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MORE SUBTLE THEORY CHANGE

Frank DORING

In this paper, I derive a syntactic procedure for revising theories in proposi-
tional logic from considerations of indifference and informational economy
(minimality). The procedure is very flexible. It allows us to make use of
information about the relative epistemic merit (entrenchment) of the sen-
tences in the theories whenever such information is available, and, unlike
other procedures proposed in the literature, yields plausible results even for
very simple entrenchment orderings. (")

1. The problem of theory change

The problem of theory change I propose to consider is twofold: how can
old information be deleted from a given theory (a data base, stock of beliefs,
knowledge state, or what have you), and how can surprising news be added?
The first aspect of the problem concerns contraction, the second revision.
The problem arises for every fallible representational system, hence for
every —artificial or natural— agent. A representational system, even one
that never commits a logical mistake, becomes fallible by drawing inferences
that take it beyond the evidence. It therefore needs a method to accommo-
date unexpected news and give up erroneous information without giving up
too much else. (Error correction is not the same as recovery from contra-
diction. I will not offer a recipe for resolving contradictions, 1 will offer
only a recipe to help avoiding them.)

For present purposes, theories are consistent, logically closed sets of
sentences in the propositional language L. L has a finite stock of sentence
letters A, B, etc. and contains as connectives only negation and disjunction.
(The restriction to the finite case is for the sake of simplicity; I shall indicate
where an infinite language would call for a more complex treatment.) Sen-
tences or clauses in L are sets of literals interpreted as disjunctions, and

(') Research for this paper was supported by grants from the Fyssen foundation and the
CNRS. Thanks to Marshall Farrier, Gary Gates, and Frangois Lévy for comments on an
carlier draft.
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literals are sentence letters with or without negation. {4, B} for example
is the disjunction (4 v —B). Sets of sentences in standard propositional
calculus notation can be translated effectively into into L.(*) Occasionally,
I will make use of the standard notation.

Logics, classical as well as non-monotonic, are of little help in our prob-
lem. A logic gives interesting directives about how to expand sets of senten-
ces, namely by closing them under some relation of implication. This is
relevant when we want to accommodate new information that is consistent
with the theory at hand. But our problem is not with expansion, it is with
contraction and revision. It is a problem about giving up information, and
no logic tells us anthing about that. Logics, conceived as theories of implica-
tion, furnish state laws for objects in theory space, but they do not deter-
mine trajectories through the space.

We will write T ; for the expansion of theory T by 4, T ; for the con-
traction of T by A4, and T / for the revision of T by A. Revision can be con-
ceived of as a composite operation: first, T is made consistent with A4, i.e.
contracted by —A; then T —, is expanded by A into T -, 1 = T/ ThlS
definition of revision in terms of contraction and expansion has come to be
known as the Levi identity. Alternatively, contraction can be defined in
terms of revision by means of the Harper identity T ; = T N T 2,. The
two identities are equivalent given the Alchourrén-Girdenfors-Makinson
postulates for all three operations.() I find the Levi identity intuitively
more compelling and will therefore treat contractlon for the most part as
basic and revision as composite.

Theory change should be minimal. This tenet has been labelled variously
principle of informational economy, conservatism, or minimality. The idea
is that information should be neither adopted, nor given up, gratuitously.
To violate the principle is to sabotage the project of finding out about the
world. This is why. Information is not self-authenticating (except in degen-
erate cases). Thus, if one were to adopt any of it gratuitously, one would
have no reason to believe it to be true, that is no reason to believe it, that
is no reason to adopt it. Information is not self-refuting either (except in
degenerate cases). Thus, if one were to give up any of it gratuitously, there
would be no point in gathering it in the first place. Conservatism is built
into the very foundations of epistemic rationality.

() A translation procedure is described in Genesereth and Nilsson (1987).
(*) See for instance Girdenfors (1988); the notation is adopted from this book.
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The principle determines expansion: T ; should contain the entire content
of T and A, and nothing else. So T ; = Cn (T U {A4}). Contraction, by
contrast, is only constrained, but not determined. A semantic illustration
shows why: '

A -4

LI

Figure 1

Think of figure 1 as depicting the set of all “possible worlds” describable
in L. Contents correspond to sets of worlds or points, i.e., to areas in the
diagram. (We say that a clause is valid in a set of worlds iff it is true in
every world in that set; a set of worlds W characterizes a theory T iff all
clauses in T are valid in W and all clauses valid in W are in T, written as
W = |T|.) Contracting theory T by 4 in a most conservative way means
enlarging |T| by exactly one point from |—A4|, say w. |T| + w then
characterizes T 7. If we now expand T , by -4, i.e. , shrink |T ;| by
|A], we are left with w only. The result of a most minimal contraction by
A followed by an expansion by 4, which is the same as a revision by =4,
is thus a maximally specific theory. We have created information out of
nothing and thus violated the principle of informational economy. Radically
conservative contraction has the embarrassing consequence that every revi-
sion creates information in this way.

w was chosen arbitrarily. 4 priori, all points in | ~A| are on a par; there
is nothing in T that distinguishes between them. So the alternative to select-
ing one arbitrary point is to select all points. This choice sets T ;to |T|
+ |2A|,and T S, to | =A| alone. In words: the revision of T by =4 con-
tains nothing but —4’s logical consequences. This way, information is
thrown away gratuitously. Less radical contraction is therefore as bad as its
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radical alternative. For a better solution, we have to break the symmetry
between the points.

A common move at this point is to deploy an ordering of epistemic en-
trenchment over the sentences in L that induces a partition of the area
surrounding |T| in the model. The sentences in the representation language
are assumed to be partially or totally ordered under a relation of entrench-
ment that mirrors their relative epistemic merits. This ordering is then used
to define contraction and revision functions that retract the sentences in the
order of their entrenchment, the least entrenched first and the most en-
trenched last.() Let <, be an ordering relation defined over all clauses
in L that satisfies the following four conditions: ()

(1<) Forall4,B,and C,ifA <;Band B <. C, then A <, C (transi-
tivity).

(2<) For all A and B, if 4 implies B, then A < B (dominance).

(3=<) For consistent T, 4 & T iff A <, B for all B (bottom).

(4<) If A <. B for all A, then B is a theorem (top).

The ordering is relative to T because according to (3 <) the sentences with
the lowest ranking are just those that are not contained in T. <, induces
a system of nested spheres around T with entrenchment increasing from the
center to the periphery (see figure 2).

() E.g. Grove (1988), Girdenfors & Makinson (1988), Rott (1991). The appeal to some-
thing like entrenchment may be implicit. For instance, Papini’s (1992) procedure works
roughly by computing maximal subsets of the original theory that do not imply the sentence
that is to be retracted. The procedure gives automatically more credit to sentences that are
explicitly represented than to those that are merely implied, which amounts to treating
explicit sentences as more entrenched. When more than one maximal subset is found, the
choice among them is left to the user. I find this move unsatisfactory.

(%) These are four of Girdenfors’s (1988) five conditions. For a discussion, see ibid., pp.
89 ff.
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A Soa —A

Figure 2

Each sphere §; in figure 2 corresponds to a subset of sentences in T, The
bigger the sphere, the smaller the set of sentences it characterizes and the
more entrenched its least entrenched elements. Formally, if §; and §; are
spheres such that §; C §;, there is at least one sentence x valid in §; such
that x <.y for every sentence y valid in §;. The innermost sphere is |T|
itself, the outermost sphere (the box of figure 2) is the set of all tautologies
in L. The minimal contraction of T by A can now be defined as the union
of |T| and the intersection & of | 74| and §_,, the smallest sphere inter-
secting | 24 |. The revision by A is just . Since L is finite, there is always
going to be one such smallest sphere for contingent A.(°) The values of
the contraction and revision function for any sentence A4 can be read off the
system of spheres by noting which sets of sentences the spheres characterize.
The set characterized by S_, consists of exactly those sentences that are
strictly more entrenched than A. Revision therefore becomes: T 2, =
Cn ({{-4}} U {x|x > A}), and contraction can be defined using the
Harper identity T ; =T N T ..

In this approach to revision, it is the ordering that does all the work. The
plausibility of the derived revision and contraction functions depends crucial-
ly on the details of the sphere system induced by the ordering. We therefore
need some principled account of how to construct that ordering. Reference

(%) The infinite case is trickier. One may decide to impose what Lewis (1973) calls the
limit assumption in order to assure the existence of a smallest | 7 A | -intersecting sphere.
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to a notion of epistemic entrenchment is one attempt to fill this bill. On a
natural construal of entrenchment, however, this is not going to work. In
Gérdenfors’s view, from which I take my bearings, it should be “possible
to determine the relative epistemic entrenchment of the sentences [...] inde-
pendently of what happens [...] in contractions and revisions” (Girdenfors
1988, p. 87). This much seems uncontroversial for any substantial notion
of epistemic entrenchment. Gérdenfors also claims, somewhat more contro-
versially, that the entrenchment of a sentence is connected with “how useful
it is in inquiry and deliberation™ (ibid.). 1 have two complaints. First, an
ordering of sentences in terms of their usefulness in inquiry and deliberation
will normally not determine a plausible revision function via the sphere
construction just described. Second, more generally, any ordering that has
been determined independently of considerations about revision will yield
a poor revision function via the same construction.

As for the first complaint, suppose there are two sentences 4 and B in T
that intuitively have nothing to do with each other; say, A is about French
cuisine and B about life an mars. Because of their independence, it is rea-
sonable to demand that4 € T zand B € T ;. The demand is satisfied just
in case there is a sphere bigger than |T| in which the disjunction of 4 and
B is valid but neither 4 nor B is, i.e. iff {4, B} is strictly more entrenched
than 4 and B individually. (Proof. If {4, B} is valid in §_,, then {4, B} €
T 4 and, by closure, B € T %, . Since Bisin T, itisalsoin T N T ot
=T 4. On the other hand, if {4, B} is not valid in S_,, then §_ 4 contains
at least one (mA4 & —B)-world, which lies in o. Hence B is not valid in o
and so not contained in T . The reasoning for A is the same.) But surely
the disjunction of A and B is no more useful in inquiry or deliberation —and
thus hardly more entrenched— than A or B individually. It is difficult to
imagine any other independent specification of entrenchment on which the
disjunction would be strictly more entrenched than its disjuncts. In order
to make things come out nicely, the ordering apparently has to be set up
with an eye to its use in revision, which is what we are told to avoid.

As for the second complaint, there are certain simple entrenchment order-
ings that should not be ruled out a priori. But these orderings yield unrea-
sonable contraction and revision functions. For example, suppose that the
sentences in L are arranged in just three tiers, tautologies at the top; contin-
gent sentences in T in the middle, and the remainder of L at the bottom.
The system of spheres induced by this ordering yields the second of the two
“bad” revision functions discussed before where T °, = Cn {{—-4}} for
contingent A € T. The result is less drastic for a richer ordering, but the
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basic flaw is the same: too much information is deleted. Since I agree with
Gardenfors that entrenchment should be kept independent of considerations
about revision, I have to reject the proposed construction.

Entrenchment information would be useful nonetheless if we had a way
to select a sensible subset of the worlds in the intersection of | "A|and §_,,
that is, if we could distinguish sensibly between sentences undistinguished
by the entrenchment relation. This is of course just our original problem,
only now confined to a part of | —A4|. In the sequel, I will develop a so-
lution to the general problem. The solution can then be combined with a
sphere model to define plausible revision and contraction functions.

2. The model theoretic clue

Our problem is to draw a distinction among the —4-worlds in figure 1
based on no other information than what is contained in T. It turns out that
the language of T provides the constraint we need if we think of the worlds
in the model in terms of their descriptions in L rather than as unstructured
points. “Possible worlds” describable in L are given by maximal, consistent
sets of atomic sentences and their negations. (A set is maximal just in case
it contains every atomic sentence of the language in affirmed or denied
form.) A theory in L is characterized again by a set of possible worlds, as
depicted in Figure 3:

ABCD...

Figure 3
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The items in figure 3 stand for classes of worlds, not for individual worlds
(which can be very complex). For example “ABCD...” stands for the class
of worlds in which 4 and =B and —C and D are true (underlining indicates
negation). Theory T corresponding to the encircled area contains A and B
together with their logical consequences. The —14-worlds outside |T| are
no longer on a par: there is a subset | T~ | of them, inside the elliptic re-
gion, whose members are “closer” to the worlds in | T| than any other —A-
worlds. They are closer in the sense that each of | T~ |’s members differs
from some world in |T| only in —A. The structure of the language thus
singles out a set of —A-worlds closest to T

(C1) A non-empty set S~ of = P-worlds is closest to a set of P-worlds S
just in case for every member s~ of S~ there is some member s of S
with which s~ agrees in all respects except those relevant for the truth
of P. (If P is atomic, s and s~ differ just in P; if P is a disjunction,
s and s~ differ in one or more of P’s disjuncts.)

The information contained in T and A provides no grounds for finer
distinctions; we are indifferent vis & vis possible further subdivisions within
the set of closest A-worlds. In contracting T by A in a minimal way, we
are therefore led to add the set of closest = A-worlds as a whole to |T|.
Every smaller inclusion would impose an arbitrary partitionon | ~A|, and
every larger inclusion would violate minimality. The resulting theory T 7,
comprising the area enclosed by the circle and the ellipsis, shows neither
of the earlier defects: the theory T *, gained by restricting T  ’s area to
its 7 A-worlds is neither maximally informative, nor does it consist only of
the consequences of —A. T ,, corresponding to the area outside the circle
and inside the ellipsis, contains all and only the logical consequences of = A
and B, which is intuitively correct.

Contraction by a disjunction works in just the same way. The selection
of closest worlds falsifying a given disjunction is unique according to (C1)
because there is only one way for a disjunction to be false, i.e. one common
feature of the selected worlds: all disjuncts must be false there. The contrac-
tion rule for arbitrary clauses in L can therefore be stated as follows:

Con T ¢ is characterized by the union of |T| and the set of —C-worlds
closest to T.

The rule is stated in model theoretic terms. It would be better to have a
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statement in syntactic terms that tells us how to revise the sentential repre-
sentations of theories. Our next task is therefore to translate Con into a
syntactic rule. This rule has to effect the removal of all clauses from T that
are not valid in the set of closest —C-worlds W ~.

Let C = {L,, ..., L,} be the clause in T that is to be retracted. W = |T|,
and W~ is the closest set of worlds in all of whose elements C is false, i.e.
all the L; are false. Which clauses can remain in T, and which have to be
removed? Consider first those clauses whose intersection with C is empty,
that is clauses containing none of the L,. By assumption, these clauses are
valid in W. They are also valid in W~ because by (C1) every world in W~
agrees with some world in W on everything except the L,, and this agree-
ment is all that matters for the truth of L-free clauses. The clauses must
therefore be included in T ;. Second, consider the clauses whose intersec-
tion with C is not empty, and among them those that contain the denial of
at least one of the L. These clauses are valid in W~ by virtue of their =L,
disjuncts and must therefore be retained as well. This leaves us with those
clauses whose intersection with C is not empty and which do not contain
the denial of at least one of the L,. These shall be all withdrawn. This move

may seem too sweeping, but we will see presently that it is not. The rule
is:

RI ({L,, ..., L)}, T) If T does not imply C = {L,, ..., L,}, do nothing.
Otherwise remove all clauses from T that contain
any subset of C but not the denial of any of the L,.

Atomic clauses are a limiting case of disjunctions. An atomic clause {4} is
retracted simply by removing all clauses from T that contain A as a disjunct.

RI leaves only clauses in the remainder of T that are valid in Con (C, W)
= W U W~ Therefore all clauses in the closure of RI (C, T) must be
valid in Con (C, W). If we can also show the converse, we have proved the
following equivalence result for Con and R1 plus closure:

Equ 1If a set of worlds W characterizes a theory T, then Con (C, W) char-
acterizes Cn (RI (C, T)).

Assuming that W characterizes T, we have to show that every clause D that
is valid in Con (C, W) is included in Cn (RI (C, T)). We will first establish
that a clause D valid in W is not valid in Con (C, W) if its Lfree part
D - Cis not valid in W. Suppose that D - C is not valid in W, i.e. false in
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some world w € W. There exists another world w’ that is just like w except
that it falsifies all the L, € C. In w’, D - C must be false as well, and so
must be D because the literals by which it exceeds D - C are all false in w’.
But by (C1) w’ is in W™, so that D is not valid in W~ and hence not valid
in Con (C, W). The rest is straightforward. Suppose that D is valid in Con
(C, W). Then, by contraposition of what we just proved, D - C is valid in
W, hence contained in T, not affected by RI, and consequently included in
RI (C, T). D - C implies D, and therefore D € Cn (RI (C, T)).

Logical closure restores what RI removes without need. Equ allows us
to define contraction as follows:

T ¢ =4 Cn (RI (C, T)), for clauses C.

3. Conjunctions

A complete account of revision requires an additional rule for sets of clauses
interpreted as conjunctions. Conjunctions are not sentences of L, but we
need a rule for retracting what is expressed by a conjunction in other lan-
guages because otherwise we could not guarantee consistency for expansion
by a disjunction: before we can expand a theory by {—C,, ..., °C,}, we
have to make sure that it does not imply all of the C,. Contraction by sets
read as conjunctions raises two specific problems. One is that there is more
than one way for a conjunction to be false, which opens several possibilities
for interpreting the notion of minimal change; the other is that contraction
and revision procedures ought to treat logically equivalent sentences alike.
Let us start with the second problem. We will adopt the following postulate
(read ‘... & ..." as ‘...is logically equivalent to..."):

IfAeB,thenT ;=T ;.()
The postulate is met trivially for RI because every non-tautological clause
in L is logically equivalent to no other clause than itself. Equivalent sets

(conjunctions) of clauses, however, need not be identical, as for example

{4, B}, {4, ~B}} & {{4}, {4, C}} & {{4}}.

(") For a defense, see . g. Girdenfors (1988).
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(Equivalent theories are identical because they are closed under implication.)
Contraction must be made indifferent to the different ways of expressing
the same proposition. This is best achieved by rewriting the sets of clauses
in a unique, canonical form before submitting them to the syntactically
sensitive contraction prodedure. We define the canonical form of a set of
clauses to be the minimal set of clauses that implies Cn. The minimal set
in the example is {{A}}. There are various ways to compute the canonical
form effectively. We will assume that every conjunction is brought into its
canonical form before it is retracted.

Conjunctions introduce a complication into the the distance measurement
between sets of possible worlds because there is more than one truth-value
assignment to the conjuncts that makes a conjunction false. The issue is
whether we should count as closest to a set W verifying a conjunction P all
—P-worlds that differ from any world in W only with respect to P, or
whether we should draw finer distinctions among the = P-worlds, based on
the number of conjuncts involved in P’s falsification.

For example, let T be the closure of {B}, {C}, and {D}, characterized by
W, and let P = {{A, B}, {C}}. We are interested in the closest = P-worlds:

ABCD...
ABCD...

Figure 4

The closeness criterion (C1) is not sensitive to the number of conjuncts
involved in the falsification of P. It counts as closest any world falsifying
P that otherwise agrees with some world in W. According to (C1), the set
of = P-worlds closestto W is W, U W, U W sothat T ;=W U W, U
W, U W, Intuitively, however, it seems preferable to say that W, is farther
from W than either W, or W, because each world in W, differs from any



34 FRANK DORING

world in W more than any world in W, or W,. This suggests the following
more discriminating closeness criterion:

(C2) A non-empty set S~ of —P-worlds is said to be closest to a set of
worlds S in which P is valid just in case every member s~ of S~
falsifies exactly one conjunct C, of P, and there is some member s of
S with which s~ agrees in all respects except those falsifying C,.

According to (C2), the set of = P-worlds closest to T is W, UW,andT ;
=W U W, U W,. Minimality clearly favors this option; I therefore adopt
(C2). The earlier proofs remain intact because for clauses in L the two
definitions are equivalent.

There is another alternative, or rather class of alternatives: one could set
T »to only one of the smaller sets W U W, and W U W, and thereby stay
even closer to the original theory. It is not clear, however, which of the
smaller sets to choose in general because there will be a tradeoff between
the size of the sets and the minimal number of atomic sentences by which
their worlds differ from the worlds in the reference set. If, for example, the
reference set is {ABCD..., ABCD...} and we want to retract {{4, B, C},
{D}}, then the closest not-{4, B, C} set is {ABCD...}, and the closest not-
{D} set is {ABCD..., ABCD...}. In order to choose, we have to weigh set
size against distance of content, and I have no idea how to do this a priori.
One might decide to go always for the smaller set, which would amount to
retracting only the most complex conjunct, because the more complex the
conjunct the smaller the closest set of worlds in which it is false. But then
one could not, as in the example, withdraw {4, B} and {C} as a conjunc-
tion, which can be desirable because retracting {4, B} and {C} separately
leaves us with a theory that does not contain {4, B, C}, i.e., a theory that
is weaker than the one characterized by the choice of W U W, U W,

Considerations about the relative merits of the conjuncts have their place
in the preparation of a contraction, that is in the choice of the object to
retract. They should not be taken to constrain the contraction rule itself. By
choosing (C2) as the relevant criterion, we do not pretend to have an answer
to the Duhem-Quine problem. We do not pretend to know what to do in
general when we find one of our theories in conflict with the evidence. We
only claim to know what to do —in the simple propositional case— once
we have singled out an undesired conjunction and decided not to put the

blame on any particular conjunct. (C2) does not assist us in reaching this
decision.
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(C2) gives rise to the following contraction rule, which treats all conjunct
clauses C, alike:

R2 ({C,, ..., G}, T) If T does not imply all the clauses C; in P, do noth-
ing. Otherwise apply RI recursively to all C, i.e.,
perform (R] (C,...(RI (C,, T))...), and then add the
union of every 2-element subset of P to the resulting
set.

The unions of the 2-element subsets of P are the strongest clauses we are
allowed to add without reintroducing any one of the C, and thus breaking
symmetry; these clauses imply the unions of all larger subsets of P. The
trace that remains, for example, of {{4}, {B, C}, {D}} is the set {{4, B,
C}, {B, C, D}, {4, D}}. (The rule that would correspond to the less dis-
criminating closeness definition (C1) is R2 without the second step in which
clauses deleted in the first step are added again.) Contraction can be defined
as before as the logical closure of R2 ({C,, ..., C,}, T).

R2 preserves what the contractions by the different conjuncts have in
common; the effect of adding the union of the C, is that T .oy =T N
N T &, Inour example, we first contract T by {C}, which corresponds
to joining W and W,. Then we contract by {4, B}, which corresponds to
joining W U W,, W,, and W,. Finally, we add {4, B, C}, which corres-
ponds to subtracting W, so that we end up with W U W, U W,, the union
of the sets of worlds characterizing T {, 5 and T (. (The order of the
contraction steps is irrelevant.)

The two rules R and R2 form a complete account of revision for logically
closed theories in L by sets of clauses in canonical form. Syntactic and
semantic approach are equivalent in the following sense:

Equ* 1If a set of worlds W characterizes a theory T, and (C2) is the close-
ness measure for Con, then Con (P, W) characterizes Cn (R2 (P,
T)), where P is a set of clauses in L.

I omit the proof for Equ*; it is essentially a combinatorial explosion of the
proof for Equ.
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4. Closure

It is time now to inject some realism into the discussion and drop the closure
requirement on theories. We want to be able to modify the fragments of
theories that we actually represent on paper, in computer memories, or in
our minds. Contraction and revision should be unaffected by the way the
theory is stated; so we postulate that O , = (Cn O) 5, for any consistent
set of clauses O. If we simply applied R2 to O, this postulate would be
violated in two kinds of case. A clause that is not in O might be irretrievab-
ly lost if it is a superset of some clause in O or if it is implied by some
subset R of O without being a superset of any of R’s elements. The first
kind of case is illustrated by O = {{A}} contracted by {4, B}. RI ({4, B},
Cn (0)) contains {A, —B}, but R! ({4, B}, O) neither contains nor implies
{A, —B}. An illustration of the second kind of case is O = {{ 4, B}, {4}}
contracted by A. RI ({4}, Cn (0)) contains B, but RI ({4}, O) neither
contains nor implies B. Mixed case are of course also possible.

Two different remedies are called for. The remedy for the second kind
of case is to bring O into canonical form before contracting or revising it.
The first kind is taken care of by the following reformulation of RI:

RI’ ({L,, ..., L.}, T) If T does not imply C = {L,, ..., L}, do nothing.
Otherwise replace every clause D that contains a
subset C’ of C by the set of clauses D U {—L}, for
each of the L, in C - C.

Notice that if § is a clause containing C, there is no {—L} to conjoin. In
this case, § is replaced by the empty set, i.e. deleted. We have RI’ ({4, B},

{{4}}) = {{4, B}, as desired. I leave it to the reader to verify that the
two remedies work in general.

5. Entrenchment revisited

R2 is not without quirks. For example, suppose theory T = Cn {{4, B}}
is first expanded by 4 and T* = T } then contracted again by A. The result
is Cn &, although intuitively we may want to restore the initial theory T.
Even if we do not think of {{A, B}, {4}} as the result of an expansion by
A, we may take the explicit mention of the disjunction {4, B} as an indica-
tion that there are reasons other than 4 for its presence, reasons which count
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against its removal in the course of removing 4. Let me flesh out the exam-
ple a little. Suppose you believed for good reasons that there is a ball in
exactly one of two urns, A or B. Now someone tells you that the ball is in
urn A, which you accept. Afterwards you learn that the informant is a
notorious liar. You will then reject what you came to infer from his testi-
mony, but if in revising your view you follow R2, you will no longer
believe that there is a ball either in urn A or in urn B. Yet of course you
still want to believe this disjunction. So R2 appears to give bad advice.

Your reasoning in favor of retaining the disjunction is based on a wealth
of tacit assumptions not represented in T°. Most importantly, you think that
your belief in the disjunction has independent —and better— grounds than
your later acquired belief in one of the disjuncts. This thought can be ex-
pressed very naturally in terms of epistemic entrenchment by saying that {4,
B} > {A}. And the entrenchment ordering can be used in combination
with R2 to yield the desired contraction.

It is easiest to approach contraction through revision. Recall that a total
ordering <i over the sentences in L induces a system of nested spheres
around T as shown in figure 2. Call the smallest | A |-intersecting sphere
S, and the set of sentences characterized by it P. The desired revision by
—A is given, not by all = 4-worlds closest to T, but by those closest —1A-
worlds that are also in §_,,. In these worlds, all sentences in P are valid. So
the selection amounts to revising Tby P U {=4}. T /', (., is definitionally
equivalent to (T ) 7,4, where X is the “negation” of P U {4}, i.e.,
the disjunction of A and the negations of all the P, in P, brought into canoni-
cal form. T 4 can be computed using R2 in the normal way. (If L were an
infinite language, the canonical form of X might not be finite, in which case
R2 (X, —) would not be an effective procedure.)

In the urn example, we wanted to preserve the disjunction A v B in the
contraction of T" = Cn {{A}} by A. What we wantis T =, , p,  ,, which
is the same as T’ {, _p. A quick inspection of RI’ shows that this theory
indeed contains {4, B}, as desired. In the simplest case, with which we have
been concerned in the bulk of this paper, all non-tautological clauses in T
were equally entrenched. Thus for any non-tautological 4 implied by T, the
smallest | 24 |-intersecting sphere is the set of all possible worlds. So P is
the set of tautologies, and contracting T by 4 while preserving P is contract-
ing Tby (4 v ... v =P, v ..), for all tautologies P,. This is obviously
tantamount to simply contracting T by A.

The virtue of the approach taken in this paper is that it allows us to con-
struct syntactically specified contraction and revision functions from an
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arbitrary entrenchment ordering. The ordering can be as simple or as com-
plex as we please, which is how it should be if epistemic entrenchment is
a substantive notion, not just a new label for the revision problem. The story
is still not complete, though. Entrenchment is theory dependent, and we
have not said anything about how to revise it in the course of theory revi-
sion. We therefore cannot yet handle iterated theory revision.
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