal)
worlds to the usual Kripke frames. Equivalence can then be defined with
respect to possible worlds only, but for interchangeability the impossible
ones come into play as well. The net result will be that equivalents need not
be interchangeable in the scope of the epistemic operator K,

Formally, a Rantala model for the language of propositional modal logic
is a tuple (W, W*, R, V) consisting of a non-empty set W of possible
worlds, a set W* of impossible worlds, a relation R S (W U W*)? and a
two-place valuation function V : ForRM X (W U W*) - {0,1} such that for
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alw e W,

i Vihe,w =1 iff V(ie,w) =0

(i) Ve Ay,w) =1 iff Ve, w) =1and V(y, w) = 1

(ili)) V(Ke, w) =1 iff Ve, w) = 1forallw € W U W*
such that wRw’.

Note that the value of a complex formula in an impossible world can be
completely arbitrary. The value of a complex formula does not depend on
the values of its parts. Note also that Rantala models clearly generalize
Kripke models: a Kripke model simply is a Rantala model with empty W*,

A formula y is said to follow from a formula ¢ if V(e, w) = 1 implies
V(¥, w) = 1 in each Rantala model (W, W*, R, V) and w € W. A formula
¢ is valid in a Rantala model if V(¢, w) = 1 in each w € W. A formula
¢ is valid simpliciter if it is valid in each Rantala model. Formulae ¢ and
Y are equivalent iff ¢ follows from ¥ and  follows from ¢. Clearly, all
propositional tautologies are valid, but Necessitation fails: validity of ¢ does
not imply validity of Ke. This is as it should be: one may well fail to know
that a sentence is true even if it is valid. Also the K schema fails: write
¢ =y for (¢ A 1Y), then K(p — ) = (K¢ = Ky) is not valid. This is
also as desired, since knowledge is not closed under modus ponens. The
notion of validity just defined is indeed a minimal one: with the help of
standard techniques it is easily shown that a sentence is valid if and only if
it is a substitution instance of a propositional tautology.

Equivalent sentences need not be interchangeable in this system. For in-
stance, p and — —p are equivalent, but a model in which Kp and K- —p
are assigned different truth values in some possible world is easily con-
structed. The system thus meets the requirement discussed in the previous
section.

Wansing [1990] shows that a number of formalisms that have arisen in
Al research can in fact be subsumed under the impossible worlds approach.
He proves in some detail that the knowledge and belief structures that were
proposed in Levesque [1984], Vardi [1986], Fagin & Halpern [1988] and
Van der Hoek & Meyer [1988] can be reduced to non-normal worlds
models. Thijsse [1992] on the other hand proves that Rantala models can
be reduced to the models of Fagin & Halpern [1988] (if the latter are slight-
ly generalised) and thus, using Wansing’s result, obtains equivalence

between Rantala semantics and Fagin & Halpern’s logic of general aware-
ness.
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The system is elegant enough, generalises Kripke’s semantics for modal
logic and subsumes other approaches to the logic of the propositional atti-
tudes, then what are my qualms? Here is one. We have just defined the
implication ¢ — y with the help of = and A. Alternatively, we could have
introduced the arrow as a primitive, imposing the extra constraint that for
all models (W, W* R, V)and forallw € W :

(ii") Ve=y,w) =0 iff V(e,w) =1and V¥, w) = 0.

But the two methods lead to different results. For even while the formulae
¢ =y and ¢ = { are equivalent, they are not interchangeable in all con-
texts: K(p — ) and K(¢ = y) may have different truth values in some
possible world. The addition of = to the language and the addition of clause
(ii’) to the definition of a Rantala model really added to the logic’s express-
ive power. Two Rantala models may validate exactly the same sentences of
the original language, yet may differ on sentences of the new language.

This means that functional completeness fails for Rantala’s system. Usual-
ly, when setting up a logic, we can contend ourselves with laying down
truth conditions for some functionally complete set of connectives, say —
and A . Adding connectives and letting them correspond to new truth func-
tions usually does not increase expressive power since all truth functions are
expressible with the help of = and A . But in the present case this is no
longer so.

Why? The source of the trouble is that in Rantala models the interpretation
of logical constants is not fixed. Even a reduplication of one of the logical
constants would strengthen the system. Let us add a connective & to the
system and impose a condition completely analogous to (ii), namely that for
alwe wW:

(i) Ve & ¥, w) = 1 iff V(p, w) = 1 and V(y, w) = 1

The weird result is that K(¢ A ) is not equivalent with K(p & ¥) and that
it is possible now to distinguish between models that were indistinguishable
(i.e. validated the same sentences) before. The question arises: which is the
real conjunction, A or &?

Is it possible to have a logic if the interpretations of the logical constants
are allowed to vary with each model? This question can only be answered
if some criterion of logicality is accepted. Such criteria have been developed
within abstract model theory (see Barwise [1974]), a branch of logic where
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theorems are proved of the form: “every logic that has such-and-such prop-
erties is so-and-so”.(*) Rantala [1982°] notes that in fact his system does
not meet the standards that are usually set here. There is a problem with re-
naming. In general the truth value of a formula should not change if we
replace some non-logical constant in it by another constant which has the
same semantic value. In Rantala models this fails, for example, it is easy
to construct a Rantala model such that V(p, w) = V(q, w) for all w €
WU W*but V(K—p, w) # V(K—g, w) for some possible world w € W.
The value of K—p thus may crucially depend on the particular name that
we have chosen for the proposition that is denoted by p.

This may or may not be defensible, but, as I shall show below, the weird
characteristics of Rantala’s system are not essential to the idea of impossible
world semantics. The idea can be formalised with the help of a system that
meets all standards of logicality.

The basic intuition behind the introduction of impossible worlds is that,
since we humans are finite and fallible, we fail to rule out worlds which
would be ruled out by a perfect reasoner. What do such worlds look like?
Well, for example, one of Jones’ epistemic alternatives was the impossibility
that ‘if A is locked B is not’ is true, but that ‘if B is locked A is not’ is
false. For a short time, at least one impossible world in which the first sen-
tence is true but the second is not was not ruled out by Jones’ reasoning.
But in such worlds the words ‘not’ and ‘if* cannot get their usual Boolean
interpretation, since this interpretation would simply force the sentences to
be equivalent. We therefore end up with non-standard interpretations for the
‘logical’ words in English: ‘and’ cannot be intersection of sets of worlds,
‘or’ cannot be union, ‘not’ cannot be complementation and so on.

Rantala formalises this by treating the word ‘and’ as the connective A but
by giving this last symbol a non-logical interpretation. This leads to a funny
system. The obvious alternative is to keep the logic standard but to formalise
the English word ‘and’ and its like as non-logical constants: once it is
accepted that no logical operation strictly corresponds to the English word
‘and’, the most straightforward solution is be open about it and to formalise
the word with the help of a non-logical constant.

Of course, some connection between the ‘logical’ words in English and
the connectives that usually formalise them should remain intact. What con-

(*) An example is Lindstrdm’s Theorem, which says that for no logic properly extending

first-order predicate logic both the Compactness Theorem and the Léwenheim-Skolem
Theorem hold.
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nection? Even if we allow the interpretations of the ‘logical” words to be
completely arbitrary, there will be a subset of the set of all worlds where
‘and’ and its ilk behave standardly. These worlds where the logical words
of English have their usual logical interpretation may be called the ‘possible’
or ‘actualizable’ ones. As we shall see below, the assumption that the actual
world is actualizable leads to the desired relation of logical consequence.

But it is high time for a more precise formalisation. In the next section
I give a short sketch of the classical logic that I want to use and in the last
section I'll apply it to the propositional attitude verbs.

3. Classical Type Theory

Since we want to treat ‘and’, ‘or’, ‘not’, ‘if’, ‘every’ and ‘some’ as non-
logical constants, we should use a logic that admits of non-logical constants
for these types of expressions. Ordinary predicate logic will not do, but a
logic that is admirably suited to the job is Church’s [1940] formulation of
Russell’s Theory of Types (Russell [1908]). Since I expect that not all of
my readers are familiar with this system, I’ll give it a short exposition (and
so readers who already know about the logic can skip this section). For a
more extensive account one may consult the original papers (e.g. Church
[1940], Henkin [1950, 1963]), Gallin [1975], the survey article Van Ben-
them & Doets [1983], or the text book Andrews [1986]. In Muskens [1989%,
1989°, 1989°] some variants of the logic are given, but I’ll follow the stan-
dard set-up here.

In classical type theory each logical expression comes with a type. Types
are either basic or complex. The type of truth values, here denoted with ¢,
should be among the basic types, but there may be other basic types as well,
In this paper, for example, we’ll assume types for individuals (type e) and
worlds (type 5). Complex types are of the form o8 (%) and an expression
of type o8 will denote a function which takes things of type « to things of
type 8. Formally we define:

(%) Sometimes denoted as o + 8, sometimes as Ba.
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Definition 1 (Types). The set of types is the smallest set such that:

i.  all basic types are types,
ii. ifaand @ are types, then (o) is a type.

Definition 2 (Frames). A frame is a set of non-empty sets {D, | « is a type}
such that D, = {0, 1} and D4 € {f | f: D, = Dg} for all complex types
afl.

The sets D, will function as the domains of all things of type «. Note that
we do not require domains D, to consist of all functions of the correct type,
as this would make the logic essentially higher-order and non-axiomatisable.
Let us assume for each type « the existence of denumerably infinite sets of
variables and non-logical constants VAR, and coN,. From these we can build
up terms with the help of lambda abstraction, application and the identity
symbol.

Definition 3 (Terms). Define, for each «, TERM,, the set of terms of type
«, by the following inductive definition:

i. CON, © TERM,;

VAR, S TERM_;
ii. A € TERM,, B € TERM, = (4B) € TERMg;
iii. A € TERMg, x € VAR, = \(A) € TERM,;
iv. A,B € TERM, = (4 = B) € TERM,.

If A € TERM, we may indicate this by writing A,. Terms of type ¢ are
called formulae. We obtain most of the usual logical signs by means of ab-
breviations.

Definition 4 (Abbreviations).

T abbreviates Ax,(x) = Ax,(x)
VX, ¢ abbreviates M = A, T
il abbreviates vx,(x)

i abbreviates ¢ = 1
@ A ¥ abbreviates NX, (X T)T) = AX,,, (Xe)¥)

The rest of the usual logical constants can be got in an obvious way.
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In order to assign each term a value in a given frame, we must interpret all
variables and non-logical constants in that frame. An interpretation function
I for a frame F = {D,}, is a function with the set of non-logical constants
as its domain, such that I (c) € D, for each constant ¢ of type o.. Likewise,
an assignment a for a frame {D,}, is a function that has the set of all
variables for its domain, such that a(x) € D, for each variable x of type
a. If a is an assignment, then a[d / x] is defined by

ald / x]J(x) = d and
ald / x](y) = a(y) fory # x.

A very general model is a tuple (F, I) consisting of a frame F and an in-
terpretation function 7 for that frame. Given some very general model and
an assignment, we can give each term a value.

Definition 5 (Tarski Definition). The value |4 |* of a term A on a very
general model M = ({D_},, I) under an assignment a for {Dafa is defined
as follows (to improve readability I write |4 or || 4] for || A4[*):

i. |c| = Kc) if ¢ is a constant;
x| = ax) if x is a variable;
i. [AgB.1 = |4lclBl) if |B] € domain(|A])
=g otherwise;
iii. |Ax,4[* = the function f with domain D, such that for all d € D,:
d) = a4’
iv. |4 =B = 1iff |4] = |B].

We define a (general) model to be a very general model M = ({D,}, I)
such that |4, |+ € D, for every term A, and we restrict our attention to
general models. Note that in general models the second subclause of ii. does
not apply (we needed it for the correctness of definition 5). The reader may
verify that on general models the logical constants T, v, L, = and A get
their usual (classical) interpretations.

The semantic notion of entailment is defined as follows.

Definition 6 (Entailment). Let I' U {¢} be a set of formulae. T' entails ¢,
' | ¢, if, for all models M and assignments a to M, ||y [** = I for all
¥ € T implies [o|*° = 1.
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Henkin [1950] has proved that it is possible to axiomatise the logic. In fact,
an elegant set of four axiom schemes and one derivation rule will do the
job. For details see the literature mentioned above. For the present purposes
it suffices to note that 8- conversion and - conversion hold and that we can
reason with = and the defined constants T, v, 1L, = and A asin (many-
sorted) classical predicate logic with identity.

4. Classical Logic Without Logical Omniscience

Let us apply our logic to English.(®) Since we have decided to treat the
‘logical’ words as non-logical constants, we can now uniformly treat all
words as such. Table 1 below gives a list of all constants that we shall use
in this paper, most of them named in a way that makes it easy to see which
words they are supposed to formalise (the others will not directly translate
words of English; their use will become apparent below). The constants in
the first column of the table have types as indicated in the second column.

non-logical constants type

not (sH)(st)

and, or, if (s0)((st)(s1))

every, a, some, no (e(sOX(e(s))s1)

is ((e(sOXs))e(st))

hesperus, phosphorus, mary (e(st))(s?)

planet, man, woman, walk, talk e(st)

believe, know sH(e(sh))

i s

hl p, m e

B, K e(s(sr))
Table 1

(%) The application of type logic to the formalisation of English discussed in this section
benefitted greatly from Montague [1970%, 1970°, 1973]. In fact we can think of it as a
streamlined form of Montague semantics.



HYPERFINE-GRAINED MEANINGS IN CLASSICAL LOGIC 169

The idea behind the type assignment(’) is that the meaning of a sen-
tence, a proposition, is a function that gives us a truth value in each world
(and thus it is a function of type s7), that the meaning of a predicate like
planet is a function that gives a truth value if we feed it an individual
and a world (type e(st)) and that an expression that expects an expression
of type o should be of type af if the result of combining it with such an
expression should be of type 8. So, for example, not is of type (st)(sr)
since it expects a proposition in order to form another proposition with it;
the name mary gives a sentence if it is followed by a predicate and may
therefore be assigned type (e(s0))(s?).

Some easy calculation shows that the following are terms of type st.

(8) (some woman)walk

9) (no man)talk

(10) hesperus (is (a planet))

(11) (if((some woman)walk)) ( (no man)talk)

(12) (if((some man)talk)) ((no woman)walk)

(13) mary(believe((if ((some woman)walk)) ( (no
man) talk))

(14) mary(believe( (if ((some man)talk)) ( (no
woman)walk))

Clearly, these terms bear a very close resemblance to the sentences of
English that they formalise. For example, the structure of (13) is isomorphic
or virtually isomorphic to the structure that most linguists would attach to
the sentence ‘Mary believes that if some woman is walking no man is talk-
ing’. But it should be kept in mind that these are terms of the logic and can
be subject to logical manipulation.

We must of course make a connection between at least some of the non-
logical constants that we have just introduced and the logical constants of
the system. For example, (11) should be equivalent with (12), but as matters
stand these two terms could denote two completely different (characteristic
functions of) sets of worlds. Up to now, we have allowed the interpretations
of the constants not, and, or, if and the like to be completely arbitra-
ry, but it is not unreasonable to assume that at least in the actual world,
which we denote with the constant i, these interpretations are standard.

(*) Essentially this assignment was used in Montague [1970°] and Lewis [1974].
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In order to ensure this we impose the following non-logical axioms. (%)

Al vp((notp)i & —pi)

A2 vpg(((andp)g)i « (pi A gi))

A3 vpg(((oxrp)g)i « (pi v gi))

A4 vpg((ifp)g)i < (pi - qi))

A5 VP P((everyP)P,i « vx(Px)i - (Px)i))

A6 VPP(((@P)P)i e m((Px)i A (Px)1))

A7 VPP(((someP)P)i e w((Px)i A (Px)i))

A8 VPP ((noP)Pyi « ~a;x((Px)i A (Px)i))

A9 vOVx((isQx)i < (QMN(K = y))i)

Al0 vP((hesperusP)i < (P h)i)
VP((phosphorusP)i « (P p)i)
VP((maryP)i e (P m)i).

These axioms tell us that an expression notp is true in the actual world i
if and only if p is false in i, that (andp)q is true in i if and only if p and
q are both true in i, and so on. Given these axioms many sentences get
their usual truth value in the actual world. For example A7 tells us that
((some woman)walk)i and Ix((womanx)i A (walkx)i)areequivalent,
A8 says that (no man)talk)i is equivalent with =ax((manx)i A
(talkx)i). Axiom A10 says that there is an individual h such that the
quantifier hesperus holds of some predicate at i if and only if that

predicate holds of h at i. We can use the axioms to see that the following
terms are equivalent.

hesperus (is (a planet))i

((is (a planet))h)i (A10)
(@ planet)iyzjh = y)i (A9)
A((planetx)i A WN(h = y)i) (A6)
A((planetx)i A h =x) (8- reduction twice)
(planet h)i (predicate logic)

Let & be the conjunction of our finite set of axioms and let [k / i]® be the

(%) Here and in the rest of the paper I shall let j and k be type s variables; x and y type e
variables; (subscripted) P a variable of type e(st); Q a type (e(s1))(st) variable; and p and
q variables of type st. Variables are in Times italic, constants in Courier.
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result of substituting the type s variable k for each occurrence of i in ®.
The st term Mk [k / 1]® denotes the set of those worlds in which not,
and, or, if etc. have their standard logical meaning. We may view
the term Mk [k / 1]® as formalising the predicate ‘is logically possible’ or
‘is actualizable’. The axioms thus express that the actual world is logically
possible or actualizable.

We define a notion of entailment on sz terms with the help of the set of
axioms AX = {Al,..., A12} (A1l and A12 will be given shortly). An ar-
gument is (weakly) valid if and only if the conclusion is true in the actual

world if all premises are true in the actual world, assuming that the actual
world is actualizable.

Definition 7 (Weak entailment). Let ¢,,...,¢,, ¥ be terms of type st. We say
that  follows from ¢,,...,¢, if AX, ¢,i,...,¢,1 | 1. Terms ¢ and ¥ of
type st are called equivalent if  follows from ¢ and ¢ follows from .

That terms (11) and (12) are indeed equivalent in this sense can easily be
seen now. The following terms are equivalent.

((if((some woman)walk))((no man)talk))i
((some woman)walk)i - ((no man)talk)i (A4)
A((womanx)i A (walkx)i) - ((no man)talk)i (A7)
I((womanx)i A (walkx)i)—» —ax((manx)i A (talkx)i) (AS8)
In the same way we find that (12) applied to i is equivalent with
W((manx)i A (talkx)i) - ~ax((womanx)i A (walkx)i),
and the equivalence of (11) and (12) follows with contraposition.

But if we try to apply a similar procedure to (13) and (14) the process

quickly aborts. It is true that (13) applied to i with the help of A10 can be
reduced to

(believe((if((some woman)walk))(no man)talk))m)i

and that (14) applied to i can be reduced to

(believe((if((some man)talk))((no woman)walk)))m)i
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but further reductions are not possible. In fact it is not difficult to find a
model in which one of these formulae is true but the other is false. The
reason is that it is not only the denotation in the actual world of the em-
bedded terms (11) and (12) that matters now, but that their full meanings
(i.e. denotations in all possible and impossible worlds) have to be taken into
account. Not only their Bedeutung but also their Sinn. Since no two syntacti-
cally different terms have the same Sinn, no unwanted replacements are
allowed.

Note that the solution does not commit us to a Hintikka style treatment
of knowledge and belief. We have not assumed that belief is truth in all
doxastic alternatives, knowledge truth in all epistemic alternatives. But we

can, if we wish, make these assumptions by adopting the following two
axioms.

All vpvx((believep)x)i « Vj(((Bx)i) - pj)
Al12 vpvx(((knowp)n)i « Vj((Kx)i) - pj))

Here B and K are constants of type e(s(s¢)) that stand for the doxastic and
epistemic alternative relations respectively. A term ((Bx)i)j can be read as:
‘in world i, world j is a doxastic alternative of x* or ‘in world i, world Jjis
compatible with the beliefs of x’; ((Kx)i)j can be read as: ‘in world i, world
J is an epistemic alternative of x’ or ‘in world i, world j is compatible with

the knowledge of x’.(°) If these axioms are accepted, we can reduce (13)
to

Vj((Bm)i)j - ((if((some woman)walk))(no man)ta 1K),

a formula that expresses that (11) holds in all Mary’s doxastic alternatives.
Clearly, no further reductions are possible and we can still find models such

(®) We may demand that B and K satisfy some axioms. The following seem a reasonable
choice:

wx((Kx)i)i

VIVK(K)i) - (Kx) )k ((Kx)i)k))
vx3j ((Bx)iy

VxVjk((Bx)1) = ((Bx)jk « ((Bx)i)k))
vxvj((Bx)1i) > (Kx)iy)
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that (13) is true but (14) is false (in the actual world).
The mechanism helps us to solve some related puzzles as well. For ex-
ample, (17) should not follow from (15) and (16) and it doesn’t.

(15) hesperus(is phosphorus)
(16) (every man)(know(hesperus(is hesperus)))
(17) (every man)(know(phosphorus(is hesperus)))

Surely, (hesperus(is phosphorus))i reduces to h = p after a few
steps, and h and p are thus interchangeable in all contexts if (15) is ac-
cepted, but (16), if it is applied to i, only reduces to

(18) vx((manx)i —Vj(((Kx)i)j »(hesperus(is hesperus)))),
and (17) applied to i can only be reduced to

(19) vx((manx)i - vj(((Kx)i)j - (phosphorus(is hespe-
rus)))).

Clearly, the premise h = p and (18) do not entail (19).(*)

Terms (16) and (17) are the de dicto readings of the sentences ‘Every man
knows that Hesperus is Hesperus’ and ‘Every man knows that Phosphorus
is Hesperus’ respectively. Of course, we can also formalise de re readings,
as is illustrated in (20) and (21). The reading that is formalised by (20) can
be paraphrased as ‘Of Hesperus, every man knows that it is Hesperus’,
while the other term can be paraphrased as ‘Of Phosphorus, every man
knows that it is Hesperus’. The reader may wish to verify that in this case
the relevant entailment holds: (21) follows from (20) and (15).

("®) The present system is very weak. In fact some predictions might be oo weak. For
example, even (16) is not predicted to be valid. While I think that it might be upheld that
the truth of (16) is not a logical truth, but a truth contingent on the properties of human
belief, we are not committed to such a point of view. In order to have (16) come out valid,
we may strengthen our system by adopting A9’ and A10’ below instead of axioms A9 and
A10. This answers an objection that was made by Professor Paul Gochet among others.

AY’ VhYQvx(((i8Q)x)k « (QAYN(x = y))k)
Al10’ vkaxvP((hesperusP) « (P x)k) etc.
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(20) hesperusix((every man)(know((is hesperus))))
(21) phosphorusix((every man)(know((is hesperus)x)))

This possibility of quantifying-in, which the present theory shares with other
semantic theories of the attitudes, distinguishes the approach from Quine’s
[1966] syntactic treatment. But our semantic theory is as fine-grained as any
syntactic theory can be, for no two syntactically different expressions have
the same meaning. The resemblance between the syntactic approach and
ours is close: the syntactic theory treats the attitudes as relations between
persons and syntactic expressions, we treat them as relations between per-
sons and the meanings of those expressions. But since different expressions
have different meanings, this boils down to much the same thing.

Tilburg University.
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