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ON MODELS OF QUINE’S NF.

Vladimir VAYL

NF is the well-known axiomatic system introduced by Quine [1]. Its specific
axioms are the extensionality axiom and all the instances of the comprehen-
sion schema vayvx[x € y = A], where V means the universal closure, A
is a stratified formula [1] and y is a variable having no free occurrences in
A,

This article is concerned with the following question: how does a model
of NF look like? First of all the following remark is the starting point of the
results of Grishin [4] and Boffa and Crabbé [2]: each model of NF is an
infinite atomic Boolean algebra. To obtain more detailed answer one ought
to continue as follows.

All models of NF are partitioned into standard and non-standard ones.
According to Rosser and Hao Wang [3] a model of a system of axioms is
standard iff it satisfies the following conditions:

a) the relation of the model which represents the equality relation in the
formal logic is the equality relation for objects of the model;

b) that portion of the model which is supposed to represent the non-nega-
tive integers is well-ordered by the relation < ;

¢) that portion of the model which is supposed to represent the ordinal
numbers of the formal logic is well-ordered by the relation <.

Rosser and Hao Wang [3] proved that no model of NF is standard in this
sense because of violation of the condition ¢) (even in the case when both
a) and b) are satisfied). So it makes sense to subdivide further the class of
non-standard models of NF into two non-overlapping subclasses. Let all
models of NF, which satisfy both conditions a) and b) belong to the first
subclass, while those ones, for which either a) or b) does not hold belong
to the sécond subclass. The models of NF belonging to the first subclass are
called in this article standard in the broad sense. The models of NF belong-
ing to the second subclass are called non-standard in the narrow sense. The
words ‘in the broad sense’ as well as ‘in the narrow sense’ are consequently
omitted below for the sake of brevity. One can say informally that a model
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of NF is standard iff its set of all natural numbers contains only ‘standard’
natural numbers 0, 1, 2, ... One ought to say that this article deals only with
those non-standard models of NF, in which the relation = is regular equali-
ty. All models of NF being considered in this text are countable. Since any
such a model is isomorphic to some structure of the form {(w, =, €,,),
where w is the set of all standard natural numbers 0, 1, 2, ... while €,, S
w X w, one can (without loss of generality) consider that a countable non-
standard model is a structure having this form.

The following lemma proved by Grishin [4] is essentially used hereafter.
(The wording is slightly changed.)

Lemma 1. Let R and Q be two families of subsets of the sets X and Y
correspondingly. Let both R and Q satisfy the following conditions:

1. |R| = |Q| = &, where |R| and |Q| are the cardinalities of R and
Q respectively;

2. R and Q are closed under the operations of intersection and

complementation with respect to X and Y correspondingly;

R and Q contain all singleton subsets of X and Y respectively;

4. For every infinitte A € R (B € Q) there exists an A, € R (B, € Q)
suchthat Ay € Aand |A,| = |[A-A,| B, S Band |B,| = |B-B,|)

w2

Then the families R and Q are isomorphic with respect to inclusion, i.e.
there exists a one-to-one correspondence between R and Q such that o« <
B = ¢(a) € ¢(B) for all o, 8 € R.

The families of sets satisfying all conditions 1-4 are (for the sake of
brevity) called countably saturated below. (The terminology is induced by
Crabbé[5]. One can easily see that a family of sets satisfying the conditions
1-4 is an infinite atomic Boolean algebra [2].). A good example of such a
family is the set of all recursive sets of natural numbers. This is the gist of
the following Lemma (see also [9]).

Lemma 2. The set of all recursive sets of natural numbers is countably
saturated.

Proof. Let us recall that a set of natural numbers is called recursive if its
characteristic function is recursive. It is a well-known fact that the set of
all recursive functions is countable. So, the set of all recursive sets of
natural numbers is also countable. It is also well-known that the intersection
of two recursive sets of natural numbers is also a recursive one as well as
the complement of a recursive set of natural numbers with respect to the set
of all natural numbers. It is also obvious that a singleton subset of the set
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of all natural numbers is recursive. So, it remains only to prove that the set
of all recursive sets of natural numbers satisfies the condition 4. This can
be done as follows. Let A be an infinite recursive set of natural numbers.
One can enumerate its members in their natural order by all natural numb-
ers. Let A, be the set of all members of A whose numbers (in this enum-
eration) are even. A, is obviously a countable set as well as A - A, i.e. its
complement with respect to A. It follows from the way of its construction
that A, is a recursive set of natural numbers. So, the set of all recursive sets
of natural numbers satisfies all the conditions 1-4 and is a countably satu-
rated one. Hence, the lemma holds.

Another good example of a countably saturated family of sets can be
described as follows. If NF is consistent, which is equivalent to the existence
of a model (and a countable one) of NF, then NF + | C, where C is the
axiom of counting, is also consistent as it has been proved by Orey [6] and
by Henson [7]. In such a case NF + | C has a countable model, which is
obviously a non-standard countable model of NF. That the set N defined
for such a model of NF as {o|a = {z|z € x} for some x € w} is a count-
ably saturated one is implied by the following lemma.

Lemma 3. Let M = (w, =, €,, ) be a non-standard countable model of
NF. Let N = {a|a = {z|z €} for some x € w}. Then N satisfies all
the conditions 1-4 of Lemma 1.

Proof. The set N is obviously countable. Since NF contains the axiom of
existence of one-element set and since M is a model of NF, N contains all
singleton subsets of w. Since NF contains the axiom of existence of the
complement of a set to the universal one and the axiom of existence of
intersection of any two sets, N satisfies the condition 3. It remains now only
to prove that it satisfies the condition 4. Let o« € N be an infinite set. By
assumption there exists x € w such that o = {z|z €,x}. Let Nn be the
set representing in M the set of all natural numbers. (This denotation as well
as some other ones are taken from [8].). There are only two possible cases:
either M | Nc(x) € Nnor M | Ne(x) € Nn. Consider the first of them.
Let M [ Ne(x) € Nn. In this case either Ne(x) = 2m or Ne(x) = 2m +
1 for some m € Nn. This means that either x itself or x without one of its
elements can be partitioned into two sets having the same cardinality in M.
This implies that « also can be partitioned into two sets such that there
exists a one-to-one correspondence between them. Consider now the second
case. One can prove by the induction that the formula

Vx[Nec(x) € Nn D vbb € Nn D 3z[z S x&Nc(x) = b]]]
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is a theorem of NF. So, it holds in M. Since M = Nc¢(x) € N, it follows
that

M = vb[b € Nn D 3z[z © x&Nc(x) = b]].

As M is a non-standard model of NF, there exists in it a natural number k
distinct from all standard numbers 0, 1, 2, ... Without loss of generality one
can suppose that k is of the form 2m, where m is also distinct from all
standard numbers 0, 1, 2, .... Since M F k € Nnand M | 2m € Nn,
one can conclude that M | 3z[z S x&Nc(x) = 2m]. Let p be such that p
S x&Nc(p) = 2m. This p obviously has a subset (say, q), whose
cardinality in M equals to m. Taking the sets from N corresponding to q
and to its complement to p respectively, one can easily see that their
cardinalities are infinite. But at the same time the countability of the uni-
verse of M implies that both these cardinalities are no greater than »,. So,
they are both equal to &,. This means that the lemma holds.
Combining both Lemma 2 and Lemma 3 one can prove the following.

Theorem 1. Let M = (w, =, €,,) be a non-standard countable model of
NF. Then there exists an enumeration of the set of all recursive sets of
natural numbers such that M is isomorphic to R = (w, =, €), where for
all m, n € w m €; n means that m is a member of the recursive set of
natural numbers, whose number in this enumeration is n.

Proof. The proof is carried out by the method of permutations.
Let M = (w, =, €,,) be a non-standard countable model of NF.
Consider N = { a|a = {z|z €x} for some x € w}. By Lemma 3 N sat-
isfies all the conditions 1-4 and is, thus, countably saturated. By Lemma 2
the set of all recursive sets of natural numbers is also countably saturated.
Denote the latter by RS. By Lemma 1 N and RS are isomorphic with respect
to inclusion. In other words there exists a one-to-one correspondence ¢
between N and RS such that o« € 8 = ¢(a) S () for all e, 8 belonging
to N. Now it follows from the definition of N that there exists a one-to-one
correspondence ¥ between w and N such that o« S8 = Y(a) S Y(B) for
all o and 8 which belong to w, where o S48 is an abbreviation for vz €
w[z € ya D z €,8]. Similarly, one can conclude that there exists a one-to-
one correspondence £ between N and w such that o € 8 = £(a) SxE(B)
for all « and 8 which belong to N, where o <, is an abbreviation for vz
€ w[z Eya D z €], while m €,n means that m is a member of the
recursive set of natural numbers whose number in the given enumeration
of RS is n. This implies the existence of a mapping F of w onto itself such
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that o S B = F(a) S\F(B) for all @ and § from w. Denote by {a}y the
natural number playing the part of {a} in M and by {a} the number of the
recursive set, whose unique member is a. Obviously, o €8 = {a}y Su8
and o €8 = {a}y S\B for arbitrary o and 8 from w. Now let us define
a mapping h of w onto w by the equivalence 8 = h(e) = {8}z = F({a}w),
where o and § are arbitrary natural numbers. So, for any natural numbers
aand 8

o Eyf={a}u EuB=F({a}w) SFB)={h(®}rx S\F(B) =h(a) EF().

Therefore, for any « and § belonging to w @ €8 = h(ar) € :h(B), where
the relation €y is defined as follows: m € zn means that m belongs to the
recursive set of natural numbers, whose number equals to F(h"' (n)). This
means that h is the desired isomorphism and the corresponding enumeration
of all recursive sets of natural numbers is obtained from the original one
in such a way that the set, whose number was k, obtains the number F(h"
(k)). So, Theorem 1 holds and the structure R = {w, =, €,) described
above is a model of NF (provided NF is consistent).

Corollary 1. All countable non-standard models of NF can be obtained
from each other by some permutation.

As regards to standard models of NF the situation is slightly more comp-
lex. Let D be a formula stating that each infinite set is a union of two
disjoint infinite sets. Using the denotations taken from [3] one can say that
D is the formula

va[Nc(a)  Nn D 3x3y[Nc(x) € Nn&Ne(y) € Nn&xNy= A &xUy=a]]

In such a case all countable standard models of NF ought to be partitioned
into two disjoint classes. The first of them consists of all standard models
of NF in which the formula D holds. The second one consists of all standard
models of NF in which it does not hold. One can easily prove that each
standard model of NF belonging to the first class is isomorphic to some
structure (w, =, €g) of the type described above. This is implied by the
following.

Theorem 2. Let M = (w, =, €,,) be a countable model of NF + D. Then
there exists an enumeration of all recursive sets of natural numbers such that
M is isomorphic to the structure R = {(w, =, €,), where for all natural
numbers m and n m €, n means that m is a member of the recursive set,
whose number in this enumeration is n. One can easily prove this theorem
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repeating the proof of Theorem 1 given above with one important correct-
ion. Instead of using Lemma 3 one ought to use the following.

Lemma 4. Let M = (w, =, €,,) be a countable model of NF + D.

Let N = {a|a = {z|z €x} for some x € w }. Then N is a countably
saturated family of sets of natural numbers.

Proof. To prove that N satisfies the conditions 1-3 it suffices to repeat the
same considerations as ones used in the proof of Lemma 3. So, it remains
only to prove that N satisfies the condition 4. Let « € N be an infinite set.
By definition of N there exists x € w such that « = {z|z €,x}. There are
two possible cases: either M = Nc(x) € Nnor M | Nc(x) € Nn, where
all denotations have the same sense as in the proof of Lemma 3. Proceeding
as in the proof of Lemma 3 one can come to the conclusion that if the first
case takes place, then there exists an infinite oy € N such that o, € « and
let;| = |- e |. Suppose now that the second case takes place. In this case
one can infer from D that x is the union of two disjoint sets y and x - y such
that both M = Nc(y) € Nnand M | Nc(x - y) € Nn. Thus, Lemma 4
holds.

Let AxC(Den) be the axiom of choice for denumerable sets. Since the
implication AxC(Den) D D is easily provable in NF one can conclude that
if one replaces the formula D in the wording of Theorem 2 by AxC(Den),
then the obtained theorem is also valid.

Standard models of the second class are slightly more complex structures.
This is the consequence of the following.

Theorem 3. Let M = (w, =, €,,) be a standard countable model of NF
in which the formula D does not hold. Then there exists an infinite subset
RS* of the set of all recursive sets of natural numbers RS and an enumer-
ation of RS* such that M is isomorphic to the structure R* = (w, =, €.),
where for all m, n € w m €.n means that m belongs to the set from RS*
whose number in the given enumeration of RS* is n.

Proof. Let N = {a|a = {z|z €, x} for some x € w}. Let us define an
infinite sequence of sets N; (i < w) as follows. Let N, = N. Let N,_, ,con-
tains all members of N, and besides that for every infinite « € N,, for
which there exists no o, S « belonging to N,, such that the cardinality of
a, equals to one of its complement to o, N,,,, contains a certain o, S «
whose cardinality equals to one of « - ;. Let N, ,, contains all members
of N,,.,and besides that it contains all intersections of pairs of members of
N, as well as all complements of members of N,_,,to w. N, is now de-
fined as the unionof all N, (i < w), i.e. N, =Y N;. By the assumption the
set N is countable. This implies the countabllnty of each of N, as well as N..
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Since NF contains the axiom of existence of one-element set and since M
is a model of NF, N, as well as N, contains all singleton subsets of w. Since
NF contains the axiom of existence of the complement of a set to the univer-
sal one and the axiom of existence of intersection of any two sets and since
M is a model of NF, N, contains the intersection of any two of its members
as well as the complement of any of its members to w. It follows from the
way of construction of N, that N, also possesses this property. Now from
the way of construction of N, one can conclude that for every infinite o« €
N, there exists oy € N, such that ; S o and the cardinalities of &, and
a - o are equal. So, N, satisfies all the conditions of Lemma 1 from [2].
As it has been proved in [2] the set of all recursive sets of natural numbers
RS also satisfies the same conditions. Thus, N, and RS are isomorphic with
respect to inclusion ([4]), i.e. there exists a one-to-one mapping ¢ from N,
onto RS such that o S § = ¢(a) S ¢(B) for all a and b belonging to N,..
If one takes instead of ¢ the function ¢|N, i.e. the restriction of ¢ to N,
one will obtain the isomorphism between N and some RS* < RS with
respect to inclusion. To finish the proof one ought to proceed in the same
way as in the proof of Theorem 1.
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