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A SUBJECTIVE LOGIC OF KNOWLEDGE
Ph. LEIOLY

1. Introduction

A robot (Rob1) moves slowly in a room. His batteries are nearly down. He
is desperately seeking an electrical outlet, but there is none in sight in this
room. Rob1 knows that there must be a plug either in the room to the left,
or in the room to the right, but he only has enough power to visit one more
room. Without any further information, Robl sadly decides to use his
random number generator, when he sees his colleague Rob2 coming out of
the room to the left. “Well”, Robl thinks, “I don’t know whether there is
an outlet in that room, but I know that Rob2 knows, since he has been
there. So, I'll ask him.” After Rob2’s answer, Robl1 is able to decide where
to go.

This kind of reasoning, taking into account the “mental states” of agents
—in order to make a decision, Rob1 uses not only what he knows about the
environment, but also what he knows about Rob2’s knowledge— can be
formalized using the logic of knowledge, or epistemic logic ((Hin62, HM85,
Hal86]).

One approach is to axiomatize the situation of interest as a set of epistemic
logic formulas and use a deductive system to infer conclusions (agents’
actions for instance). This approach suffers from the usual weaknesses of
deductive systems, even to a greater degree, since the logic of knowledge
is more difficult to handle than classical logic.

An alternative is to represent the situation of interest by a structure and
to evaluate formulas on this structure (for instance, agents’ actions can be
determined by checking if the antecedent of some rule is satisfied on the
structure). This structure will be of the same type as a model of the logic
and evaluation will follow the semantic rules of the logic. This approach is
known under the name of model-checking ([HV91]) since it amounts to
checking that a structure is a model of a given formula.

In many applications of the logic of knowledge, the notion of knowledge
considered is an external one: it is a tool used by the system designer to
express and verify certain properties of the system ((HM84, FHV86, RKS6,
FI86]). But a component of the system cannot use what it “knows”, only
the designer performs epistemic reasoning.
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Rather, we would like to take the point of view of the agent, i. e. an
internal or subjective approach. In this approach, the agent performs epis-
temic reasoning. This amounts to providing each agent with a model of his
own knowledge which he will use to evaluate formulas, and which ke will
update when he gets new information. There is no structure describing the
global situation any more, or only as a conceptual tool inaccessible to a
particular agent. So, an agent would start with an empty model and would
update it as he “perceives” facts, or as he communicates with other agents.
To determine if a given formula is true, an agent evaluates it on his model.
This allows us to give a realistic model of interacting agents and of their
inference capabilities. For instance our agents have only a partial view of
the situation. They are aware of a limited subset of primitive propositions
and their current model is a representation of the finite amount of informa-
tion they have gained thus far.

We use a formalism based on the notion of knowledge structures
([FHV84, FV85, FHV91]), rather than on the classical Kripke structures
([Kri63, HM85, Hal86]). A problem is that these knowledge structures are
infinite, and thus cannot be manipulatl 3 40 provide each agent with a finite
representation of his model, along with a way to evaluate formulas on it.
This is done by introducing circularity, or self-reference, in the definition
of a model. Among other things, this allows a finite representation of the
common knowledge of a group of agents, and the evaluation in a finite
number of steps of common knowledge formulas. Furthermore, we present
algorithms for updating the model of an agent when his information changes
due to communication.

2. The Model
We can view an agent’s knowledge as consisting of two parts:

1. knowledge about the environment (level-0 knowledge);
2. knowledge about the knowledge of the other agents (meta-knowledge).

This leads us very naturally to define the model of an agent as a set of
worlds, each one describing a state of affairs considered possible by the
agent and having a two-fold structure, one part representing level-0 knowl-
edge and the other part representing meta-knowledge.

As usual, an agent knows a formula if it is true on each world he considers
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possible, i. e. if it is true on his model.

In the propositional case, level-0 knowledge will be represented by a truth
value assignment to primitive propositions. However, we would like to take
care of the fact that an agent has only a limited awareness. For example,
let’s imagine that agent i is a five year old boy and p is the proposition

The complexity class P is identical to the complexity class NP.

It is quite conceivable that our boy is absolutely not aware of proposition
p. For him, the problem of attributing a truth value to p does not even exist!
An agent’s model will therefore contain information only about those primi-
tive propositions the agent is aware of.

The meta-knowledge part of a world will be represented by associating
to each agent a model, i. e. a set of worlds.

More formally, let A be a finite set of agents and P a finite set of primi-
tive propositions.

The set of worlds W is defined as follows:

W=(L,L)€E W iff

®L,:S< P> {TF
® [, :A->2Y

This means that an object W = (L,, L,) belongs to the set of worlds if and
only if it has the desired structure, i.e. if L, is a partial truth value assign-
ment and L, associates to each agent a set of worlds.
For each agent i, the model M, of i is a set of worlds, i.e. a subset of W,
Given the models M; of the different agents, we can define the global

model
M; = {(Go- Gx)}

where

® G, is a complete truth value assignment, representing the “real”
environment, i.e. G, : P - {T,F}
® Gi() = M,

So, the global model is formed by grouping together the individual models
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plus the real description of the environment. Note that this global model is
only a conceptual tool, inaccessible to a particular agent, who has only his
own (incomplete) model to work with.

We can already make two remarks about the previous definitions:

® The model of an agent has a finite representation. This allows it to
be manipulated by the agent, either to evaluate formulas on it, or
to update it with new information.

® Circularity (self-reference) is allowed in the definition of a world.
For instance, we can have W = (L,,L,) with W itself belonging to
L,(i) : W is then a part of its own definition. As we will see, this
makes it possible to model infinitary notions like introspection and
common or joint knowledge within this finite framework.

Structural constraint

In order to maintain coherence between successive levels of knowledge, we
impose the following structural constraint on worlds:

(K1) Let W= (L,L)EW. Then, YW’ = (L,,L;) € L,(i), LAi) = L(i)
for all agent i.

This means that the worlds considered possible by an agent at the next level
of knowledge (i.e. the worlds he considers possible when in a world (L,,L,})
considered possible at the present level of knowledge) are the same as those
considered possible at the present level of knowledge.

As we will see, the constraint (K1) implies that, at agent i ’s level, for any
formula ¢, ¢ is equivalent to K;p.

3. Evaluation of formulas

Let M; be the model of agent i and ¢ a formula of a propositional modal
logic. As stated above, M, satisfies ¢ if and only if every world in M, satis-
fies ¢. But remember that we want to take the point of view of the agent.
This means that we want to define how an agent evaluates formulas on his
model. So, rather than defining satisfiability of a formula on a world in
general, we define satisfiability of a formula on a world relatively to an
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agent. So, W, i | ¢ means “the formula ¢ is satisfied on the world W rela-

tively to agent i ”.
Satisfiability on an agent’s model now becomes:

M F oiff Wi o, vWE M,

We define satisfiability on a world (L,,L,), relatively to an agent i as fol-
lows:

W, ikEpiffLfp) =T p € P (1)
Wil —piffL{p) =F,p € P @)
WikEeAyiff Wik pand Wik y (3)
WikFeVVyifWikEeorWiEy 4)
Wik e AYiffWiE npor Wik -y ®)
Wik eV W)IfW,ifE “pand W,i E —y (6)
W, iEKeiff Wik o VW € L)) (7)
W, i —Kep iff IW'E Ly(i)s.t. Wi E g (8)
Wil ~Keiff W, i FKe,j # i ©)

The definitions (2), (5), (6) and (8) take care of the partiality of an agent’s
awareness (we can no longer define the satisfiability of —¢ in terms of the
non-satistiability of ¢). Note that, given a formula ¢, it is possible that
neither ¢, nor —¢ are satisfied on a world.

Definition (7) expresses the fact that, in order to evaluate the formula
“agent j knows ¢” on a world W, agent i has to shift his point of view: he
evaluates ¢ on the worlds associated to j , but he does so relatively to j. In
other words, agent i evaluates ¢ on the model associated to j in W as if he
were agent j.

Of course, satisfiability on the global model M, = {(G,, G,)} is defined
straightforwardly as follows:

MsFEpiffGp)=T,p€EP (10)
Mg | ~e iff M, He (11)
MGF“’A\I’WMG}:V’E{HGMGI:‘I’ (12)
M;FE oV VIfM;E ¢or Mg (13)
M, E Kg iff Gyli) F ¢ (14)

Remember that, by construction, Gy(i) = M,, so (14) is equivalent to:
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M; E Ko iff M, | o (15)

If the constraint (K1) holds, it is easy to see that the following formulas are
agent-valid (i.e. true in every agent’s model):

¢ =Kep (16)
K= ¢ (17)

As particular instances of (16),

Ko = KK (18)
_'Ki‘P = Kl.—lKl.gp (19)

are also agent-valid.

Formulas (16) and (17) express that, taking the point of view of an agent,
“@ is true” is equivalent to “I know that ¢ is true”. From this follow the
introspective capabilities of the agents expressed by (18) and (19). Positive
introspection (18) seems very natural, whereas negative introspection (19)
is often rejected as unrealistic. But this is not the case here: (19) is as
natural as (18). Indeed, what (19) (evaluated by agent i on his model)
expresses is: “if I, agent i, do not know ¢, then I know that I do not know
¢”. How could it be otherwise: for the antecedent to be true, agent i must
have performed the process of checking whether he knows ¢ and have
arrived at the answer “no”, thus knowing this answer. Of course, negative
introspection is unrealistic at the global level but, there, it does not hold
anymore. For instance, suppose that agent i is not aware of primitive propo-
sition p. In this case, both =K;p and —K,-p are satisfied at the global
level, but =K;p is not satisfied on agent i s model. So K, =K, pis not satis-
fied at the global level, although —K,p is.

Using the definition (15) above, we can see that the following formula is
valid at the global level:

[Kie A Ko = ¥)] = Ky (20)

Formula (20) expresses the closure of knowledge under implication. In the
“classical” theory, this, combined with the fact that all propositional tautol-
ogies are known, gives rise to what is called logical omniscience: the agents
know all the consequences of what they know. Here, only a limited form
of logical omniscience remains. An agent does not know all propositional
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tautologies but only those composed of primitive propositions he is aware
of. So, he is logically omniscient in his awareness universe only.

Moreover we can remark that “the well-known logical omniscience prob-
lem does not present the same difficulties in the model-checking approach
as it does in the theorem-proving approach” ([HV91], p. 1). An agent
knows all the tautologies composed of primitive propositions he is aware
of, but he does not know whether a particular formula is a tautology or not.
If asked to evaluate a valid formula, he will answer “true” since it will be
true in his current model, but he is incapable of determining whether the
formula is valid or serendipitously true.

3.1 Example

Suppose we have two agents and the model of agent 1 is the following:

M, = {W", W}, with

W' = ({p, q. r}; 1 > M, 2 > {W'})
W2 =({p, ~q, r}; 1 > M, 2 > {W?})
W =({q, r};1>W}, 2> {W'})
W2 = ({—q, r}; 1 > W}, 2 > {W3})
W=(D;1-3,2->3)

This corresponds to the following situation: agent 1 considers two states of
affairs as possible (W' and W'?). In the first one, p, ¢ and r are true and
in the second one p and r are true whereas q is false. So, agent 1 knows that
p and r are true, but does not know whether q is true or false, although he
is aware of g. Moreover, in W'' agent 1 assigns as only possibility to agent
2 a world in which g (and r) is true. So in W', agent 2 knows that q is true.
Similarly, in W*, agent 2 knows that g is false. So, although he does not
know whether g is true or false, agent 1 knows that agent 2 knows it.
We can check that the following propositions hold:

M E KgAK g (21)
M E KgVKng (22)
M, ’= K,~Kq (23)
M E K@V p (24)
M E -Kp (25)
M B K, oKp (26)
MEFE zvVv 7z 27
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Proposition (24) holds because, in the possible worlds assigned to agent 2
by agent 1 (W*' or W), p has no truth value. This expresses the fact that
agent 1 considers that agent 2 is not aware of p.

To see why (26) holds, let us perform the evaluation of K,—Kp on M, :
K, 7Kyp is satisfied on M, iff it is satisfied on every world in M,, relatively
to 1. Consider W' : W' 1 | K,—Kp iff W, 2, | —Kp (take note of
the shift of point of view). By (8), W*', 2 , | Ky iff 3W € {W*} s.t.
W, 2 E —p. But W' B —p. So (26) holds.

4. Common Knowledge

Intuitively, a proposition ¢ is common (or joint) knowledge to a group G
of agents if ¢ is true, and everyone in G knows that ¢ is true, and everyone
in G knows that everyone in G knows that ¢ is true, and so on. Formally,
this gives rise to the following iterarive definition:

Cop = ¢ A (.AKiqo) A (__/\ KKe) A ...
i€EG ijeG

But this iterative definition of common knowledge, in terms of an infinite
conjunction of formulas of increasing depth, does not lend itself to evalu-
ation in finitely many steps: if agent 1 tries to evaluate C;p = p A
AepnKp) A (N enaKKp) A ..., he will of course evaluate each of the
components of the conjunction to true, but he will go on forever.

We can however give an equivalent definition of common knowledge
which fits nicely with our formalism. A fact ¢ is common knowledge to a
group of agents means that the knowledge state of each agent in the group
is such that ¢ holds in it and each agent in the group knows that this knowl-
edge state holds. This leads to define Cp as a fixed point ((Mos86, Bar88)):

Cop = ¢ A réﬁ)Ki(s«’ A Cap)

This enables finite evaluation of common knowledge formulas. For instance,
consider a world W = (L,, L,). In order to evaluate Cijy¢ on W, we have
first to evaluate ¢, K¢ and Ko on W, i.e. to evaluate ¢ on the worlds in
{W} U Lg(i) U L(j). Then we have to repeat the evaluation of Cyye on
those worlds. Due to the particular structure of the worlds, this procedure
will not go on forever: sooner or later, a loop will lead us to evaluate Cy; ¢
on worlds on which this evaluation is already in progress.
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Formally, in order to evaluate Cy on a world W = (L,, L,), we construct
the sequence of sets of worlds:

§° = {w}
S* = 8" U { UL, WL,Ly) € §7

until a fixed point is reached, i.e. §"*' = §".
Then,

WE Coif W E o, vW € 5/

5. Update

We are now going to explain how an agent can update his model with new
information. We consider the simplest framework, where we make the
following hypotheses:

® The environment is static . By this we mean that the primitive proposi-
tions keep the same truth value over time.

® Agents are honest , i. e. they communicate only propositions they con-
sider true.

So, at a given time, an agent has only partial knowledge of the global
system composed of the environment plus the different agents. His knowl-
edge will become more and more precise as he gets new information. This
information can come either directly from the environment (the agent “per-
ceives” something), or from another agent.

Now, suppose that the model of agent i is M,. In order to update M; with
a proposition ¢, i constructs a new model M; by “adding” ¢ to M.. Note
that, even in the simple framework we consider, an agent can receive infor-
mation inconsistent with the set of formulas satisfied on his current model.
For instance, suppose that agent 1 knows that agent 2 does not know
whether p is true or false, i.e. (7K,p A —K,—p) is satisfied on M,. Later
on, agent 2 gets precise information about p, for example that p is true, and
he communicates this to agent 1. So, agent 1 receives the message “p is
true” from 2. He has then to update his model with (K,p), which is incon-
sistent with (7Kp A —K,=p).
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So, although the environment is static, the knowledge and meta-knowledge
the agents have thereof is dynamic, and this leads to knowledge revision as
above.

Our goal then is to set up a function Add which takes a set of worlds 3,
a formula ¢ and an agent i and returns the set S’ obtained by adding to each

world in §, relatively to agent i. We want Add to satisfy the following
properties:

1. for all world W’ € Add(S, ¢, i), W, i F ¢,
2. 8’ is a “refinement” of § with the new information ¢.

We give below the definition of Add for a primitive proposition p:

® Add(S, p, i) = (M’Hes {{L, + (™)p, L)}

such that

L)) = Add(Ly(i), (7)p, i)
Le() = L), j # i

® Add(S, ¢ N Y, i) = Add(Add(S, ¢, i), ¥, i)
® Add(S, ¢ V y, i) =
ML {Add(M} 0 A i) U Add({M}, ~ A Y,i) U Add((M} ¢ A §,i)

o Add(S, Kwp,i) = || {(Lo L)}

such that

L) = AddLyG), K, i)
L) = Add(Lg()), ¢, )

Property : If the world W satisfies the constraint (K1), then Add({W}, ¢,
i) satisfies (K1).

6. Conclusion and Comparison with Other Work

Our work is an attempt to define an internal, or subjective notion of knowle-

dge, by focusing on the agent rather than on the system. We set up a for-
malism which provides each agent with a model of his own. This model has
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a finite representation, allowing manipulation and modification by the agent,
and finite evaluation of common or joint knowledge formulas. Compare this
with the “classical” knowledge structures, where the satisfaction of these
formulas needs the definition of “long structures” (w*-structures) ((FHV84]),
or with the “augmented structures” ([FV85]), which do not need to be of
transfinite length in order to represent common knowledge formulas, but
which seem rather heavy to handle.

We follow a model-checking approach ((HV91]) as opposed to a deductive
approach (as in [Lev84, Lev87, Mor90] for instance): to determine if a
given formula is true, an agent evaluates it on his model. This allows us to
give a realistic model of interacting agents and of their inference capabili-
ties. For instance our agents have only a partial view of the situation. They
are aware of a limited subset of primitive propositions ((Lev84, FH85]) and
their current model is a representation of the finite amount of information
they have gained thus far.

Université de Ligge.
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