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NEW RESULTS IN THE ANALYSIS OF SOME CONDITIONAL
QUANTIFIERS AND THEIR LOGICS

Serge LAPIERRE

0. Introduction

Binary generalized quantifiers are binary relations Qp between subsets of
a given non-empty universe E. Examples are some, (non-empty intersection)
and no; (empty intersection). It has been pointed out in van Benthem [1984]
that there is a striking analogy between the analysis of binary quantifiers and
conditional sentences of the form if X, (then) Y, considered as expressing
relations between antecedent sets and consequent sets of situations. More
precisely, given a relevant non-empty universe E of situations, the functor
if may be analysed as a determiner denoting a binary quantifier ify, so that
given any two terms X, Y having the extensions [[X]], [[Y]] € E, if X,
(then) Y is true if and only if <[[X]], [[Y]]> € if..

The above analogy can be exploited from two opposite but complementary
perspectives. First, there is the “inverse logic” perspective, which consists
of bringing out some general constraints of conditionality and finding which
quantifiers satisfy those constraints. The opposite view —the “direct logic”
perspective— consists of considering some of the selected quantifiers and
studying the conditional logics determined by them. Of course, neither
perspective presupposes that there is a “correct conditional logic”, but rather
that there are many intuitions of conditionality which can be formulated in
many ways.

From the inverse logic perspective, several properties, expressing more
or less a priori intuitions of conditionality, have already been suggested. The
central ones may be formulated by the following patterns of inference (X,
Y, Z are set variables or combinations of set variables with the operations
“=7,“A7and “Vv”, which we interprete as complementation, intersection
and union respectively) :

CONS XY e ifX(Y A X) conservativity
Cl XY= ifX(Y v Z) confirmation
C2 iX(Y AN Z)=ifX A NZ

C3 XY=IiflX v Z)(Y v 2)
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R = ifXX reflexivity

BE Replacement of Boolean Equivalents

These principles characterize the minimal conditional logic M. They have
been extensively explained in van Benthem [1984]. For our purpose, it is
sufficient to note that most current accounts of conditionals obey them.

Let us call every quantifier satisfying the minimal conditional logic M a
conditional quantifier. Though uncountably many quantifiers are conditional
in this sense, few of them have been studied in detail. Among these latter
the best known ones are (where A, B € E and we write “Q,AB” instead
of “(A, B) € Q") :

(i) all.ABiff A € B ;

(ii) all or some;AB iff ACS BorANB % & ;

(iii) at least half;AB iff |A N B| = |A-B]| ;

. ; ; A € B,ifA is finite

(o) wllb piniely mangpB i { A - B is finite, if A is infinite.
v) all preferred gy AB iff all R-maximal situations in A are in B.

It is easy to verify that the first fourth quantifiers validate all basic M-princi-
ples and satisfy in addition the following two constraints :

Consistency QA only if A = &,

Quantity Whether QzAB or not depends only on the cardinalities
|A N B| and |A - B|.

Being quantitative, these quantifiers are context-neutral in the sense that
whether QzAB or not depends only on the sets A and B. This allows us to
omit to specify the parameter E whenever convenient.

The last quantifier operates on structured universes (E, R), R being a
binary relation between situations in E. Restricted to finite structured univer-
ses (E, R) where R is irreflexive and transitive, it is a consistent quantifier
which validates all basic M-principles. It is not quantitative however; witness
the following counter-example (the extensions of X, ¥ are as indicated) :
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X X

Xy not ifXY

From now on, when speaking about this quantifier, we will assume that it
is restricted to finite structured universes (E, R) with irreflexive and tran-
sitive R.

Though these quantifiers are well known, many issues concerning their
inferential behaviours are still to be settled. The purpose of this paper is
precisely to give the answers to some of these questions. So our contribution
belongs essentially to the direct logic, since it is a matter of studying the
conditional logics determined by a certain class of conditional quantifiers.

Our study presupposes some prior choice of formalism, expressing more
or less the inferential properties of our quantifiers. Here we will stick with
the minimal formalism consisting only of elementary conditional formulae
ifXY, where X, Y may be complex Boolean terms. Most fundamental pat-
terns of conditional inference are expressible in this restricted formalism.

Beside a prior choice of formalism, another important decision concerns
the cardinality of the universes. Must we admit finite universes only, or
infinite universes as well? All but finitely many requires universes which are
at least denumerable, otherwise it reduces to a/l. On the other hand, all
preferred behaves well on finite universes, but on infinite universes it does
not satisfy the minimal logic M ; for instance, it does not validate C2. (To
see this, consider an infinite increasing R-chain in some infinite set [[X]]
which includes a non-empty and finite set [[¥]] and let [[Z]] = @ : so ifX(Y
A Z), since there is no R-maximal element in [[X]], yet not if(X A Y)Z,
since the irreflexivity of R ensures that there is at least one R-maximal
element in [[¥]].) Moreover, when considering infinite universes, we may
decide to be careful not to become entangled in higher infinite cardinalites,
and so to restrict the range of admissible universes to denumerable ones.
In this (cautious) perspective, here is a list of the logics we may consider :
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Quantifiers Logics
Finite universes
all - C  Classical conditional logic
all or some E  Exemplary conditional logic
at least half QD  Quasi democratic conditional logic
all preferred §  Subjunctive conditional logic

Denumerable universes

all but finitely many N
all C,
all or some E,
at least half oD,

For the most part, this paper is about these logics, although other possibili-
ties, such as the inferential behaviours of the quantifiers on at most denum-
erable universes, or on infinite universes of higher cardinalities, will be
considered when they seem relevant.

The logics C, E and 0D and their mutual relationships have been studied
in detail in Lapierre [1991] ; so in the next section we will only summarize
the main known facts about them. In Section 2 we will complete our analy-
sis by providing some answers concerning the relationships between these
and other logics.

1. Summary of the main known facts about C, E and QD.

The main known facts about the mutual relationships between the logics C,
E and QD are summarized in Figure 1 above. We will give a quick proof
of each indicated relation and specifications about each logic involved in the
relation.
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Figure 1

The logic C, the one of all, is the most inclusive logic in this figure.
Obviously, this logic corresponds, in our restricted formalism, to the logic
of (85)-strict implication. So it contains, beside all M-principles, the fol-
lowing additional ones :

CNT XY= if—~Y-X contraposition
LM ifXY=ifiX N 2)Y left-monotonicity
TRN ifXY, ifYZ = ifXZ transitivity

CNJ ifXY, ifXZ = ifX(Y A Z) conjunction
DSJ ifXZ, ifYZ=ifiX v Y)Z disjunction

However, we know that all basic principles of M together with TRN axiom-
atize C completely.(') Moreover, there is another important and general
result about the inferential behaviour of all, due to van Benthem : on finite
universes, all is the only quantitatve and consistent quantifier which satisfies
CNIJ.(>) But we note that the situation is different for denumerable univer-
ses or if we consider non-quantitative quantifiers. For instance, both the
quantitative all but finitely many and the non-quantitative all preferred

(') We give here the sketch proof. Suppose that a given conditional formula ifXY is not
derivable from M+TRN. Then there must be a finite Boolean algebra with an additional
binary relation Q interpreting if which refutes ifXY. This Boolean algebra may be represented
isomorphically as a power set algebra and under this representation, Q becomes a binary

relation between sets. Then one shows that under a homomorphic restriction of this power
set algebra, Q becomes inclusion.

() The proof runs as follows. Suppose that If satisfies CNJ, that [fAB and AZB. Then(A
M B) C A and so fA(A N B), by Conservativity (which follows from Quantity). Thus by
Quantity, for every C < E such that [A N C| = |A N B|, A(A N C), and so, A((A
N B) N C) (by CNIJ). Applying the same reasoning, we obtain in the end that [fAQ.
Therefore A = &, by Consistency. So A € B: a contradiction.
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validate CNJ. But we will return to these quantifiers in the next section.
The assertion that E U QD C C contains the following non-immediate
propositions.

E U OD # C: this follows from the fact that neither all or some nor at
least half validates CNJ.

E < C:letifX)Y,,..., ifX,Y,/ifXY be any inference refuted by inclusion
in some model. Already, every or at least one X;-situation is a ¥,-situation
(1 =i < n), because every X-situation is a ¥-situation. On the other hand,
there is an X-situation which is not a Y-situation, and thus, if there is no X
A Y-situation, we have a C-counter-example which is also an E-counter-
example. Otherwise, consider the “homomorphic sub-model” consistingonly
of all non-X A Y-situations, behaving in exactly the same way with regard
to (non-)membership of the extensions of the set variables. All ifXY; are still
true according to inclusion, because every former inclusion must still hold
in this new model. On the other hand, ifXY is still false according to inclu-
sion, but now there is no X A Y-situation — and thus we have a C-counter-
example which is also an E-counter-example.

OD < C: letifX)Y,,..., ifX,Y,/ifXY be any inference refuted by inclusion
in some model. Convert this model into a homomorphic sub-model which
is both a C-counter-example and an E-counter-example (as above). Then all
ifX;Y; are true according to at least half, because they are true according to
inclusion, while ifXY is false according to at least half, because it is false
according to all or some — and thus we have a C-counter-example which
is also a @D-counter-example.

In order to give a more precise idea of the logic E, note first that DSJ
belongs to this logic, as well than the following principles (T =, X V
=X, X being any term) :

CCNJ XY, iftX A Y)Z= ifX(Y A Z) cautious conjunction

CSYM ifTX, iflXY= ifYX conditional symmetry
TN ifT X, ifXY = ifYX transmissibility of necessity
CWA ifTX, iXY=ifiX v Z)Y conditional weakening of

the antecedent

However, it is easy to verify that all these principles, including DSJ, are
derivable from all basic M-principles plus CCNJ. Though that does not
mean that this set of principles axiomatize E completely, it is a very likely
conjecture at this stage.



CONDITIONAL QUANTIFIERS AND THEIR LOGICS 111

The assertion that EZ QD and QD € E is established by the following two
facts. First, as we pointed out, DSJ is valid according to all or some. How-
ever, DSJ is not valid according to at least half, witness the following QD-
counter-example :

z

Secondly, it has been established in van Benthem [1986] that at least half
validates the following principle (where X A Y abbreviates the symmetric
difference (X A 2Y) v (Y A X)) :

PA XA Y)Y, iRY AZ)Z= iiX A2)Z

(To see this, note that a few calculations show that |(A AB) N B| > |(A
AB)-B|iff |[B-A| = |A-B| iff |B| = |A]|. So PA follows from the
transitivity of “>”. Many other QD-principles can be found using this
equivalence.) But PA is not valid according to all or some, as the following
E-counter-example indicates :

X Y

z

In order to establish that M C E N QD, it is sufficient to show that M =
E N QD, since both E and QD include M. This is quite simple since we
easily verify that the following principle is valid according to both all or
some and at least half without being deriviable in M alone (L = X A
=X, X being any term) :
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CDS] (X A V)L, ifXZ, ifYZ=ifX v VZ  cond. disjunction.

Another way to see this is to consider the class of the quantifiers all but
at most n (n 2 1) : all of them validate all basic M-principles, but none
validates CDSJ.

We may now turn our attention to the other logics.

2. Some new facts about the other conditional logics

Continuing with finite universes, we have to determine the location of S
—the logic of all preferred— in the Figure 1 of Section 1. We noted above
that CNJ is an S-principle. In fact, we know more than this. We know that
§ is precisely, in our restricted formalism, the counterfactual logic of Bur-
gess [1981], which is completely axiomatized by R, CNJ, DSJ and the
following two additional principles :

SIMP ifX(Y A Z)= ifXY simplification
CLM ifXY, ifXZ = ifiX A VZ cautious left-monotonicity

But, as van Benthem pointed out, this axiomatization is equivalent to all
basic M-principles plus CNJ, as we may easily verify.

The fact that all preferred validates the counterfactual logic of Burgess in
our restricted formalism can be established as follows. Burgess’ logic has
a finite semantics which consists of “similarity models” (W, C, V), where
W is a finite and non-empty set of worlds, V is a function assigning to each
sentence X a subset of W (the worlds where X is true) and C is a function
assigning to each world w a binary relation C, between worlds in W (see
also Lewis [1981], or van Benthem [1991], chap. 7, sec. 7.4, for the pre-
sentation of this semantics). Intuitively, C,yx means that y is closer to w
than x is. So the minimal requirement is that C,, be a strict partial order,
which amounts to transitivity and irreflexivity. The truth condition for a
conditional ifXY is then as follows: ifXY is true in a similarity model (W,
C, V) at some world w if and only if every C,-closest X-world is a Y-world.
The semantics for the general case is more complicated, but for our purpose
the important fact to note is this : for every finite similarity model M = (W,
C, V) and for every world w € W, there exists an S-model (E, R, [[ ]])
such that, given any conditional formula ifXY of our formalism, ifXY is true
in M at w if and only if all preferred; o [[X]1][[Y]] (just set E = W, let Rxy



CONDITIONAL QUANTIFIERS AND THEIR LOGICS 113

if and only if C_yx and let [[ ]] be the restriction of V to Boolean terms).
Conversely, for every S-model (E, R, [[ ]]} (which is finite by definition),
there exists a finite similarity model M = (W, C, V) and a world w € W
such that, given any conditional formula ifX¥ of our formalism, all prefer-
redg, w[[X11[[Y]] if and only if ifXY is true in M at w (just set W = E U
{w}, let C,xy if and only if Ryx and let V be any assignment which agrees
with [[ ]] which respect to Boolean terms). The identity between S and the
counterfactual logic of Burgess is established in this way.()

Given the identity between § and Burgess’ logic, it is easy to analyse the
mutual relationships between our logics. To begin with, S is obviously
properly included in C : the C-principles TRN and LM are not valid accor-
ding to all preferred, as we can easily verify, but all S-principles are valid
according to inclusion. (Incidentally, all preferred reduces to inclusion when
R is the empty relation, which establishes independently the inclusion of §
in C. ) Secondly, van Benthem [1986] showed that QD is properly included
in §, and it was conjectured in Lapierre [1991] that the same relation holds
between E and S. But a proof of this conjecture can in fact be extracted
from van Benthem’s proof, which is partially based on the above equiva-
lence between finite similarity models and S-models. However, van Ben-
them’s original proof was rather elleptical in many parts, so it is worth
reformulating it, and in order to do this we will prove our former conjecture
first.

THEOREM 1. E C S.
Proof. The S-principle CNJ is not valid according to all or some, and thus
E # §. But every valid inference according to all or some is an S-principle
too. Indeed, let ifX,Y,,..., ifX,Y,/ifXY be any inference refuted in some
S§-model, and thus, in some finite similarity model at some world w. Already
we have that every or at least one X-world is a ¥-world (1 < i < n), since
every C,-closest X-world is a ¥-world. On the other hand, there is a
C,-closest X-world where Y fails, say x. Consider now the sub-model con-
sisting of w, x and all worlds on C,-paths between these two. Then

(i) ifXY is still false at w, but now there is no X A Y-world (note that x
is the only X-world in this new model) ;

(*) There is another way to see this. First, all Burgess axioms are S-valid. Conversely, to
every Burgess-counter-example, which can always be considered as finite, corresponds an
S-counter-model, as we just showed.
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(i) all ifXY; are still true at w, and so every or at least one X-world is a
Y-world. Indeed, suppose that ifX.Y; is false at w, i.e., there is a C, -closest
X-world where Y, fails, say y. Then y was a = ¥-world in the former mod-
el, and thus it was not a C -closest X-world, i.e., there was another
X-world, say z, such that C zy . But either z was an X-world, or it was a
—X-world. In the first case, z was an X-world closer to w than x was: a
contradiction. In the second case, it must still be the case that C,zy , and
so y is not a C,-closest X-world after all : another contradiction. Thus we
have an E-counter-model for the same inference. ]

THEOREM 2 (van Benthem [1986]). QD C S§.
Proof. The S-principle CNJ is not valid according to at least half, and thus
@D # S. Now, condider any inference which is refuted in some S-model,
and thus, in some finite similarity model at some world w. Convert this
model into the sub-model consisting of w, only one of the C,-closest
X-worlds where Y fails, and all worlds on C,-paths between these two. As
we showed above (proof of Theorem 1), all truth-values are preserved.
Now, transform this sub-model into a system of concentric spheres @ la
Lewis [1973], according to the function Distance(w, y) = the maximum
lenght of a C,-path going from w to y. It is easy to verify that the truth-val-
ues of the premises and of the conclusion are preserved in this Lewis model.
(Now the key truth condition is this : ifXY is true at w if and only if in the
smallest sphere containing an X-world, every X-world is a Y-world.) Now,
add in the biggest sphere (say the sphere 1) a copy of each world in this
sphere. Then, going progressively to the smallest sphere (so to the center),
add in the sphere i+1 as many copies of each world in this sphere as the
sum of all copies already created in the previous spheres 1,...,i. In the end,
one obtains a model where the condition “in the smallest sphere containing
an X-world, every X-world is a Y-world” is equivalent to “there are no more
X A —Y-worlds than X A Y-worlds”, so a model which refutes the in-
ference according to at least half.

The fact that neither all or some nor at least half validates CNJ implies

that E U QD # §. So from the previous remarks and theorems, we infer
this

THEOREM 3. EU QD C § C C.

Now let us consider denumerable universes. It is not very surprising that
the logic of all as well than the logic of all or some do not change on these
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universes. We give here the proofs of these identities, which will be useful
in some forthcoming demonstrations.

THEOREM 4. C, = Cand E, = E.
Proof. The non-immediate propositions are the followings.

C.,S CandE, € E: letifX,Y,,..., ifX,Y,/ifXY be any inference refuted
according to all (resp. all or some) in some finite model. Select one situa-
tion in the universe of this model and add countably many copies of this
situation, behaving in exactly the same way with regard to (non-)member-
ship of the extensions of the set variables. This procedure preserves inclu-
sion as well than overlaping, and thus we have a C, -counter-model (resp.
an E_-counter-model) for the same inference.

C < G, letifX}Y,,..., ifX,Y,/ifXY be any inference refuted by inclusion
in some denumerable model. So there is at least one X A — ¥-situation in
this model, say x. Consider the model consisting of x alone, behaving in
exactly the same way with regard to (non-)membership of the extensions
of the set variables. The previous truth-values are still the same in this new
model, and so we have a C-counter-model for the same inference.

ECE, :letifX|Y,,..., ifX Y /ifXY be any inference refuted according to
all or some in some denumerable model. For each 1 < i < n, select ex-
actly one X; A Ysituation (if there is any) and select exactly one X A
~ Y-situation. Consider the homomorphic sub-model consisting only of these
selected situations, behaving in exactly the same way with regard to (non-)-
membership of the extensions of the set variables. Clearly, this model is
finite (note that there is only a finite number of premises). Moreover, it is
still the case that every or at least one X-situation is a ¥,-situation (1 < i
< n), that there is one X A —Y-situation, but that there is no X A Y-situa-
tion. Thus we have an E-counter-model for the same inference. u

Incidentally, this latter result about the inferential behaviours of all and all
or some can be generalized to at most denumerable universes as well as to
infinite universes of higher cardinalities.

With at least half, matters change, as the following theorem indicates.

THEOREM 5. QD, C E.
Proof. DSJ is an E-principle which is not QD -valid, and thus OD_ # E.
(To see that DSJ is not QD -valid, consider the QD-counter-example of
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Section 1, and add countably many new situations outside the three relevant
sets. The result, though trivial, is obviously a D -counter-example.) How-
ever, every QD -valid inference is E-valid too. Indeed, let ifXY,,...,
ifX Y /ifXY be any inference refuted in some E-model. Foreach 1 < i <
n, select exactly one X; A Y; -situation (if there is any) and add countably
many copies of this situation, behaving in exactly the same way with regard
to (non-)membership of the extensions of the set variables. Clearly this new
model is denumerable. Moreover, for every 1 < i < n, either there is no
X, A —Y-situation, or there are countably many X; A Y-situations, which
means in both cases that there are no more X; A —Y-situations than X; A
Y-situations. On the other hand, there are more X A - Y-situations than X
A Y-situations, since there was no X A Y-situation at all, but at least one
X-situation in the former model, which is still the case — and thus we have
a OD_-counter-model for the same inference. ]

One notes again that this latter result about the inferential behaviour of at
least half can be generalized to at most denumerable universes as well as
to infinite universes of higher cardinalities.

Given what we know so far, Theorem 5 gives us two by-products, the first
one concerning the mutual relationships between M, OD_ , E, § and C.

THEOREM 6. M C QD, C EC § C C.
Proof. The non-immediate assertions are the followings.

OD, C EC § C C: from Theorem 3 and Theorem 5.

M C @D, : every M-principle is a QD_-principle, of course ; but CDSJ
(from if(X A Y)L1, ifXZ, ifYZ to0 if(X v Y)Z) is QD -valid, as we may
easily verify, though it is not an M-principle, as we pointed out in Section
1. [

THEOREM 7. QD € QD,.
Proof. From Theorem 5 and the fact that QD € E (Section 1). B

There is also another interesting fact about the inferential behaviour of at
least half which has nothing to do with the previous ones.

THEOREM 8. QD € QD
Proof. The idea is this. The principle CWA (from if T X, ifXY to iiX v Z)Y)
is not OD-valid, as this QD-counter-example shows :
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z

However, it is a QD -valid principle. For, suppose that if T X and ifXY are
both true according to at least half in some denumerable model. Then there
are countably many X-situations, since there are no more —X-situations than
X-situations. Therefore there are also countably many X A Y-situations,
since there are no more X A — VY-situations than X A ¥-situations. So a
fortiori there are countably many (X v Z) A Y-situations, and this is suf-
ficient for verifying the conclusion. u

Now, note that the situation is different for at most denumerable universes,
since every QD-invalid inference is also an invalid inference according to
at least half on finite or denumerable universes.

It remains now to establish the mutual relationships between S, N and C.

THEOREM 9. N C C.

Proof. LM is a C-principle but not an N-principle, and thus N # §. (Too
see this, consider the numerical model where [[Y]] = the set of even num-
bers, [[X]] = [[¥]] U {1} and [[Z]] = {1} ; clearly, we have that ifXY and
not iAX A Z)Y according to all but finitely many.) But every inference
which is C-invalid is N-invalid too. Indeed, let ifX,Y,,..., ifX,Y,/ifXY be any
inference refuted by inclusion in some finite model, and thus (Theorem 4)
in some denumerable model. Then in this model all premises are verified
according to all but finitely many, because they are verified by inclusion.
On the other hand, if there are countably many X A - Y-situations, then
there are also countably many X-situations, and so the conclusion is already
refuted according to all but finitely many. If there are only finitely many
X A ~Y-situations and that the set of X-situations is denumerable, add
countably many copies of any X A —¥-situation, behaving in exactly the
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same way with regard to (non-)membership of the extensions of the set
variables. Again this procedure does not disturb any of the previous thruth-
values, but now there are countably many X A —Y-situations — and thus
we have an N-counter-model for the same inference. u

THEOREM 10. S C N.

Proof. All but finitely many validates all basic M-principles as well as CNIJ,
and so every S-principle is an N-principle (since § = M + CNIJ). However,
there are some N-principles which are outside S. For instance, consider the
inference from if T =X, ifXY to iiX A Z)Y. It is not S-valid, as this S-
counter-example shows :

However, it is clearly N-valid, since if T =X means here that there are only
finitely many X-situations, and in this case the inference from ifXY to if(X
A Z)Y is validated by inclusion. .

Given the theorems 3, 9 and 10, we can complete Figure 1 of Section 1 as
follows :
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Figure 2
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Now, the location of QD,, in this figure is not established yet. Theorem 5
gives us a partial answer. This motivates us to ask this

QUESTION. Does E N QD C QD_?

3. Concluding remarks

We cannot claim that we have exhausted the subject. The analysis of con-
ditionals from the perspective of generalized quantifiers theory raises many
other issues. Nevertheless, even from the point of view of our restricted
analysis, some questions are still unanswered. Here are some of these
questions.

Among the logics we have just considered, the most interesting one is N.
Like the subjunctive logic §, N contains CNJ but neither LM nor TRN,
satisfying in this way the minimal desiderata of every counterfactual logic.
But unlike §, N has a purely quantitative semantics which requires denumer-
able universes only. It contains some additional principles however, but it
does not seem that these extra principles may lead us to reject N as a plausi-
ble candidate for a counterfactual logic. In any case, a natural question at
this stage is how to axiomatize N completely.

Another important question is whether there are, on denumerable univer-
ses, someother conjunctive and non-(left-)monotonic quantitative conditional
quantifiers. On universes of higher infinite cardinalities, the answer is yes.
It has been pointed out in van Benthem [1986] that the following condition,
due to Frank Veltman, yields precisely the subjunctive logic S :

ASB,if A is finite

JfAszf{ |A N B| > |A-B|,if A is infinite.
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(The idea is this. All S-principles are valid according to this condition.
Conversely, take any S-counter-model for an inference, convert it into a
finite Lewis model (as in the proof of Theorem 2) and then add infinitely
many copies of worlds, starting from the biggest sphere with stepwise
increasing infinite cardinalities. This procedure has the effect of simulating
“in all closest X-worlds” by “for most X-worlds™.) But, as we can see, on
denumerable universes this condition reduces to all but finitely many. Does
this mean that § has a purely quantitative semantics only in the realm of the
non-denumerable? This question is still open.

Université de Montréal
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