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A NOTE ON UNPROVABILITY-PRESERVING
SOUND TRANSLATIONS(")

Takao INOUE

1. Introduction

In this note, which may be regarded as a friend of Inoué [15, 16, 17, 18,
19, 20]("), we shall show curious nontrivial syntactical subtleties of un-
provability-preserving sound translation. The technicalities required to
understand this note are moderate. By F, we denote the set of all well-
formed formulas of a formal system X. By an unprovability-preserving
sound translation 7( - ) from a formal system X to a formal system ¥, we
mean a mapping 7 from Fy to F, such that it satisfies the following two
conditions:

(i) 7 is sound: i.e. for any formula A4 of X,
FxA implies + , 7(A),
where — , A means that A is a theorem of X.
(ii) 7 preserves unprovability: i.e. for any formula A4 of X,
= x A implies < , 7(4),
where — ; A means that A is not a theorem of X.
The notion of unprovability-preserving sound translation is not a trivial

one. If a translation is unprovability-preserving, then it is faithful, and vice
versa. So an unprovability-preserving sound translation is logically nothing

(') This paper is dedicated to Edina Jung.

(') In the sense that this note is concerned with the syntax of unprovability ( [15, 16, 17,
19, 20] ) and that it also is concerned with a way to construct new embeddings in terms of
a given one ([18]).
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but an embedding in the ordinary terminology. But, we take a different
terminology in order to emphasize unprovability-preservation of a transla-
tion, because one has been little concerned with unprovability seriously. To
make sure, we shall illustrate it with an example. Let X be a classical con-
sistent formal system. Define three (auto)translations id(-), const,( ),
consty( ) from X to X as follows: for any formula 4 of X,

id(4)
const,(A)
consty(A4)

»

b

I
RN N

vV ~A
A ~A

Then, id is an unprovability-preserving sound translation. The translation
const, is sound but not unprovability-preserving. On the contrary, const, is
unprovability-preserving but not sound. So we have the following trivial but
nice theorem.

THEOREM 1. 1. The unprovability-preserving soundness of the identity
autotranslation id is an invariant of formal systems.

Let X, Y be given consistent formal systems. Suppose that an unprovabil-
ity-preserving sound translation 7 from X to Y is given. Can we then con-
struct countably many new unprovability-preserving sound translations from
77 The difficulty of this question depends on the systems X, Y and the given
translation, of course. But we first have to specify a precise meaning of the
ambiguous word ‘new’ in the question, before we give some nontrivial
examples of such a construction of countably many new unprovability-
preserving sound translations from a given one.

DEFINITION 1. 2. Let X, Y be arbitrary consistent formal systems.
Suppose that Y has truth-functional equivalence = in its language. For any
unprovability-preserving translations 7,(*), 7,(*) from X to ¥, 7,, 7, are
said to be non-C-equivalent if there is a formula A of X (called a ditcher)
such that (i) A is not a theorem of X and (ii) 7,(4) = 7,(A) is not a theorem
of Y.(%) Otherwise we say that they are C-equivalent).

As suggested in the above definition, we are interested in non-C-equivalent
unprovability-preserving translations. In other words, because we might

(3 In this definition, we implicitely assume that Y is an extension of a classical theory. But
this assumption is not essential for more general considerations. It depends on a given system
and its language. For example, if Y is an intuitionistic system, then we shall regard = as
intuitionistic equivalence in place of classical one.
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identify C-equivalent unprovability-preserving translations with each other,
we are not curious about the same (in the above sense) translation as a given
one. In the sequel, we will see a lot of examples of non-C-equivalent un-
provability-preserving translations. It is also easy to give an example of C-
equivalent unprovability-preserving translations.(*) We shall make the
above informal descriptions of the question precise as follows:

Question 1: Let X, Y be given consistent formal systems. For any un-
provability-preserving sound translation 7 from X to Y, is there a construc-
tion C such that by the construction C, we can obtain countably many
mutually non-C-equivalent unprovability-preserving sound translations (=
new ones) from 77(*)

This Question 1 creates many open problems if we vary X and Y. Because
it seems hard to answer Question 1 in general, we shall pose a rather mode-
rate version of it, as a first step to answer the hard one.

Question 2: Let X, Y be given consistent formal systems. Suppose that an
unprovability-preserving sound translation 7 from X to ¥ is given. Is there
a construction C such that by the construction C, we can obtain countably
many mutually non-C-equivalentunprovability-preserving sound translations
from 717

Even this rather moderate Question 2 provides a lot of open problems.

My plan for the rest of this note is the following. We shall give an affir-
mative answer to Question 2, when given X, ¥, 7 are the following:

(P1) X = Y = intuitionistic first-order predicate (propositional) logic

1QC (IPC),
7 = the identity translation (idem),
(P2) X = classical first-order predicate (propositional) logic CQC (CPC),
Y = 1QC (IPC),

(*) For example, from LEMMA 43a in Kleene [24, p. 495], it follows that unprovability-
preserving translations (-)°, ——((:)°) from the classical to intuitionistic number-
theoretic formal systems are C-equivalent. Another example: from a remark in Troelstra [38,
p- 296], unprovability-preserving translations ()", [J((*)") from intuitionistic proposi-
tional logic IPC to modal logic S4 are C-equivalent (cf. Gddel [12] and McKinsey-Tarski
[270).

() A trivial remark: If in the question, we replace “mutually non-C-equivalent” by "C-
equivalent”, then the question becomes a trivial one so that the word “countably many™ also

becomes meaningless. Given a translation 7, we can, for example, define a C-equivalent
translation = =7 with 7 in classical consistent formal system.
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7 = Go6del translation (idem),
(see Godel [11] and also refer e.g. to Kleene [24] or Troelstra-van
Dalen [39]),
(P3) X = Y = Lemmon-Scott’s normal propositional modal logic K,
7 = the identity translation,

(for K, see e.g. Hughes-Cresswell [14], Segerberg [31] and Van Benthem
[40]). We shall first work out the cases (P1) and (P2) in the following
second section, because the used technique is common to them. After that
we shall deal with the case (P3) in the third section. In Appendix, we recall
Gentzen-style sequent calculus G3 for the convenience of the reader.

2. A study of 7, an analysis in Gentzen system

In this section, we give affirmative answers to Question 2 in the cases of
(P1) and (P2), respectively. We will deal only with the predicate case of
them, i.e. that of (P1) in great detail. The other cases of them are, mutatis
mutandis, similarly taken care of. We take a formulation without 1 (fa-
Isum) for IQC. Let 7 be the identity translation id. A construction for an
answer for (P1) is the following:

(*) 7, (4) = idd) D p,.D p; (i 20),

where p, is an atomic formula of IQC and p; # p, (i # j).()

It is obvious that for any i > 0, 7, is sound (prove it in your favorite
syntactical way). We shall prove that for any i = 0, 7.’ is unprovablility-
preservmg Let i = 0 be an arbitrary index (integer). Suppose that 7, (4)
is a theorem of IQC. We shall consider the provability of T (A) in a
Gentzen-style sequent calculus. For a Gentzen-style formulatlon for IQC,
we here adopt Kleene’s G3 (see Kleene [24, p. 481] and Appendix of the
present paper) for which Gentzen’s normal form theorem (Hauptsatz or cut
elimination theorem)(®) holds. So we are given a proof (figure) R of T,
(4) in G3. The proof R should look the following:

(> This type of construction was to some extent considered in Flagg [3, 4] in the context
of type theory and set theory. But in the present paper we can obtain more about it.

(%) For proof theory in general, one may consult e.g. Gentzen [6], Girard [7], Girard et
al. [8], Kleene [24], Mints [28], Schiitte [29, 30] and Takeuti [37].
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Dl

ADp—+A ADp,p-—>p

ADp->p

- A Dpi'pr

where except for a proof D, of A D p; — A, the above cut-free proof of o
(A) in G3 is unique (note that there are no structural rules in G3).

We shall further analyse the structure of D,. First, as a remark, we keep
in mind that D, is constructed by a finite number of applications of the rules
in G3. Suppose that D,contains no application of the rule introducing D to
A and p,, in order to introduce A D p, in the antecedent of a sequent. Then,
it is obvious that A D p, does not contribute the provability of 4 D p, —
A. In this case, by deleting all A D p, ’s from D,, we can obtain a proof
D, of = A in G3. So A is a theorem of IQC.

Next suppose that D, contains an application of the rule introducing O
to A and p; in order to introduce 4 D p, in the antecedent of a sequent. The

number of such applications is finite because of the above remark. Then we
can find a sequent

# ADp,B,..B

n

- A,
and its proof D, such that the following conditions (C1)-(C4) are satisfied:

(C1) D, contain no application of the rule introducing O for introducing
A D p; in the antecedent of a sequent,

(C2) B,,..., B, (n = 0) are proper subformulas of A,

(C3) Below D,, for any i (1 < i < n), B, is not used as p, for an ap-
plication of the rule introducing O for introducing 4 D p, in the
antecedent of a sequent (note that B, may be p, for any i (1 < i
< n),

(C4) D, is analysed as follows:

D, D,

ADp,B,..,B, = A4 ADp,B,..B,p—~C
ADp,B,.,B -»C
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D,
ADp —A.

In other words, such a sequent (#) can be found at a place in D, where
the most left application of the rule in question occurs. Considering the part
of D, below (#), from (C1)-(C3), it follows that = 4 should have a proof
of it in G3. Hence, A is provable in IQC.

Take a contraposition of the argument considered above. Then we can
conclude that 7, is unprovability-preserving. For any i # j, 7.} (p,) = 7/
(7,) 1s not a theorem of IQC, if k # i or k # j (this atomic formula p, is
a dichter for the non-C-equivalence of 7," and 7/).(") Thus the construction
(*) yields countably many mutually non-C-equivalent unprovability-preser-
ving sound translations from IQC to IQC. The case (P2) can similarly be
taken care of. So it is left to the reader. Note that the construction (*) even
provides a way to construct new embeddings from an arbitrary embedding
(need not to be restricted to the identity translation) if the above argument
can be applied. I think that this is a very remarkable fact. Also note that we
do not need to stick to predicate logics as treated above and that the same
holds for extensions of intuitionistic propositional logic IPC as Y so long
as the above argument is applied.

Although our treatment is here proof-theoretic, it would be possible to
give a semantic argument by means of Kripke-style semantics (Kripke [26]),
for example. However, if we deal with them semantically, in the case of
predicate logic, we have to take a restriction of the translation in question
to the set of all sentences of the logic in question (for the preservance of
unprovability) and the p; of 7,) must be a propositional letter, in order to
make use of the completeness theorem of the logics. We have no such a
problem in the case of propositional logic for a semantic treatment.

Summing up the above, we have the following theorems. (By CPC we
denote classical propositional logic.)

THEOREM 2. 1. For any atomic formula (propositional letter) p but not
L of 1QC (IPC), a translation (*) D p. D p is an embedding of 1QC
(IPC) in IQC (IPC). For any pair of distict atomic formulas (propositional
letters) p, q withp # 1.,q # L, translations (*) D p. D p and (-)
2 q. O q from 1QC (IPC) to 1QC (IPC) are non-C-equivalent.

(") The equivalence = in 7,/ (p) = 7/ (p,) is intuitionistic.
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COROLLARY 2. 2. Let X be a consistent formal system. Suppose that
we have an embedding 7 of X in 1QC (IPC). Then, for any atomic formula
(propositional letter) p but not L of IQC (IPC), 7(*) D p. D p is an
embedding of X in 1IQC (IPC).

PROOF. Immediate from THEOREM 2. 1. O

THEOREM 2. 3. There are an unprovability-preserving sound translation
7 from 1QC (IPC) to IQC (IPC) and a construction C such that by the
construction C, we can obtain, from 7, countably many mutually non-C-
equivalent unprovability-preserving sound translations from 1QC (IPC) to
1QC (IPC).

COROLLARY 2. 4. There are countably many mutually non-C-equivalent
embeddings of 1QC (IPC) in 1QC (IPC).

THEOREM 2. 5. There are an unprovability-preserving sound translation
7 from CQC (CPC) ro 1QC (IPC) and a construction C such that by the
construction C, we can obtain, from 1, countably many mutually non-C-
equivalent unprovability-preserving sound translations from CQC (CPC) to
1IQC (IPC).

COROLLARY 2. 6. There are countably many mutually non-C-equivalent
embeddings of CQC (CPC) in IQC (IPC).

3. A study of 74", an analysis in refutation system

Now we shall take care of the case (P3) of Introduction. Let X be Lemmon-
Scott’s normal propositional modal logic K. Take ¥ = X. We take OJ (the
necessity operator) as primitive for our arguments, and O* stands for
0...0 with the k copies of O (k = 0). The possibility operator < is
defined in terms of [J as usual. Formulas containing no modal operator,
are called [l-free. As a given unprovability-preserving sound translation,
we take the identitiy translation id from K to K. For a construction C for
an answer to the question, define 7,*, = O* id (k = 0). It is immediate
by the rule of necessitation that for each k > 0, 7,*, is a sound translation.
We shall show in a syntactical way that for each k > 0, r,*, preserves
unprovability, because I am interested in the syntax of the unprovability of
K. For that purpose, we need some preparation. In Goranko [9, 10], a
method of axiomatic rejection (or refutation calculus (system)) for K was
proposed. An axiomatic rejection (or refutation calculus (system)) for a
(consistent) formal system X is a (consistent) formal system to yield all
unprovable formulas (i.e. rejected formulas) of X but not provable ones (for
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the recent developments and the literature on axiomatic rejection, see e.g.
[9, 10], Inoué [16], Skura [32, 33] and Stupecki-Bryll [35]). The Goranko’s
system, which is here denoted by GRK, consists of K plus the following
axioms and rules:

Axioms:

(i) e L,
(i) A6 ©T,

Rules:

(iii)  Reverse substitution: — ggg 0(4) = — ¢ A4, for any uniform
substitution g,

(iv)  Lukasiewicz’srule: + A4 D B, - g B= = gri A,

V) For any [-free formula A,
kA, A g BV C,..; 4 e BV G

Ry (forallk = 1)
4 aqkd Vv OC v ..v OGV ¢B,

where 1 is falsum and 7 is verum. Note that R, is a rule-schema with
respect to k (cf. Remark in [9, p. 28]).

DEFINITION 3. 1. Let X be a formal system. Suppose that an axiomatic
rejection ARX for X is given. Then X is said to be £-complete with respect
to ARX (E-decidable in Stupecki [34] (cf. Dutkiewicz [1])) if for any for-
mula A, exactly one of - , A4 and — ,z, A holds, where < ., A means
that A is a theorem of ARX, i.e. that 4 is eventually not a theorem of X.

We know the following theorem.

THEOREM 3. 2. (Goranko [9, 10]) K is £-complete with respect to GRK.

By THEOREM 3. 2, we may say that a relation < gy completely well
expresses the unprovability of K. So we can regard — g A as a synonym
of - ¢ A, which means that A is not a theorem of K.

Now we are in a position to show in a syntactical way that for each k =
0, 75", preserves unprovability. We shall show it by induction on k. The
basis of induction (k = 0) is trivial. For the induction-step, suppose that for

i 20, 7,', preserves unprovability. Assume that - g 4 holds. Then we
see that



A NOTE ON UNPROVABILITY-PRESERVING SOUND TRANSLATIONS 251

(1) = arx 4 Assumption

(2) 4 ore 1 Axiom (i)

() - o 04 Induction hypothesis, (1)
@+l vDO4 DOA A theorem of K

() 4 e L v O4 Lukasiewicz’s rule,(3),(4)
©6) Ao L VO*4 v O L Rg, (2), (5)
MDrFgO""4AD. L vO%vV OL A theorem of K

8) 4 gre O114 Lukasiewicz’s rule,(6),(7).

It is also easy to see that any i # j, 74", 74/, are non-C-equivalent.(®)
For a proof of it, take just falsum L as a ditcher. It is sufficient to prove
that o g O**'L D 1 holds for all k > 0, since the following derived
rule holds (please check it in a syntactical way):

— grx A O B implies < g (04 D OB .
We shall show it by induction on k. The basis of induction is just Axiom

(i), i.e. © T (= 0L D 1). For the induction-step, suppose that < ey
O*'L D 1 holds for i = 0. We see that

(1) 4 0L D L Assumption
(2) 4 ©~01L v 1L (1), definition
(3) d o L Axiom (i)
@) AL vOLV OO~DOL Ry, (2), 3)
B)Fgoo~0OL vV L.D.LvOdOLYVY O0~0O1
A theorem of K
6) e ©0~01L v L Fukasiewicz’s rule,(4),(5)
(M) < e 0L D 1 (6), definition.

This construction of 7", is therefore an affirmative answer to Question 2,
whenX = ¥ =Kand 7 = id.

Summing up the above, we have the following theorems.

THEOREM 3. 3. For any integer k = 0, 7,*, is an embedding of K in
K. For any integers i # j 2 0, 7,'; and 7,7, are non-C-equivalent.

THEOREM 3. 4. There are an unprovability-preserving sound translation

(*) The equivalence here used for non-C-equivalence is, of course, classical (truth-func-
tional).
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7 from K to K and a construction C such that by the construction C, we can
obtain, from 1, countably many mutually non-C-equivalent unprovability-
preserving sound translations from K to K.

COROLLARY 3. 5. There are countably many mutually non-C-equivalent
embeddings of K in K.

As a remark, we have the following theorem.

THEOREM 3. 6. There are countably many mutually non-C-equivalent
unprovability-preserving sound translations from K to K, each of which can
be used to give an affirmative answer to Question 2 with a common as-
sociated construction.

PROOF. Take 7,*, (k = 0) as a given unprovability-preserving sound
translation with the same construction C as above. []

There would be many modal logics to which we can apply the above
argument to obtain the same result.

In a further search for answers to Questions 1 and 2 in general, as well
as model-theoretic techniques, syntactical ones, e.g. Gentzen’s normal form
theorem (Hauptsatz) and Kleene’s permutability theorem would be useful
(for the permutability theorem, in particular, see Kleene [23, 25] and
Ishimoto [21; 22, p. 59-60]).

Ina Boudier-Bakkerlaan 117 11
3582 XP Utrecht
The Netherlands

APPENDIX

Here for the convenience of the reader, we shall recall Kleene’s Gentzen-
style calculus G3 for intuitionistic predicate logic IQC, which will be used
as the most suitable formulation for our proof in the second section (for G3,
see Kleene [24, p. 481] and for variants of G3, refer to Fitting [3] and
Troelstra-Van Dalen [39]). Let I, © be finite sets of formulas of IQC with
© empty or consisting of one formula. The system G3 consists of the fol-
lowing axiom-schema and rules:

Axiom schema: C, T - C.
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Rules of inference:

A, AVvBT—->0 B AV BT->0

(Vv =)
AV B, =0,
I'>AorI’—>B
(= V)
I'=+A v B.
A, ANBT—->0o0rB,ANBT—->0O
(A =)
ANBT->0.
'-4 I'-+B
=n)
T'>A4 A B.
ADBT—-A B,ADBT->06
(=)
I''ADB—-0.
A T'-B
= 2) -
' >4 D B.
A, T = A
(== —
—A, T -0,
AT —»
(=) —
' = "A.
A(@), vxAx), T - ©
v )

vxA(x), ' = ©.
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I' = A(b)
=V - ()
T'= vx A().
Ab), ;AX), ' - ©
@3- (+)
WwA(x), I' = O.
I' = A(r)
(=3 -
I' - 3ax A(x).

((+): subject to the well-known restriction on variables. (see [24, p.442)).

The cut-free calculus G3 is proof-theoretically equivalent to IQC. A
provable sequent A,,..., 4, = B in G3 may be regarded as a provable for-
mula A, A... A A,. D B in IQC. Note that G3 has no structural rules.
Note also that G3 is formulated without L, both of which are the reasons
why we choose G3 for our arguments in the second section.
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