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ON BCC-ALGEBRAS

Wiestaw A. DUDEK

1. Introduction

As is shown by the title of the first paper on this subject [3], much of the
work on BCK and related algebras was motivated by known work on impli-
cational logic. This is illustrated by the similarities between the names of
some of the systems. We have BClI-algebra and BCI positive logic, BCK-
algebra and BCK positive logic, Positive implicative BCK-algebra and
Positive implicative logic and Implicative BCK-algebra and Implicative
(classical) logic.

BCK-algebras form a quasivariety of algebras amongst whose subclasses
can be found the earlier implicational models of Henkin [2], algebras of sets
closed under set-substraction, and dual relatively pseudocomplemented upper
semilattices. K. Iséki posed an interesting problem (solved by A. Wronski
in [8]) whether the class of BCK-algebras is a variety. In connection with
this problem Y. Komori introduced in [6] a notion of BCC-algebras and
proved (using some Gentzen-type system LC) that the class of all BCC-
algebras is not a variety, but the variety generated by BCC-algebras, that
is, the smallest variety containing the class of all BCC-algebras, is finitely
based.

In this paper we consider the connections between BCC-algebras and
BCK-algebras. We consider also those binary relations on a set which
trivially yield the structure of a BCC-algebra.

2. BCK-algebras

The algebras we consider are those based on a set G containing a constant
0, an operation * or -, such an algebra is an algebra of type (2,0) and is
denoted by (G, *, 0) or respectively by (G, -, 0). Each such algebra will
have certain equality axioms (including x = x) and the rule of substitution
of equality as well as perhaps some other rules. The logic are those that
have implication D as their only primitive connective and modus ponens
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as a rule. There may be axioms and (or) other rules.

A BCK-logic is an implicational logic based on modus ponens and the
following axiom system.

B ADB.D.(CDA)D(CDB
C AD@BD>C.D>.BD>ADCQ
K 4> @BD

By a BCK-algebra we mean a general algebra (G, *, 0) of type (2,0) satis-
fying the following axioms:

(1) (@*D)*@*y)*¢*x) = 0,

@) *G*y)*y = 0,

3) x*x = 0,

4) 0*x = 0,

(5) x*y = y*x = 0 implies x = y.

M.W. Bunder proved in [1] that BCK-algebra and BCK-logic are isomor-
phic, i.e. theorems of one can be mapped into theorems of the other.
As it is well known (see for example [5]) every BCK-algebra satisfies

(6) x*0 = x.

Indeed, putting x < y iff x*y = 0, we obtain x < x*0, since x*(x*0) <
0 (by (2)) and 0 < x*(x*0) by (4). Hence x*(x*0) = 0. Similarly (2) and
(3) gives x*0 < x. Therefore, x < x*0 < x, which implies (6).

On the other hand, putting x = 0 in (1) and using (6) we obtain (2). Putting
in (2) y = 0 we get (3). Thus the following theorem is true.

THEOREM 1. The class of all BCK-algebras is defined by (1), (4), (5) and
(6). These axioms are independent.

Proof. To prove that these axioms are independent, we consider three
algebras defined as follows.
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*10 1 2 *10 1 2 *1o 1 2
0(0 0 0 0j0o 0 0 0{o o0 o0
1{2 0 o 111 0 o0 1 {1 0 2
212 2 0 212 0 0 2112 2 o0
Table 1 Table 2 Table 3

The algebra defined by Table 1 satisfies (1), (4) and (5). Indeed, if z = X,
then

(" )*G*yN*(*x) = O**y)*(*x) = 0%@*x) = 0.

If z =y, then

(O )*G*))*o*x) = ((*0)*0)*(y*x) = 0,
because y*x = 0 or y*x = 2.

The case x = y is obvious. If x, y, z are different, then x = 0 or y=20
or z = 0, and direct computations show that in these cases (1) holds, too.
Conditions (4) and (5) are obvious. But (6) is not true, since 1*0 = 1.

In the same manner we can prove that the algebra defined by Table 2
satisfies (1), (4) and (6), but (5) is not satisfied.

Since in every Boolean group the conditions (1), (5) and (6) hold, but (4)
holds only in one-element group, then (4) is independent.

Finally we remark that the algebra defined by Table 3 satisfies 4, 5
and (6), but ((1*2)*(1*0))*(0*2) = 2, i.e. the axiom (1) is independent.
This completes our proof.

As it is well known in BCK-algebras the equality
(T) &*y)*z = (x*z)*y
holds for all elements x, y, z.

We give a simple proof of this identity. The original proof is given in [4].
To prove (7) observe first that from (1), (4), (5) and (6) follows that the
relation < is a partial order with O as a smallest element. Moreover,

() if x < y, then x*z < y*z and z*y < z*x.

Since x*(x*z) < z by (2), then (8) iﬁlplies
(*y)*z < (*y)*(*(x*z)).
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This yields
(@*y)*2)*((x*2)*y) < (*)*(x*(x*2))*((x*2)*y) = 0 by (8) and (1).
Hence ((x*y)*z2)*((x*2)*y) < 0, which by (4) and (5) completes the proof.

3. BCC-algebras
By a BCC-algebra we mean a non-empty set G together with a binary

multiplication denoted by juxtaposition and a some distinguished element
0 such that the following axioms are satisfied for all x, y, z € G:

®)  02(y)a2) = 0,

(10) xx = 0,
(11) x0 = 0,
(12) Ox = x,

(13) xy = yx = 0 implies x = y.

THEOREM 2. The class of all BCC-algebras is defined by the independent
axioms system: (9), (11), (12), (13).

Proof. Putting in (9) x = y = 0 we obtain zz = 0 which shows that (10)
follows from (9) and (12).

The algebra defined by Table 4

0 1 2 0 1 2 0 1 2
0ojo0o 1 2 0o 2 2 00 1 2
110 0 2 110 0 2 1 {0 0 O
210 2 0 210 0 O 210 0 0

Table 4 Table 5 Table 6

satisfies (11), (12) and (13), but (9) is not satisfied since (01)((20)(21)) =
2. Every Boolean group satisfies (9), (12) and (13). Obviously, in these
groups (11) is not satisfied. In the same manner as in the proof of Theorem
1 we can prove that (9) holds in the algebra defined by Table 5. In this
algebra (11) and (13) hold, too. But (12) is not true. Similarly in the algebra
defined by Table 6 the conditions (9), (11) and (12) are satisfied. Obviously
(13) is not satisfied, which completes our proof.
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Y. Komori noticed in [5] and [6] that if in the axiom system of BCC-al-
gebras we replace (9) by (xy)((yz)(xz)) = 0, then we obtain the axiom
system of BCK-algebras (but in the dual form).

Moreover, if (G, *, 0) is a BCK-algebra and an algebra (G, -, 0) of type
(2,0) is dual to (G, *, 0), i.e. if xy = y*x, then by (7) and (1) we get

02)(()(2)) = (@*)*G*0)**y) = (Z*)*@*y)*¢*x) = 0,

which proves the following theorem.

THEOREM 3. If (G, *, 0) is a BCK-algebra, then its dual algebra (G, -,
0), where xy = y*x, is a BCC-algebra.

Note that the converse is not true. As an example we consider algebras
defined by Table 7 and Table 8.

0 1 2 3 0o 1 2 3
0j]0 1 2 3 0jo 1 2 3
10 0 2 3 1{fo 0 2 3
210 0 0 1 210 0 0 3
310 0 1 0 310 0 1 0

Table 7 Table 8

First we prove that the algebra given by Table 7 is a BCC-algebra. It is
clear that in this algebra the conditions (10), (11), (12) and (13) are satis-
fied. Obviously (9) holds for x = 0 or z = 0. Similarly (9) is satisfied if
x=yorx=zory =z Fory = 0 (9 has the form z(xz) = 0. Direct
computations show that this identity holds in the algebra defined by Table
7. Also it is easily verified that (9) holds if x, y, z are different. Hence this
algebra is a BCC-algebra. But in the dual algebra we have (3*1)*2 = 2(13)
= 1 and (3*2)*1 = 1(23) = 0, i.e. the identity (7) is not true. Therefore
the dual algebra is not a BCK-algebra.

In the same manner we can prove that the algebra defined by Table 8 is
a BCC-algebra, but in this algebra we have 1(32) # 3(12), which shows
that in its dual algebra the condition (7) is not true.

In a similar way as Theorem 3 we can prove the following theorem.

THEOREM 4. A BCC-algebra (G, -, 0) is dual to some BCK-algebra iff
it satisfies the identity z(yx) = y(zx).
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As an immediate consequence we obtain

COROLLARY. If a BCC- algebra has at most three elements, then it is dual
to some BCK-algebra.

Proof. 1f a BCC-algebra has at most three elements, then in the word z(yx)
at least one element is O or at least two elements are equal. If y = z or at
least one from elements x, y, z is 0, then the identity z(yx) = y(zx) is satis-
fied. If x = y or x = z, then this identity is equivalent to the identity a(ba)
= 0, which immediately follows from (9). Hence such BCC-algebra satisfies
the condition z(yx) = y(zx).

4. Partial orders and BCC-structures

Let (G, -, 0) be a BCC-algebra. We define a binary relation of G as fol-
lows

(14)x < yiffxy = 0.

Direct computations show that this relation is a partial order on G with 0
as a largest element.

Now we give some fundamental properties of this relation.

THEOREM 5. The relation < defined on a BCC-algebra by the formula
(14) satisfies the following conditions:

@) x < yimplies zx < zy and yz < xz,
@ x0z) < x((uy)(uz)),

@) ()2)u < (2)u,

v )z <yz,

M )x2) < ylx),

(vi) x < yimpliesx < zy,

i) x = zx,

viii)  yz < x(yz),

@) )z < x(z),

@) )z < y(uz).

Proof. The first condition follows from (9) and (12), in particular, if x <

Y, then yz < (xy)(xz) = O(xz) = xz. Conditions (ii) and (jii) follow from
(9) and (i). From (iii) and (12) we obtain (xy)z = 00z = (x0)(xy))z <
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(Oy)z = yz, which proves (iv). Putting z = xz in (iv) we get (v). If x < y,
then zx < zy and 0 = (zx)(zy) < x(zy) by (v). But 0 is a largest element,
then 0 < x(zy) implies x(zy) = 0, i.e. x < zy, which proves (vi). As a
simple consequence of (vi) we obtain (vii) and (viii). From (iv) and (viii)
follows (ix). Since y < xy < u(xy), then (u(xy))(uz) < y(uz) by (i). But
()2 < (u(xy))(uz) by (9). Hence (xy)z < y(uz), which completes our proof.

As it is well known if (G, S) is a partially ordered set with a smallest ele-
ment 0, then G can be made into a BCK-algebra by

Xy = { 0 if xSy
x otherwise.

This is called the trivial structure on (G, *). The partial order S on G con-
sidered as a BCK-structure coincides with the original partial order defined
by the BCK-operation.

The similar result holds for BCC-algebras. Indeed, let G be a set with a
distinguished element 0 and let R be a binary relation on G. In G we define
a multiplication as follows

_ 0 if xRy
= { y otherwise.
THEOREM 6. Let R be a partial order on G. If there exists 0 € G such that
xR0 for all x € G, then (G, -, 0) is a BCC-algebra. Moreover R coincides
with the original partial order defined by the BCC-operation.
Proof. We prove only (9), since the other axioms are obvious. First we
consider the case xRy. If also ORxz, then (yz)((xy)(xz)) = (y2)(0(x2)) = (y2)0
= 0. If not(0Rxz), then (yz)((xy)(xz)) = (yz)(xz). For yRz the transitivity of
R and xRy yields xRz. Thus (yz)(xz) = 0. If not(yRz), then (yz)(xz) = z(xz),
which gives 0, without regard to whether xRz or not(xRz).
In the case not(xRy) for xRz we obtain (yz)((xy)(xz)) = (y2)(¥(x2)) = (y2)(y0)
= (2)0 = 0. If not(xRz), then (y2)((y)(x2)) = (2)(¥(x2)) = (¥2)(yz) = 0,

which completes the proof.

In the same manner we can prove that a BCC-algebra with the trivial
structure satisfies the condition y(zx) = z(yx). Hence as an immediate conse-
quence of Theorem 4 we obtain

THEOREM 7. A BCC-algebra has a trivial structure iff it is dual to a BCK-
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algebra with a trivial structure.

In some cases on G there exists a partial order without the maximum con-
dition (i.e. a partial order R such that not(xR0) for some x € G) which
defines on G the BCC-structure. Obviously this order does not coincide with
the natural partial order defined by the BCC-structure. For example, let G
= {0, a} and let ORO0, aRa, not(aR0) and not(ORa). Then (G, -, 0) is the
unique two-elements BCC-algebra, but R does not coincide with the BCC-
order < sincea < 0.

Now we give two methods of construction of BCC-algebras.

LEMMA 1. Let (G, -, 0) be a BCC-algebra and let a € G. Then the set
G U {a} with the operation [J defined as follows

xyifx,y € G,
0 ifxG\{0},y =aq,
a ifx=0,y =a,
0 ifx=a,y=a,
yifx=a,y€ G

xOy=

2

is a BCC-algebra.
Proof. We verify only the axiom (9). For x, y, z € G this axiom is satis-
fied. If x = a, then

[0 ifz=a
@DZ)D((aDy)D(aDZ))-{ 002 0@Oy O)ifz #a

In the second case fory # a we have (y 0 z) O ((a O y) O z) = (y2)(y2)
=0.Fory=aweget(y Oz) O ((@aOy) Oz) = 2(0z) = 0sincez #
a. Hence (9) holds for x = a.

Nowlety =a. Ifx=0,then (@02 0 (xOa O xO2) = (0O
220 @0 z)=0.Forx # Owehave (@ J2z) O (x Oa) O (x O 2)
=@O2z20x0O2) =0.

The case z = a is obvious.

LEMMA 2. 1f {(4,, O;, *)};  » is a non-empty family of BCC-algebras,
where A is a totally ordered set with initial element «, then the set

UA,, with the operation defined by the formula

FEA
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Xy ifx,y€ A,

Xy ifx,y €A, xy # 0, a < &,
xy = 0,ifx,y €4, xy =0, a<§,

0,ifx EA,y €A, t<n,

YEX E A, yEAE Ly,

is a BCC-algebra.

The natural order induced by this operation coincides with the original
order of each A4;. Obviouslyx < yforallx € 4, andy € A, where { <
7. If A = {a, B8}, @ < B, G, = G, G; = {0} then this construction is not
a generalization of a construction from Lemma 1.

Using the above construction we can prove the following theorem.

THEOREM 8. For any cardinal n = 4 there exists a BCC-algebra which
has n elements and which is not dual to any BCK-algebra.
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