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PHENOMENOLOGICAL LAWS AND THEIR APPLICATION
TO SCIENTIFIC EPISTEMIC EXPLANATION PROBLEMS

Erik WEBER(")

1. Introduction

Scientific knowledge has both a practical function (prediction and manipula-
tion) and a theoretical one (understanding). By analyzing the nature of
explanations, philosophers have tried to describe what we have to do with
our scientific theories, laws, etc., in order to make them contribute to a
better understanding of the world. However, explicating what explanations
are is not sufficient for clarifying how science fulfils its theoretical function:
we also need an account of the construction process of explanations. The
aim of this article is to present a part of such account: I will describe how
phenomenological laws (laws describing the covariance between observable
variables) may be used to solve scientific epistemic explanation problems
(SEE-problems).

The structure of the article is straightforward. In section 2, I develop a
conception of phenomenological laws. In section 3, I clarify what construc-
ting and solving a SEE-problem consists in. Section 4 contains a method
for applying phenomenological laws to solve SEE-problems.

Clarifying how scientific entities of all conceivable types (laws, theories,
distribution functions, etc.) may be used to solve explanation problems of
various kinds (epistemic, causal, functional, etc.) is impossible within the
limits of one article. Therefore, I discuss only one type of entity and one
type of explanation problem. However, the method for applying phenomeno-
logical laws to SEE-problems which I develop in section 4, is a good star-
ting point for discussing the other entities and problems. In section 5, I will
discuss the heuristic value of the particular method presented in section 4.
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2. Phenomenological laws

2.1 My conception of phenomenological laws will consist of a definition
(section 2.2) and an epistemological framework (section 2.4). In section 2.3,
I present two examples.

2.2 An object-moment is a couple of an object and a point of time. A modal-
ity is a series of properties which are defined so that an object-moment
cannot posses more than one of the properties. When D is a set of object-
moments, the modality G,, ..., G, is called characteristic of domain D if
and only if each element of D necessarily possesses one of the properties
of the modality. A modality is called experimental if there exists an ex-
periment by means of which it can be determined which of the component
properties an object possesses.

An artribute space is a couple of a “general kind” and an interval of R.
Examples of “general kinds” are length, age, weight, temperature, etc.
Attribute spaces will be written as (K, I). Property G is a region of (K, I)
if and only if it can be defined by associating a subinterval of I with the
general kind K. A partition of an attribute space is a set of mutually ex-
clusive and jointly exhaustive subintervals of 1. The attribute space (K, I)
is characteristic of domain D if and only if with its partitions it is possible
to define modalities (consisting of regions of (K, I)) which are characteristic
of D. An attribute space is experimental if and only if some of its partitions
allow us to define experimental modalities (as partitions consisting of ex-
tremely small intervals never define an experimental modality, we cannot
require that all definable modalities are experimental).

A phenomenological law is a couple of a formula and an interpretation.
The formula has the form Y, = AY,, ..., Y,), where n>2. The interpreta-
tion consists of (i) a set of object-moments (the domain of the law) and (ii)
n experimental attribute spaces that are characteristic of the domain of the
law. Each of the attribute spaces is associated with one of the variables of
the formula. Phenomenological laws can be formally represented as:

(Yl =ﬂY2» rrey Yn)s (D, (Kh Il)s LbAL ) (Km In)))

D is the domain of the law. (K, I)) is the attribute space associated with the
ith variable in the formula.

2.3 My first example is the law of reflection of light (cf. H. Grayson-Smith
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(1967) p. 270):

Light is reflected so that the reflected and incident rays make equal
angles with the normal to the reflecting surface.

This law may be formally represented by the expression (i = r, (L, (K;, [0,
90D, (K., [0, 90[))). In the domain L, the objects of the object-moments are
systems of an incident and a reflected light ray. The general kind K is
“angle with the normal to the reflecting surface made by the incident ray”.
K. is “angle with the normal to the reflecting surface made by the reflected
ray”.

My second example is the law of the simple pendulum. A simple pen-
dulum consists of a mass (the pendulum bob) at the end of a string or rod.
The law is:

The period of a simple pendulum equals the product of 27 and the
square root of the quotient of the pendulum’s length and the acceleration
due to gravity.

The length of a pendulum is the length of the string or rod. The period of
a pendulum is the time the bob needs to make a complete oscillation. The
law of the simple pendulum may be formally represented by means of the
expression (P = 2mv/1/g, (S, (Kp, 10, + o), (K,, 10, +oo[))). g is the ac-
celeration due to gravity. In the domain S, the objects of the object-moments
are pendulums. K; is the period of the pendulum, K, its length.

2.4 The knowledge situation of an individual X at #, is the set of all senten-
ces and other symbolic constructions (e.g. laws as defined in 2.2) X con-
sciously accepts as true at time #,. Knowledge situations are finite and not
deductively closed.

A scientific entity (theory, law, etc.) is regarded as empirically adequate
if and only if it has passed some empirical tests; as we do not need a precise
definition of empirical adequacy in this article, I will not discuss the nature
of these tests. Assigning the status “empirically adequate” to a phenomeno-
logical law or another scientific entity is a sufficient but not necessary
condition for acceptance. The primary scientific knowledge of X at time 1,
consists of all theories, phenomenological laws, distribution functions, etc.,
to which X at #; assigns the status “empirically adequate”.

Probability statements have the form “In domain D holds: the relative
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frequency of class G in class F equals r” and are written as P,(G | F) =
r. D is called the domain of the probability statement, G its object class, F
its reference class and r its frequency number. A probability statement is
given the status scientifically founded if and only if we have established that
it is derivable from our primary scientific knowledge. Assigning the status
“scientifically founded™ to a probability statement is sufficient but not neces-
sary for accepting it.

The epistemic status(es) assigned to a sentence or symbolic construction
reflect(s) the reasons why we accept it as true; “empirically adequate” and
“scientifically founded” are examples of epistemic statuses. A description
of the epistemic state of X at #; consists of (i) a description of the knowledge
situation of X at #;, and (ii) a survey of the epistemic statuses which X at
t; assigns to the sentences and symbolic constructions he consciously accepts
as true. The epistemic state of X at £; will be formally represented by E,
;- Arbitrary epistemic states will be written as E,.

Accepting a probability statement has direct practical relevance: our
behaviour depends on which probability statements we accept and reject.
Accepting a phenomenological 1aw has epistemic relevance instead of direct
practical: if we accept a law, we enter into an epistemic commitment. By
assigning the status “empirically adequate™ to a law, we enter into an ad-
ditional, more specific epistemic commitment. In the subsequent paragraphs,
I will clarify what these commitments consist in. I first discuss laws in
which the formula has the form Y, = f{Y,) and then the more complex
laws.

Derivability of probability statements from phenomenological laws in
which the formula has the form Y, = fY,) is defined as follows:

(DER) (1) Let (Y, = AY,), (D, K,, L,), (K,, 1,))} be a phenomenological
law. The probability statement P(G; | F)) = 1 is derivable from this
law if and only if:

(@) G; is a region of (K, 1)),

(b) F, is a region of (K,, L,), and

(c) the subinterval of I, which defines G, includes the subinterval of
I, which is the image under f of the subinterval of I, that defines
F..

(2) Let (Y, = AiY,), (D, (K,, 1), (K,, 1))} be a phenomenological

law. The probability statement P(G; | F;) = 0 is derivable from this

law if and only if:

(@) G; is a region of (K, I,),
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(b) F, is a region of (K,, 1,), and
(c) the subinterval of I, which defines G; and the subinterval of I,

which is the image under f of the subinterval of I, that defines
F,, are disjoint.

The image under f of an interval [a, b[ is the interval [fa), fAb)[. If con-
dition (1c) is satisfied, all members of the second subinterval are also mem-
bers of the first; the intervals may be identical. If condition (2¢) is satisfied,
the subintervals have no common members.

The commitment one enters into by assigning the status “empirically
adequate” to a phenomenological law with two variables is:

(COM) Let (Y, = fY,), (D, K,, 1), (K,, I,))) be a phenomenological
law. By giving this law the status “empirically adequate”, one
agrees to assign the status “scientifically founded” to any probabi-
lity statement of which it has been proved that it is derivable from
it (in the sense laid down in (DER)).

The commitment we enter into by accepting a phenomenological law with
two variables, is analogous but more general: we agree to accept probability
statements of which has been proved that they are derivable from the law.

To obtain the equivalent of (DER) for laws with more than one variable,
we have to replace the condition that F,; is a region of (K,, I,) with the con-
dition that F; is a complex property which is the intersection of a series of
properties F,, ..., F, (F, being a region of (K,, 1,), F; of (K, L), etc.). In
the conditions /¢ and 2c, the image under f of the interval corresponding
to F; is to be replaced with the image under f of the set of n-1 intervals
which characterize the complex property.

I call the set of all probability statements to which X at t; assigns the
status “scientifically founded” the effective explanatory knowledge of X at
time t;. A person’s potential explanatory knowledge consists of all the
probability statements that are derivable from his primary scientific knowl-
edge (the exact meaning of derivability depends on the type of entity; for
each type, an equivalent of (DER) can be formulated). From most entities
of our primary scientific knowledge, a large (sometimes infinite) number
of probability statements is derivable. But for each entity, each individual
is acquainted with only a small number of statements for which he knows
a proof of derivability. So there is always a discrepancy between a person’s
effective explanatory knowledge and his potential explanatory knowledge:
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the former is only a small fraction of the latter. I will use the law of the
simple pendulum to illustrate this discrepancy. Consider the statements
Ps(Pooi | Liow) = 1and Py(P,, | L) = 0, where P, is the formal rep-
resentation of “... has a period in the interval [2.005, 2.015[”, L, o, of “...
has a length in the interval [0.9995, 1.0005[” and L, , of “... has a length
in the interval [1.9995, 2.0005[”. These statements are derivable from the
law of the simple pendulum. Even if we consider only intervals of the same
size as in these examples, an infinite number of probability statements can
be derived from the law.

3. Scientific epistemic explanation problems

3.1 In order to clarify what SEE-problems are, the concept of SE-explanans
has to be introduced. I will do this in section 3.2. The definition of SEE-
problems follows in section 3.3.

3.2 In order to define what SE-explanantia are, we need an auxiliary con-

cept, viz. E-triple. E-triples (epistemic triples) consist of two singular sen-

tences and one probability statement. Singular sentences have the form “O-

bject a has property G at time £”. In a singular sentence, a property is

attributed to an object-moment; their formal representation is G(a, t).
E-triples are defined as follows:

(ET) (S,, S,, W) is an E-triple for the singular sentence G(a, t) if and only
if
(1) W is a probability statement with object class G which is not a
theorem of the probability calculus and which is not analytic,
(2) S, is a singular sentence in which the property D (the property that
determines the domain of W) is attributed to (a, t),
(3) S, is a singular sentence in which the property F (the property that
determines the reference class of W) is attributed to (a, t), and
(4) the frequency number of W is not equal to 0.

A probability statement is analytic if it is necessarily true because of the
meaning of the terms occurring in it.

Some E-triples are SE-explanantia, others are not. The distinction is drawn
by means of two epistemic statuses: “scientifically founded” (see section
2.4) and “empirically founded”, a status which may be assigned to singular
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sentences. A singular sentence is given the status empirically founded if and
only if our own observations contain sufficient evidence for it or we have
good reasons to believe that someone else has gathered sufficient obser-
vational evidence for it. Assigning the status “empirically founded” to a
singular sentence is a sufficient but not necessary condition for accepting
it.

The definition of SE-explanans is:

(SE) If (S,, S,, W) is an E-triple for the singular sentence Sg, then person
X is justified in calling this triple a SE-explanans for Sg if and only
if
(1) his epistemic state is one in which W has the status “scientifically
founded”,

(2) his epistemic state is one in which S, and S, have the status “em-
pirically founded”.

3.3 Consider an individual X who at time #, compiles a list of all E-triples
for Sg which he may call SE-explanantia for Sg, and subsequently gives
himself the task of changing his epistemic state to the effect that an additi-
onal SE-explanans for S; emerges (i.e. to the effect that a particular E-triple
which in the initial epistemic state did not meet the criteria of (SE), and
therefore is not on the list, does meet the criteria in the new epistemic state).
This individual will be said to have confronted himself with a scientific
epistemic explanation problem.

Every SEE-problem can be represented by means of a scheme of the
following form:

Sg
(Sls SZ! W)

(Sl’ SZ,: W,)

<S1”s S2”9 w”): etc.

Sg is the explanandum sentence, i.e. the sentence for which an additional
SE-explanans is to be found. The triples listed in the scheme are the SE-
explanantia for S, that are already available to X. They constitute the refer-
ence list of the SEE-problem.

A SEE-problem has been solved if and only if the epistemic state has been
appropriately modified and an additional SE-explanans has been constructed.
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4. Solving SEE-problems by means of phenomenological laws

4.1 When we try to solve a SEE-problem, the first step consists in choosing
the scientific entity we will use. The entity we choose must be adequate for
solving the problem. A phenomenological law is adequate for solving a
SEE-problem if and only if it meets the following requirements:

(AD) (1) It belongs to our primary scientific knowledge.
(2) The object-moment (a, t) (= the object-moment occurring in the
explanandum sentence of the SEE-problem) belongs to the domain
of the law.
(3) The property G (the property assigned to (a, t) in the explanan-
dum sentence) is a region of the attribute space which is associated
with Y.

For every type of scientific entity, a set of conditions of adequacy like (AD)
can be formulated. If our primary scientific knowledge contains more than
one entity that is adequate for solving the problem we consider, additional
selection criteria (besides the conditions of adequacy) are needed. I will not
discuss them here. In the subsequent sections, my starting point will be that
an adequate phenomenological law has been chosen to solve the SEE-prob-
lem. In 4.2, I present a method for solving an SEE-problem by means of
such law. Section 4.3 contains an example in which the law of the simple
pendulum (cf. section 2.3) is applied to a SEE-problem.

If we are confronted with a problem for which no adequate entities are
available, we have to enlarge our primary scientific knowledge. A particular
way of enlarging this knowledge must be mentioned here. Condition 3 of
(AD) implies that the law (P = 2mV1/g, (S, (K;, [0, +oo[), (K,, [0, + oo [)))
is adequate for solving SEE-problems concerning periods of pendulums if
it belongs to our primary scientific knowledge. On the other hand, the law
(1 = gP2m)%, (S, (K, [0, +oo[), (Kp, [0, +oo[))) violates the third con-
dition: if it is part of our primary scientific knowledge, it is adequate for
solving problems concerning lengths of pendulums, but not for solving
problems concerning periods. However, if the second law is regarded as
empirically adequate, the reasons we have for assigning this status to it will
also be sufficient to justify assigning this status to the first law. In general,
a law which with respect to a SEE-problem satisfies the first two conditions
of (AD) and requirement (3°) below, can always be transformed into a law
which is adequate for solving the SEE-problem:
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(3°) The property G is a region of one of the attribute spaces of the law.

4.2 My method for solving a SEE-problem by means of a phenomenological
law consists in consecutively executing a construction procedure and an
implementation procedure.

In the construction procedure, the law we have selected for solving our
problem is used to construct an explanation scheme. Explanation schemes
consist of a singular sentence, a disjunction of m singular sentences and a
list of m schematic probability statements (schematic probability statements
are probability statements in which the frequency number is replaced with
a question mark). Explanation schemes have the following form:

(ES) D(a, t)
Fi(a, t) v Fi(a, t) v ... v F(a, t)
Py(G | F)=7?
Po(G | Fp) =7
PD(G | F) =7

F,, ..., F, is a modality which is characteristic of D and is called the an-
tecedent-modality of the explanation scheme.

The construction procedure is:

(CON) (1) Formulate a singular sentence in which it is claimed that ob-
ject-moment (a, t) (= the object-moment occurring in the expla-
nandum sentence) belongs to the domain of the law.

(2) To function as the antecedent-modality of the explanation

scheme, choose a modality which satisfies the following condi-

tions:

(a) none of its members functions as reference class in the prob-
ability statement of one of the SE-explanantia in the reference
list of the SEE-problem we are trying to solve, and

(b) each member is a complex property which is the intersection
of a series of properties F,, ..., F, (F, being a region of (K,,
L), F; of (K, L), ...).

If no modality satisfying these conditions can be found, interrupt

the procedure. Otherwise, execute the steps 3 and 4.

(3) Use the antecedent-modality chosen in (2) and the object-
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moment (a, t) to write down a disjunction of singular statements
of the type required for an explanation scheme.

(4) Formulate a series of schematic probability statements in which
the domain and the object class are always respectively D (the do-
main of the theory) and G (the property attributed to (a, t) in the
explanandum sentence) and in which each element of the antece-
dent-modality selected in step 2 functions as reference class exactly
once.

If the procedure has to be interrupted after step 2, the SEE-problem cannot
be solved by means of the phenomenological law we have selected. To solve
the SEE-problem, we have to use a different adequate entity; if our primary
scientific knowledge does not contain an alternative, we have to enlarge it.

In the implementation procedure, we gradually transform the explanation
scheme we have constructed by means of (CON) into an E-triple. It consists
of two parts. The first part consists of the following steps:

(IMP)) (1) Take the explanation scheme

Dfa, t)

Fi(a,t) v Fya,t) v ... v F_(a, t)
Py(G | F) =17

Pp(G | F) =717

PyG | F,) = ?

that has been constructed by means of (CON).

(2) Check whether there is a F, for which Fi(a, t) has the status
“empirically founded”. If so, go to step 3. If not, execute step 2’.
(2’) Try to modify your epistemic state to the effect that one of
the sentences Fi(a, t) has the status “empirically founded”. If you
succeed, execute step 3; otherwise, stop trying to implement the
explanation scheme.

(3) Remove the disjuncts and schematic probability statements
which do not contain the property F, (= property for which the
sentence F,(a, t) has the status “empirically founded™).

If we have to interrupt this procedure after step 2’, the SEE-problem cannot
be solved by means of the explanation scheme we have constructed. If this
problem occurs, we may go back to step 2 of (CON) and choose a different
antecedent modality. If this solution fails, we may choose a different ade-
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quate entity to solve our SEE-problem; if our primary scientific knowledge
does not contain an alternative, we can enlarge it.

If we do not have to interrupt the procedure after step 2°, (IMP,) results
in a modified explanation scheme of the following form:

(MES) Dfa, t)
F.(a, t)
P(G|F) =7

Modified explanation schemes are the input of the second part of the im-
plementation procedure. Before we can formulate this second part, the idea
of scientifically instantiating a schematic probability statement by means of
a phenomenological law has to be clarified.

Instantiating a schematic probability statement is the activity of replacing
the question mark with a frequency number. Let (Y, = RY,, ..., Y,), (D,
Ky, L), ..., (K, I))) be a phenomenological law. The schematic probability
statement P(G; | F) = ? is scientifically instantiated by means of this law
if and only if it is instantiated by means of the subsequent procedure:

(SI) (1) Determine which subinterval of I, defines property G;.
(2) Calculate the interval f[x,, y,], ..., [X,, Y.D.
(3) If the interval obtained in step 1 includes the one obtained in step
2, replace the question mark with the number 1. If the intervals are
disjoint, replace it with the number 0.

By executing (SI), we do not merely obtain a probability statement: the three
steps constitute a proof that the output is derivable (in the sense laid down
in (DER) or its equivalent for phenomenological laws with more than two
variables) from the law that is considered. There are two possible relations
between the first and second interval that are not covered by the step 3. If
the second interval strictly includes the first, no frequency number is ob-
tained. The same problem occurs when the none of the intervals includes
the other while they have at least one common member. So there are two
cases in which (SI) does not lead to the desired result, viz. an instantiation
of the schematic probability statement.
The second part of the implementation procedure consists of two steps:

(IMP,) (4) Try to instantiate the schematic statement occurring in the
modified explanation scheme obtained in step (3) of (IMP,) scien-
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tifically by means of the phenomenological law which was the
input of step 2 of (CON).

(5) Replace the schematic statement of the modified explanation
scheme with the instantiation obtained in step 4.

Step 5 can not be executed in the two cases where (SI) does not lead to the
desired result. If it can be executed, (IMP,) results in the following E-triple:

D(a, t)
F.(a, t)
Pp(G | F) = py

The triples we obtain by consecutively executing (CON), (IMP,) and
(IMP,) are always SE-explanantia: condition 2 of (AD) and step 1 of (CON)
jointly guarantee that D(a, t) has the status “empirically founded”; that F,(a,
t) has this status is guaranteed by the steps 2 and 2’ of (IMP,); finally
P5(G | F) = p, has the status “scientifically founded” because of the inter-
action of three factors: (i) the statement has been obtained by means of (SI),
(ii) the steps of (SI) constitute a proof of derivability, and (iii) by assigning
the status “empirically adequate” to a law, we enter into commitment
(COM) or its equivalent for more complex phenomenological laws. Further-
more, the triple we obtain always solves the SEE-problem we are consider-
ing. This is a result of the fact that explanation schemes we take as input
for (IMP,) always satisfy the following conditions of relevance:

(REL) (1) The object class of the schematic probability statements corres-
ponds to the property attributed in the explanandum sentence of the
problem.

(2) None of the SE-explanantia of the reference list of the explana-
tion problem is an implementation of the explanation scheme.

That the first condition is fulfilled is a consequence of step 4 of (CON). The
second condition of relevance is satisfied because of condition a in step 2
of (CON) and the fact that the procedure is interrupted if no suitable an-
tecedent modality is found.

4.3 To illustrate the method developed in 4.2, we consider the SEE-problem
with explanandum sentence “Object a at time ¢ has a period of 2.01 sec
(£0.005 sec)” (formally: P,,,(a, t)) and empty reference list. Object a is
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a pendulum. The law (P = 2mV1/g, (S, (K;, [0, + o), (K, [0, + o)) is
empirically adequate; the property P,,, is a region of (P, [0, + o[) and a
is an element of S. Therefore, this law is adequate for solving our SEE-
problem. ‘

If we take (P = 2mV/1/g, (S, (Kp, [0, + o), (K,, [0, + o[))) as input for
(CON), we obtain an explanation scheme consisting of the singular sentence
S(a, t), a disjunction of potential lengths of a at ¢, and a series of schematic
probability statements in which the property P, ,, constitutes the object class
and the potential lengths alternately constitute the reference class.

To implement this scheme, we first determine the length of a at 7. In the
rest of this example, we will assume that a at ¢ has a length of 1.000 m
(£0.5 mm). On this condition, the third step of (IMP,) results in the fol-
lowing modified explanation scheme:

S(a, t)
Ll.(l'l)(a: t)
Py(Pyq, | Lio =7

To complete the implementation, the schematic probability statement of this
modified explanation scheme has to be scientifically instantiated by means
of the law (P = 2mV/1/g, (S, (K,, [0, + o), (K,, [0, + o [))). The interval
which defines the property P, is [2.005, 2.015[. As 2m/0.9995/g =
2.00596 and 2m/1.0005/g = 2.00696, the second step of (SI) yields the
interval [2.00596, 2.00696[. As the first interval includes the second one,
the third step of (SI) yields the statement Pg(P,,, | L, o) = 1. In step 5 of
(IMP,), this statement is used to transform the modified explanation scheme

into the following E-triple:
S(a, t)

LLOOO(a: t)
Py(P, l Lo =1

This triple is an SE-explanans and solves our SEE-problem.

5. The heuristic value of the method

The definition of SEE-problems entails that an enlargement of our effective
explanatory knowledge and/or the set of singular sentences we regard as



188 E. WEBER

empirically founded is necessary for solving such problem. Because of the
discrepancy between potential and effective explanatory knowledge, enlar-
ging the latter is often possible without enlarging the former. The method
for solving SEE-problems by means of phenomenological laws which I have
developed in section 4, is based on this possibility: the phenomenological
law we select to solve the problem already belongs to our primary scientific
knowledge. A first aspect of the heuristic value of the method I presented
is that the general idea of solving SEE-problems by reducing the discrepancy
may be elaborated for other types of scientific entities. Developing a defini-
tion of the type of entity involved and constructing equivalents of (DER),
(COM) and (SI) are the most important steps of such elaboration; however,
minor adaptations to (CON) are sometimes necessary too.

The second aspect of the heuristic value of the method relates to the other
types of explanation problems. Firstly, the epistemological framework I used
to define SEE-problems may function as a paradigm for e.g. a framework
for defining causal explanation problems; in this framework, causal state-
ments (statements asserting causal connections between events) would re-
place probability statements. Secondly, the epistemological framework
developed in section 2.4 can function as a paradigm for analogical frame-
works in which the relation between scientific entities and causal statements
is laid down,; for instance, we could define derivability of causal statements

from phenomenological laws, instead of derivability of probability state-
ments.

6. Concluding remarks

The method I have developed is not unique: there are other ways to solve
a SEE-problem by means of a phenomenological law. In general (leaving
aside the different entities we may use) there are two ways to solve a SEE-
problem. The first way consists in selecting an adequate scientific entity,
using this entity to construct an explanation scheme and implementing this
explanation scheme. In the method presented in this article, this first general
way to solve SEE-problems is elaborated for cases in which the entity which
is chosen is a phenomenological law. If the SEE-problem we want to solve
is similar to one we have already solved (i.e. if the present problem differs
from a solved one only with respect to the object-moment that is involved),
a second general way is available. This second way consists in (i) adapting
the explanation scheme which has been used to solve the similar problem,
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and (ii) implementing the adapted explanation scheme. Adapting and im-
plementing the explanation schemes which (at their first use) were derived
from phenomenological laws is a second way in which phenomenological
laws can be used to solve SEE-problems.
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