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A NOTE ON FRAISSE’S CHARACTERIZATION
OF ELEMENTARY EQUIVALENCE

Daniel DZIERZGOWSKI(")

Abstract.

We give a new, syntactic, proof of Fraisse’s characterization of elemen-
tary equivalence.

This proof, together with a short discussion of elementary equivalence
of intuitionistic models, allows to exhibit some properties of classical
structures and of classical predicate calculus, which are necessary for
Fraissé’s characterization to work.

1. Expressing elementary equivalence in a two-sorted language

Let £ be a one-sorted language whose non logical symbols are a finite
number R,, ..., R, of relation symbols; one of the R’s might be equality,
but this is not mandatory. £ has no constant nor function symbols.

# can be canonically turned into a many-sorted language % having three
types of variables. The set of £**“-variables is the set of all symbols of the
form x*, x or x°, where x is a variable of £. $“*¢ has exactly the same
non logical symbols as £ and atomic formulae of $£*€ are of the form

Rix], ..., x})
forany 1 <i <nandanyT € {4, B, C}.

2£% is then defined as the subset of $**¢ obtained by removing all type C
variables. In fact, type C variables allows to simplify some definitions and
proofs, which could have been also expressed in £, So using £*#¢ is not
necessary but simply useful.

Let us consider two &£-structures A=(|A |, R{, ..., R) and B=(|B|, R?,
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..., RY). We suppose that |A| N |B| = . Then this pair of structures can
be turned into an £*-structure:

A®B=(|A|, |B| ; Ri®, ..., R*®®)

where R4®#=R%4 U R% foreachi < n. In ADB, |A| (resp. |B]) is the
domain of objects of type A (resp. type B).

We are going to define several sets £ of $*#-sentences such that A =8
iff A®B [ L. Thus, in some sense, such sets £ “axiomatize” the elemen-
tary equivalence of two $-structures.

But first, we need to introduce some definitions.

e IfT € {A4, B, C} and ¢ is a formula of $*5¢, then ¢ is said to be
T-homogeneous if T is the type of all variables occurring in ¢. And
¢ is said to be homogeneous if it is T-homogeneous for some T € {4,
B, C}. So all atomic £**“-formulae are homogeneous.

* IfT € {4, B, C} and ¢ is a formula of &, then ¢ denotes the for-
mula obtained by adding T as a superscript to all variables occurring
in ¢. ¢7 is thus a formula of $£47¢.

e If T, U € {A, B, C} and if ¢ is a formula of £**¢, then ¢(T/U) is
obtained in the following way:

- first rename variables of ¢ in such a way that, if x is bound in ¢,
then x” does not occur in ¢, for all variables x of &;

- then replace with T all occurrences in ¢ of the superscript U.

For example, if R, is a binary relation symbol and ¢ is
WYHBIR,G", ¥ & RG, ¥,

then ¢(A/B) is
(vyH@ER, x4, ) & R, ).

In this case, there are two variables occurring free in ¢, while there

is only one such variable in ¢(4/B). Remark also, in this example, that
¢(A/B) is a theorem of predicate calculus, while ¢ is not.
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If ¢ is an ¥-sentence, then, clearly

A Eoiff A®B Eod'and B ko iff A®B | o~
Thus

2

A = B iff for all Z-sentences 0, ABB ko' & ¢”
This can also be stated in the following way:

A = B iff for all C-homogeneous $** -sentences o,
ADB E a(4/C) & a(BIC). (1)
Now consider the set

Iy = {0(4/C) © o(B/C) : ¢ is a C-homogeneous F**“-sentence}.

(1) exactly means that I, “axiomatizes” the elementary equivalence of two
$*2-structures.

In the sequel, we are going to define two other sets of axioms, T and &,
that we shall prove, in a purely syntactic way, equivalent to Z,. & will be
the “axiomatization” of Fraissé’s characterization of elementary equivalence.

The definition of E is nearly the same as the definition of T,;
L = {0(4/C) & o(B/C) : o is an $***-sentence}.

Ly C L. So L + L, The other direction, I, — I, is not so trivial. The
proof is based on the following remark. Suppose that R, is a unary predicate
symbol and consider for example ¢ = (vx*)@y)(R,(x") & R,(x°)). Then

0 & [AHR(XY) = @VWROEN A (@R E) = @Y)R,G)].

So there are four £-sentences 7,, 7,, 7; and 7, such that ¢ & [/ = 5] A
[ e 79).

In other words, o is equivalent to a boolean combination of homegeneous
sentences.

In the same way, o(A4/C) & [1{ = 13] A [} & 7] and o(B/C) & [! = 7]
ANrien]l. AsSy, - Berdand, + 74 © 7 then T, - o(4/C) &
a(B/C).

This remark can be generalized for all ¢’s, as proved in the next Lemma.
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Lemma 1

If ¢ is an £**°-formula, then ¢ is equivalent to an $*#¢-formula in which
exactly the same variables occur freely and which is a conjunction of
disjonctions of homogeneous formulae.

Proor: By induction on the length of ¢.

¢ If ¢ is atomic, it is trivial because atomic £**“-formulae are homogene-
ous.

e Ifeise, A @, itistrivial by the induction hypothesis.

e If ¢ is 7y, then by the induction hypothesis, ¥ is equivalent to some
Vie: A ¥y, where each y; is homogeneous. Then —y is equivalent
to Ae; Ver T, and thus also to

_“lb:'ji
o<k i<k i<l
This is exactly what we wanted to prove.

* If ¢ is ")y, for some T € {4, B, C}, then, by the induction hypo-
thesis, ¥ is equivalent to some V,_, N ;> where each y,; is homo-
geneous. We may suppose that the y;’s are numbered in such a way that
for each i</, there exists /, such that x” occurs free in y; iff j<I,. We

may also suppose that /;= 0 iff i </l’, for some /’. Then ¢ is equivalent
to

Ve As A AS v YL A
i<l i<l l<j<k I'si<l jsk

which is exactly the requested boolean combination.

Theorem 2. L, and ¥ prove exactly the same theorems.
PrOOF: We already remarked that £ +— I, because £, C E.

And Lemma 1 proves that the example given just before Lemma 1 can be
generalized so that &, — L. O



A NOTE ON FRAISSES’S CHARACTERIZATION 277
2. Fralssé’s characterization of elementary equivalence

Let T, U € {4, B, C}.
Suppose x], ..., x; be a sequence of k distinct variables of type T and yY,
..., Y; be a sequence of k distinct variables of type U. Then, for r € N,

T Y U U
Xy vony Ky, M, Yo ouey Y1

denotes a Fralssé formula and is defined in the following way, by induction
onr:

T T e U U s
® Xps ans Xf Mg VE; weas Y IS

U/, T Uy T
CEAURD ﬁa(yl /x]s k) yk/xk) And ¢,

where At(x") is the finite set of all $**-formulae whose free variables
are among x7, ..., x; and Y//x] denotes the substitution of y for 27 in ¢.

T v
& Xy ony X My W, ey DY S

(v'xT)(ayU)(sz x:lr: . .{ _ry y!s Sty yl:)
A (VyU)(axT)(xT, xl! L x: ry yl’ L) yif)v

where, to avoid clashes, x" and y" are supposed not to occur in x7,
= v 74
Xe = YVireeer Yio
In the previous definition, k could be equal to zero. Precisely, if @7 denotes
the empty sequence of variables of type T (for any 7), then

* we define @7 =," to be any provable sentence, as for example,
VxR, ..., xN) = R, ..., x7)
e and we define @7 =, to be
(W@ =,y A (H@NE =, y").
Now let

¢ ={J" =% r € N}
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By using purely semantic arguments, Fraissé proved that A =8 iff A®B
E @ (see [4], [3, Chap. XI] or [2, exercices 1.3.15 to 1.3.20]). We shall
prove, by using purely syntactic arguments, that ® is equivalent to £ (and

thus £,). But first, we shall state a monotonicity property of Fraissé for-
mulae. '

Lemma 3

Let I, U€ {4,B,C},k,rENI1 <k < .. <k <kandr <r.
Then,
T U

Xf, oes X4 =, ¥7, ..., yf implies x,7, ..., xF =37, ..., yZ.
In particular, @™ = &V implies 7 =, V.
PROOF: We just sketch the proof, which is easy but lengthy.

1. First prove, by induction on r, that xJ, ..., x; =, y}, ..., ¥/ implies

T P o 0 ; SR f o v
Xiv weer Xigs Xigo ooes Xp T Y15 ooes Yids Yigds ooor Vi

2. Then, by applying (1), prove, by induction on r, that

T

T T
D I

o v U H T — v U
=Y -, Yy implies x;, ..., xy =, ¥/, ..., ¥/.

3. The lemma is proved by applying (1) and (2) several times.

Lemma 4. T ~ &,

PRrOOF: First prove by induction on r that for any sequence x/, ..., x{, the
formulaxy, ..., x{ =,x}, ..., x} is a theorem of predicate calculus (including
the cases where k=0). So, in particular, forall r € N, - @4 = @, and
thus £ - @4 = 4

Then, let 7 be the sentence &* = J° and remark that &* = @® is 7(B/C),
while &4 = @ is 7(4/C). So,

L+ (@ =06 (2 =05.

By Modus Ponens, this implies that £ — @4 = &% QED. O
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In the other direction, in Lemma 5, we follow the usual proof. But first,
we need to introduce the notion of quantifier rank qr(e) of an £**“-formula
¢, which is defined by induction on the length ofe.

® If ¢ is atomic, then gr(¢) = 0.
* qr(¥n A Vo) = aqr(¥y V ¥n) = ar(yy = ¥,) = max{qr(y,), qr(¥,)}.
* qr(my) = qr(y).
* qr(@"y) = gr(@ )W) =qr(¥).
* gr(@W) = qr(y)+1.
Lemma 5

If ¢ is an $£**“-formula whose free variables of type C are among x¢, ..
x;, then

.

X[y ooy X =iy X3, oo, X5 implies ¢(AIC) & ¢(B/C).

PrOOF: By induction on the length of ¢. We use such a notation as x” to
denote the sequence x7, ..., xI.

e f ¢ is atomic.
There are two cases:

- If ¢ is A-homogeneous or B-homogeneous, then ¢(A4/C) and ¢(B/ _C_')

are both identical with ¢. So —¢(4/C) & ¢(B/C). And thus, x*
W)x implies ¢(4/C) & o(B/C).

- If ¢ is C-homogeneous, then gr(¢)=0 and xA —oX isaco _Junctlon
one of whose terms is exactly ¢(4/C) @ ¢(B/C). Thus x* =,x?
implies ¢(A/C) & ¢(B/C).

¢ Ifpissome g, A @,or T, then it is trivial by the induction hypo-
thesis and Lemma 3.

o If pis ()Y, where T € {4, B} then qr(cp) = qr(y). We may sup-
pose that x” does not occur in x* arlqP)Jc So, by the induction hypo-
thesis, we know that (Vx_’)[x =_x"= (Y(4/C) & (y(B/0)))]. From

this we infer that x* = x° lmplles @A@NWYAIC) & @Y(B/O))).
QED.
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o If ¢ is (W)Y, then qr(p)=qr(y)+1. R _
So, by the definition of Fraiss¢ formulae, x* = . x® implies

(V)@ (x4, x4 T o x?). Then

Xt = ,x” A @O)WA/C)
- (Vx‘)(ixﬂ)(x", _‘EA Eqr(!#)xﬂ’ _X_B) A (B.IA)(\b(AJ’C'))
= @)@, x* =) 1% A YA/0)
= W) @x’) [Y(4/C) & Y(B/C) A Y(A/C)]
(by the induction hypothesis)
= W")(Y(B/C)).

Thus X* =, x” implies @x")Y(4/C) = 2)Y/(B/C).
In the same way, x* =, x® implies ®)Y(B/C) = @x")y(4/C).
QED. O

Theorem 6
® and I prove exactly the same theorems.

PrOOF: This is nothing but a corollary of Lemmas 4 and 5.

3. Generalization to any language &

Up to now, we supposed that the non logical symbols of £ are a finite
number of relation symbols. The definitions and proofs we gave can be
generalized to other languages in | the following way.

The problem is to keep x* =, y” a finite conjunction. This is why we
introduce the notion of locally finite set of formulae.

We define a set € of £**“-formulae to be locally finite iff it satisfies the
following conditions:

* If ¢ € G, then ¢ is a C-homogeneous atomic formula.

* Lety € €andxj, ..., x{ be all free variables of ¢. If %, ..., y{ is
a sequence of variables, then o(y/x{, ..., ¥$/x%) € @. In this con-
dition, we suppose that X is distinct from x{ if i = j, but f might be
identical with ¥ if i # j.



A NOTE ON FRAISSES’S CHARACTERIZATION 281

e Ifx{, ..., x{ is a finite set of type C variables, then the number of ¢
€ € such that all free variables of ¢ are among x¢, ..., x¢ is finite.

Now we define the closure € of € as the smallest set satisfying the fol-
lowing conditions:

e ECG.

¢ If ¢ is atomic and ¢ is A-homogeneous or B-homogeneous, then ¢ €
C.

 Ifg,y €EC, thenp A ¥, p V ¥, 1, ¢ =y, A)g and (Vx)e
belong to €, for all T € {A, B, C}.

Finally, let T, U € {4, B, C} and suppose that x, ..., x] is a sequence of
k distinct variables of type T and that y}, ..., y{ is a sequence of k distinct
variables of type U. Then, for r € N, we are going to define

T T _ U v
Xps ooy Xp =, Y15 ooy Y (mod €)

by induction on r:

T T _ 24 U
Xps coos Xg =0 ¥y o0y Vi 18

A_ﬁ e(x]lzf, ..., x1z) & eOrizs, ..., Yz,

eEAUz

where At(?c) is the finite set of all ¢ € € whose free variables are
among z§, ..., z¢.

® X[, 0 X{ =, Y], o, Y (mod ©) is
(VD@ x7, oo, X =YY, yY, ..., Y (mod @)
A (WY@, X7, ., X =, 3%, ¥], .., 3 (mod ©)),

where, to avoid clashes, x” and y¥ are supposed not to occur in x7, ...,
U v
X =,V e W

We now define
P = {D* =% (mod €) : r € N}.
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Lemma 7:
If € is a locally finite set of formulae, then T +— &;.
ProOOF: identical with the proof of Lemma 4.

Lemma 8

Let € be a locally finite set of formulae. If ¢ € € is a formula whose
free variables of type C are among x5, ..., x{, then

Xy oo Xp =i Xh, oo, X2 (mod ©) implies ¢(A/C) & (B/C).

PROOF: identical with the proof of Lemma 5.

Theorem 9

Let A and B be two $-structures.
Then A = B iff for all locally finite sets of formulae €, ABB | &;.

ProoF: Remark that the set of all £**“-formulae is equal to

€ locally finite

Then the theorem is a corollary of Lemmas 7 and 8.

4. Elementary equivalence of intuitionistic models

It is an interesting problem to see whether the previous results can be adap-
ted from usual classical models to Kripke models for intuitionistic logic. On
the one hand, it gives some results about elementary equivalence of Kripke
models. On the other hand, it exhibits which properties of classical predicate
calculus and of usual classical models are needed for Fraissé’s characteriza-
tion to work.

We suppose that a Kripke model A is a family of classical structures with
an underlying partial order:
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A= ((Ak)t €K (K: = p Ox))-

We suppose that (vk € K)(0, < k) and forall k, I € K, A, is included in

A ifk < 1 (see [1] or [5] for more definitions and results on Kripke
models).

When we try to adapt the results of previous sections to Kripke models,
several problems arise.

Given two Kripke models A and B, the first problem is to define ADB.

Here, we shall restrict ourselves to the easy case by supposing that A and
B have the same underlying partial order, i. e.

A=(A)ex (K, < ¢, 0p)) and B=((B); c x» K, < ¢, Op)).
R(a) R,(®) R,(a) R,b)

aplan
) an

A B ADB

Figure 1: A = B is not equivalent to A®B | L,

R,(x") R(&’)  RGJ R
(2 F) (o
M, O e e O Mﬁ
GO
M,
Figure 2: £, is not equivalent to I

Then we can define
A®B= ((Akesk)ke n K <5 Ox))-

In the sequel, we shall omit the K subscripts and write < instead of <, and
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0 instead of Q.

The second problem is that, in general, if A is a Kripke model and o, 7 are
two sentences, then A |- (¢ © 7) is not equivalent to (4 |F o) & (4 |F 7).
This is why A = B is implied by, but not equivalent to A @ B | E,.
Suppose that £ contains a unary predicate symbol R,. Then Figure 1 gives
two Kripke models A and B such that A = Bbut A ® B |£ L,. Indeed,
A = B because A is isomorphicto B. And A @ B |t £, because A © B

I @*)R,(xY) & @P)(R,(x?)). Remark also that @ is not stable under
isomorphisms: A = Bbut A ® A A @ B.

The third problem is that, in intuitionistic predicate calculus, I, ¥ I. One
could expect such a negative result by considering the proof of Lemma 1,
which uses “very classical” arguments.

The proof of E, ¥ I is tricky. Consider the £**-Kripke model given in
Figure 2. We are going to prove that M | £, and M |} L.

M |f £ because
M | [@)EOR,D= RO & [EH@HRE © RO
The tricky part consists in checking that M || T,,. Here is a sketch of proof:
1. For any $-formula ¢, prove that M ||, ¢*[x*, ¥'] iff M ||, ®[Y",

x°). Thus, for any $£-sentence o, M || o' iff M || 6®. In the same
way, M |k ot iff M ||, o®.

2. For any $-formula ¢, prove that M |-, ¢*[x*,y*1 iff M ||, ¢®[x%, y7].
In the same way, M |k, @°[x%, y°] iff M |15 ¢"[x*, ¥*]. Thus,

(vk > 0M |k o', y')) iff (vk > O M | o"[¥%, ).

3. Using (2), prove by induction on the length of ¢ that M |, ¢*[x"] iff
M |, ¢”[x”], for any $-formula ¢ with only one free variable. (For
example, remark that M ||, 2y, iff (M [Hoy) A (Vk > O)YM K y);
thus M |f,—y* implies M |}, —¢® by the induction hypothesis and
2).)

4. Using (1) and (3), prove that, for any $-sentence o, M |0 iff M
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[Fo®, for all k € K. Thus, M | & o®.

Nevertheless, a positive result, that the reader can check, is that L and &
still prove the same theorems when the underlying predicate calculus is
intuitionistic. More precisely, the proofs of all the lemmas, except Lemma
1, are intuitionistic.

We could define a new elementary equivalence relation =, on Kripke
models by

A=Biff A® B |FL.
On the one hand, this definition does not seem convenient:

* A © Bis naturally defined only if A and B have the same underlying
partial order;

® we gave an example showing that if A =, Band A = A’, then it
could be the case that A* =, B.

But on the other hand, we conjecture that several interesting properties of
classical elementary equivalence are satisfied by =,. For example, with
suitable conditions on A @ B (cardinality, saturation, etc. ) A =, B implies
A = B, by back-and-forth arguments.

Université Catholique de Louvain.
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