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USING HILBERT’S CALCULUS

B. H. SLATER

1. Introduction

Hilbert’s epsilon calculus can be seen as a highbrow alternative to Fregean
predicate logic, useful only for proving certain advanced meta-logical theo-
rems. In this paper I demonstrate that it also has a ready application to
undergraduate logic teaching; it simplifies considerably some practical
procedures there, and clarifies the associated theoretical issues.

The epsilon calculus is a conservative extension of the predicate calculus.
That means no new theorems involving just the language of the predicate
calculus are provable in the epsilon calculus, although all theorems in the
former are provable in the latter, and further theorems as well. The further
theorems essentially employ epsilon terms, i.e. terms of the form ‘exFx’.
In moving over to using Hilbert’s epsilon calculus, therefore, the primary
justification lies in the ability to prove these new theorems. But the proofs
of standard theorems, it turns out, can be made much more convenient, so
not only necessity, but also ease and facility drive the change to using the
extended calculus. And this applies not only with the proof theory but also
with the metatheory. Metatheorems of the predicate calculus become much
more straightforward, but further important metatheorems become available,
as well.

To illustrate the need and usefulness of the epsilon calculus I shall thus
first present some specific theorems employing epsilon terms, showing how
they are not available with standard processes. But I shall also demonstrate
how the epsilon calculus simplifies normal predicate proofs, of theorems
which are standardly available. I shall then improve upon some metatheo-
rems of the predicate calculus, and prove some of the epsilon calculus. The
latter proofs are distinctive for their brevity. But the former show something
quite new about the predicate calculus: that its semantics can be dispensed
with in the epsilon calculus, and therefore that it is only certain special
features of the predicate calculus which give rise to that conception of
things.
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2. Epsilon calculus proofs

Hilbert’s epsilon calculus, of course, is a richer logic than Frege’s, employ-
ing individual terms like ‘exFx’ for every predicate ‘F’ in the language.
Such terms are used to formulate further logical truths which need to be
codified, beyond those in the predicate calculus, for example:

There is a god.
So that god is a god.

Such a logical truth employs an expression not formalisable in the predicate
calculus: the referring phrase ‘that god” — and the associated abbreviation,
or pronoun, ‘he’. Predicate logic cannot formalise referring expressions and
has had to resort, since Russell’s time, to using ‘incomplete symbols’, i.e.
certain quantifier phrases, to roughly approximate to them. Part of the shift
to employing, indeed perhaps even understanding the epsilon calculus re-
quires one to be dissatisfied with such roughness. One must insist on com-
plete symbols instead (Goddard and Routley 1973, p558). Thus the above
is properly

(3x)Gx.
So GexGx.

For the epsilon term symbolises the referring expression and the associated

pronoun (Slater 1986, 1987(a)(b), 1988(a)(b), 1989(a)(b)(c)(d), 1992(a)(b)).
Moreover it does so without bringing in any imputation of uniqueness, as
with Russellian iota terms.

The only axiom schema needed to formalise the behaviour of epsilon terms
is in fact

Fy O FexFx,

(so long as y is free for x in Fy). This is a specialisation of the more gen-
eral thesis

@)(@y)Fy 2 Fx)

which is all that is available, just in the predicate calculus. But the quan-
tifiers can be now introduced by definition, via, for instance,



USING HILBERT’S CALCULUS 47

(@x)Fx = FexFx,

and it is essentially because of this that all predicate calculus theorems are
included in the epsilon calculus ones.

But a choice function semantics for epsilon terms is commonly given
(Leisenring 1969), and that validates a further axiom

x)(Fx = Gx) D exFx = exGx,

which has no place in intensional logic, i.e. where discriminations may need
to be made between predicates determining the same set. Staying with just
the first axiom, discriminations between such predicates can be made by
separating the referents of the associated epsilon terms, which become the
central cases around which applications of the different predicates are based
(Slater 1988(a) p297, Slater 1989(d) p28, c.f. Copi 1973, p109). Semantical
interpretations for predicate symbols, instead of being their denotations, are
then simply full predicates in natural language, and the epsilon symbol
likewise merely abbreviates a part of ordinary speech: ‘exFx’ means, for
instance, ‘that x which is F’, ‘ey(Fy.y # exFx)’ means ‘that other x which
is F’, and ‘ex(Fx.(y)(Fy D y = x))’ means ‘the one and only x which is
F’. As we shall see more fully in section 4, the referent of ‘exFx’, in any
context of use, is then simply exFx — just because it is a context of use —
so there is no choice about that. It is the denotation of predicate terms, in
other worlds and minds, which alone may vary, so the referents of epsilon
terms are fixed, and only their (contingent) properties are a matter of
choice.

On this basis we can now state, and prove several theorems of the epsilon
calculus which are not in the predicate calculus. Indeed, the usefulness of
the epsilon calculus first came to my notice when attempting to formalise
an argument which Geach took from Strawson (Geach 1962, p125)

A man has just drunk a pint of sulphuric acid.
No-one who drinks a pint of sulphuric acid lives through the day.
So he’ll not live through the day.

There is, of course, no way to formalise the pronoun ‘he’ in standard
Fregean logic, with the conclusion as stated, and Geach took the extreme
view that there was no proper argument of this apparent form. But the first
premise ‘(3x)(Mx.Dx)’ is now equivalent to ‘Ma.Da’ for a certain ‘a’,
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allowing that same ‘a’ to figure in the conclusion. Thus the above argument
is, simply:

Mex(Mx.Dx).Dex(Mx.Dx),
(x)((Mx.Dx) D -Lx),
s0, 7 Lex(Mx.Dx).

And its proof is immediate, by instantiating the second premise ap-
propriately, and then detaching its antecedent. Apart from the transcription
into epsilon terms, therefore, the proof follows quite standard processes.
Now the pronoun in such an argument has been called by Evans an ‘E-
type’ pronoun (Evans 1977), and it was soon evident to me that other E-type
pronouns equally could be formalised using epsilon terms. For instance,

A man has just drunk a pint of sulphuric acid.
He won’t live through the day,

is clearly

(3x)(Mx.Dx). "Lex(Mx.Dx),
rather than, say

(3x)(Mx.Dx. —Lx),

which would be expressed using a relative pronoun in place of the previous
personal one, as in

A man has just drunk a pint of sulphuric acid who will not live through
the day.

Evans had argued independently that such pairs of forms are not equivalent,
and here was the formal proof of it. For the two formal expressions are not
equivalent, though the first entails the second. That entailment comes again
from realising that the (3x)(Mx.Dx) in the first is equivalent to
Mex(Mx.Dx).Dex(Mx.Dx), hence, by existential generalisation we get the
result. The lack of entailment in the reverse direction arises because there
is no requirement that we identify ex(Mx.Dx) with ex(Mx.Dx. ~Lx) — the
two epsilon terms in the two expressions.
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But the distinction between relative and personal pronouns is not always
of any moment, for it is easy to prove, by contrast, that there is a total
equivalence between two comparable forms which include uniqueness
clauses:

@x)(Mx.Dx.(y)(My.Dy) D y=x)). "Lex(Mx.Dx.(y}((My.Dy) D
y=x)),
@x)(Mx.Dx.(y)(My.Dy) D y = x).Lx),

i.e.

There is a man who has just drunk a pint of sulphuric acid, and who
alone has done that. He will not live through the day,
There is a man who has just drunk a pint of sulphuric acid, who alone
has done that, and who will not live through the day.

The entailment from first to second follows the same pattern as before, since
the first conjunct in the first statement provides, after replacement with its
epsilon equivalent, a series of clauses which with the last conjunct generalise
to the second statement. But now there is a requirement that the two as-
sociated epsilon terms be identified, because of the uniqueness clause. We
have to identify

ex(Mx.Dx.(y)((My.Dy) D y = x).7Lx)
with

ex(Mx.Dx.(y)(My.Dy) O y = x)),
because the second statement entails the first conjunct in the first statement,
and everything which is M and D has to be the same thing. So not just an
entailment, but a full equivalence is obtained.

Sometimes, however, with related forms, an equivalence is obtained

without identification of the associated epsilon terms. For we can also

formalise personal pronouns which in no way are related to relative ones:
what are called ‘A-type’ pronouns (Sommers 1982). Thus the sequence

A man is at the door. Oh! It is not a man, it’s a woman,



50 B. H. SLATER
is
@Ex)(Mx.Rx). "Mex(Mx.Rx). Wex(Mx.Rx).

The A-type pronoun ‘it’, in this case, is ‘the man at the door’ who, in the
second sentence, is said, paradoxically, to be not a man. Now the second
sentence, as a change of mind, makes perfectly good sense, on its own. For
there is no logical requirement that Mex(Mx.Rx) — or that Rex(Mx.Rx) —
since, together, they only constitute the contingent truth (3x)(Mx.Rx).
However, there is no way that this sentence could make sense if it was
conjoined to the first sentence. And neither would we make sense if we
Joined two similar sentences with a relative pronoun. Thus there is no sense
in

3@x)(Mx.Rx. " Mx.Wx),

But while that makes the two forms logically equivalent, they are so in-
dependently of whether the two associated epsilon terms refer to the same
thing. The two forms are logically equivalent simply because each, sepa-
rately, is inconsistent.

3. Predicate calculus proofs

Allen Hazen (Hazen 1987) has some points to make akin to those now to
be made here. For he tries to correct traditional judgements about the pedag-
ogic usefulness of the predicate quantification rules, by showing the ad-
vantage of the epsilon calculus ones. But Hazen still seems to regard epsilon
terms as mere computing devices, since he does not address the main pe-
dagogic question of how these terms are to be read when in his premises
and conclusions. Moreover he does not anticipate the reduced semantics for
the epsilon calculus sketched above, and considered more fully in section
4. But the difference between the epsilon calculus and the predicate calculus
is, in the first place, a difference in their locus of application, not their
mode of operation. This was the point of section 2. So even on the first
matter of improving predicate proofs we can better Hazen. For we do not
see epsilon terms as merely improved computing devices: we give them a
sense, and thereby obtain a complete rationale for using the new rules.

I shall do that by focussing on the way quantification is handled in natural
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deduction systems, Hilbertian natural deduction systems, as well as Fregean
ones. So consider first the practical difficulties which are commonly en-
countered with ‘flagging’ in many direct Fregean predicate proofs. Virginia
Klenk is typical of many text book compilers when she gives the following
set of quantifier rules (Klenk 1983, p295):

Universal Instantiation Existential Instantiation

(X)ex (3x)ex  provided

/.. pa /. .ea we flag ‘a’.

Universal Generalisation  Existential Generalisation
flag a a

_r_ﬁg_ / w (Sx)(px

.. (X)ex o

to which she must add the following flagging restrictions:

R, A flagged letter may not appear, either in a formula or as a letter to be
flagged, previous to the step in which it gets flagged.

R, A flagged letter may not appear either in the premises or in the conclu-
sion of a proof.

R; A flagged letter may not appear outside the subproof in which it gets
flagged.

Clearly, in natural deduction treatments of Hilbert’s logic the troublesome

rules of Existential Instantiation and Universal Generalisation may be re-
placed by

QEX X (3x)ex
(x)ex PEXPX

and then not only the flagging restrictions, but also flagging itself may be
abandoned. For instance, to prove ‘(x)Gx’ from ‘(x)(Fx D Gx)’ and
‘(x)Fx’ we do not need to proceed

1. x)(Fx D Gx) Assp
2. X)Fx Assp
3. »flag a F.S. (U.G)
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4. | Fa U1 2, A%
5. | Fa D Ga U.L 1, a/x
6. | Ga M.P. 4,5
7. (x)Gx U.G. 6, a/x,

but can omit the ‘flag a’ line, and also the subproof notation, simply taking
‘a’ to be ‘ex—Gx’.

So much Hazen might have said, had he gone into details. But the further
point we can now add shows why taking ‘a’ to be ‘ex 7Gx’ works. This
is not just a means of deriving the answer, for unlike with ‘Ga’, ‘Gex ~Gx’
itself could be a conclusion drawn. So it must have an interpretation in its
own right. The object ex 7Gx is a putative counterexample to the generalisa-
tion required. Indeed if anything is going to be not G then it is, by the
epsilon axiom, so it is the strongest putative counterexample. That is why
showing it is G is sufficient to establish nothing is not G.

The flagging restrictions in Klenk’s procedure, of course, prevent any
conditional conclusion of the form

(3x)ex D pa

being drawn from the rule of Existential Instantiation, which makes her *.".”
in that rule quite inappropriate. The lack of entailment other writers respect
by reworking this rule into another form; for instance Benson Mates states
his rule of Existential Specification as follows (Mates 1965, p117):

Suppose that (3x)¥ appears on line i of a derivation, that ¥ «/@ appears
(as a premise) on a later line j, and that ¢ appears on a still later line
k; and suppose further that the constant 8 occurs neither in ¢, ¥, nor
in any premise of line k other than ¥ «/8; then ¢ may be entered on
a new line. As premise-numbers of the new line take all those of lines
i and k, except the number j.

But given § = ea¥« there would be an entailment, in Hilbert’s calculus,
between the corresponding lines i and j, making the repetition of ¢ needless,
and the reduction of premises automatic. And again the conclusion of the
entailment on line j is a conclusion in its own right, so the term used is not
a mere computing device. The entailment is of the kind we first considered,
with ‘ea¥o’ a phrase referring to the object in the antecedent existential
clause.
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In total, therefore, in place of, say,

{1} 1. @yxFxy P

{2} 2. (x)Fxa P

{2} 3. Fba 2US

{2} 4. @y)Fby 3 EG

{2} 5. (x)@y)Fxy 4 UG

{1} 6. (x)@y)Fxy 1,2, SES,

we get, with a = ey(x)Fxy, an inference to the desired conclusion which
terminates at line 5, since line 2 is a straight consequence of line 1. More-
over with b = ex(3y)Fxy the move from line 4 to line 5 is immediate,
without reference to any of Mates’ restrictions on Universal Generalisation.
Thus he says (Mates 1965, p108):

The sentence (a)p may be entered on a line if ¢ «/8 appears on an
earlier line and 8 occurs neither in ¢ nor in any premise of that earlier
line; as premise numbers of the new line take those of the earlier line.

The presence of his restrictions means that Mates’ move is again not an
inference from the earlier premises. The earlier premises must be checked
to ensure that 8 is sufficiently arbitrary, indeed is totally variable. But
arbitrariness and variability is not an issue in the epsilon case, and indeed
the appropriate § may occur in a premise from which the earlier line is
derived. Thus in place of {1} and {2} above we may have the same con-
joined with, say ‘Pex 1(3y)Fxy’, and the same conclusion would be avail-
able. All that matters is that this epsilon term denotes the strongest putative
counterexample to the proposed universal conclusion.

The complication of such standard rules as Universal Generalisation (in
all its varieties) and Existential Instantiation and Specification is perhaps one
reason why indirect proofs are often preferred. In Richard Jeffrey’s account
of Truth Trees, for instance (Jeffrey 1967, 1981, 1991), much of the clerical
fastidiousness involved in applying the above predicate calculus direct rules
is avoided, since he requires (Jeffrey 1967, p113) merely Universal Instan-
tiation, mostly with ‘old’ names, and Existential Instantiation, invariably
with ‘new’ ones. But the latter rule, again, is not a rule of inference, despite
Jeffrey’s description of it as such, being, amongst other things, context
dependent because of the novelty clause. So the appeal of the indirect pro-
cess is enhanced, once we replace Jeffrey’s rule by a proper inference rule,
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and not simply because of the provision of context independence. For the
resulting entailment enables us, invariably, to transform the indirect proce-
dures so that they become direct ones.

Jeffrey, by contrast, would not be able to extend his direct proof concept
of “Coupled Trees’ from the propositional to the predicate case, expressly
because his Existential rule does not generate consequences. Thus he says
(Jeffrey 1967, p93):

In a direct proof, we start with the premises and try to get to the conclu-
sion via sound rules of inference. In the corresponding modification of
the tree method, we start a tree with the premises, omitting the conclu-

sion:
v ADB
v AD-B
/ \
—A B
oA\ /A
—“A B A -B

X

The three open paths represent all possible ways in which the premises
can both be true, and each path contains the conclusion ‘= A’. Then
every possible way in which the premises can both be true is a way in
which the conclusion would be true.

The general idea is that a conclusion is directly available if it is derivable
in each open branch, using, when necessary, tautological premises of the
form ‘A v A’

Now there is often a predicate calculus example of this, for instance, in
the derivation of ‘(3x)Gx” from ‘(3x)Fx’ and ‘(x)(Fx D Gx)’ as follows:
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v (3x)Fx
x)(Fx D Gx)
Fa
v Fa D Ga
/ \
—Fa Ga
X /A
v (3@x)Gx  (Ix)Gx
(x)Gx
—Ga
X

But outside Hilbert’s calculus the further derivation of the conclusions ‘Fa’,
‘Ga’, would not be justified, because they are not given an independent
sense. Hence only indirect proofs, in this mode, are available for the predi-
cate calculus, since then any individual terms will remain mere computing
devices.

But we have discussed the natural interpretation of conclusions of the form
‘FexFx’ and ‘GexFx’ above. And having given such statements a sense,
indirect proofs using Truth Trees may always be converted to direct proofs,
for instance by adding to the premises a disjunctive fork containing the
conclusion to be drawn, in one branch, and its negation in the other. If and
only if the branch with the negation of the conclusion in it closes, the con-
clusion will remain in every open branch. Thus the above two proofs may
be normalised as

v/ ADB v (3x)Fx
v AD B (x)(Fx O Gx)
/ \ / \
A A @x)Gx v (@3Ex)Gx
I\ Fa
A B v Fa D Ga
x [\ / \
A -B —Fa Ga
X X X (x)Gx
—Ga
X

The 'predicate proof on the right needs one small, but significant modifica-
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tion, which will be given later.

Kit Fine, in his recent book on standard quantification rules, promises a
further one dealing with the epsilon calculus, but it would seem he has not
yet pursued the matter very far, since he does not foreshadow in any way
(c.f. Fine 1985, pp 90-93) the radical simplifications and clarifications
which it is now evident are immediately available. Moreover, the expedient
of using arbitrary names in natural deduction treatments of Fregean pre-
dicate logic Fine almost exalts to a virtue, since he constructs a ‘provi-
sional” ontology of arbitrary objects for such names to range over (Fine
1985, Ch. 1). In direct contrast to Hazen, he therefore does not clearly see
that these terms are mere computing devices with no other logical sig-
nificance, introduced merely to facilitate deductions. Fine almost takes
arbitrary names to be real names referring to a previously unknown breed
of thing. It is to be hoped that when Hilbert’s calculus comes to be used
more frequently at an everyday level such metaphysical theorising will be
excluded. Likewise giving terms no meaning, as with Hazen, must be ruled
out. Certainly the individual terms in Klenk’s and Mates’ predicate proofs
above are mere computing devices with no external significance. But Hilber-
tian epsilon terms refer to objects, and the objects they refer to are still
objects in this world, i.e. not objects out of our normal experience.

4. Predicate calculus metatheory

Now not only are the quantification rules and their rationale easier to apply
and understand once we come to use Hilbert’s calculus, the specific way it
appears we should do this turns out to have many other theoretical benefits.
For if we adopt the modification of Jeffrey’s Truth Tree approach described
above, much of the meta-theory and semantics associated with both the
predicate calculus and the epsilon calculus becomes more straightforward.
Indeed the Truth Tree method encapsulates Herbrand’s Theorem, and the
proofs of this and Skolem’s Theorem together with the First and Second
Epsilon Theorems become more available.

Let us contrast, therefore, the tautology calculus (TC), developed, fol-
lowing Jeffrey, from the rules

—p p.q v

p

q ~P.9 - V9
\ -p vV g -p. Tq
q

p
| /
p p
q
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with the predicate calculus (PC) developed from these with

x)Fx  (3x)Fx —(x)Fx —(3x)Fx
Fa Fb @x)-Fx . (x)-Fx

where ‘b’ must be ‘new’, and ‘a’ must be ‘old’ unless no other terms are
available, and with the epsilon calculus (EC) developed from the former
rules together with

(x)Fx  (3x)Fx =(x)Fx —1(3x)Fx
Fa FexFx (3x) Fx (x)Fx

where ‘exFx’ is an individual expression for all predicates ‘F’ in the lan-
guage, and where ‘a’ must be first ‘ex 7 Fx’, and then any ‘old’ term. In
all of these systems, by reducing closed formulae of the form ‘P.—C’ to
absurdity (X), we prove ‘P D C’ and thereby validate ‘P .. C’. But we
can also derive C directly from P, if the tree

P
I\
C =g

closes on the right. Note that the need for the first instantiation from (x)Fx
to be Fex—Fx, in the EC rules, was omitted in the normalised predicate
proof above. It corresponds to the possibility that ‘a’ is not old, in the PC
rules. But it is of more considerable moment, and its full significance will
be discussed later.

Now the adequacy of the Truth Tree method depends on Herbrand’s
Theorem (c.f. Hodges 1977, §36). Herbrand’s Theorem, giving a certain
understanding of the existential quantifier, comes by generalisation upon
such EC results as

@y)X)~Fyx = (3y) "FyexFyx,

in which the epsilon term introduced on the right is called a Herbrand
function. We can in this way remove all universal quantifiers from prenex
formulae, and the additional fact that, as it might seem, existential quan-
tifiers symbolise disjunctions of unspecified length, makes all such formulae
in a sense equivalent to disjunctions. The exact statement of the additional
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fact comes through applying Jeffrey’s “Tree Theorem’ i.e. Konig’s Lemma
(Jeffrey 1967, p151): if there is no open path through a tree there is some
finite stage at which there is no open path. So in the case above, if no
valuation makes

=(3y) ~FyexFyx
true, that means that the tree

(y) FyexFyx
FaexFax
FbexFbx

in which a = ey ~FyexFyx, b = exFax, and so on, closes in a finite length.
But that reduces to absurdity a finite conjunction of instances of the matrix
Fyx. So it makes tautologous a finite disjunction of instances of —Fyx, the
matrix of the original existentially quantified expression. The result is
reversible because each of those instances of —'Fyx entails the original
existentially quantified expression.

By generalisation, any predicate calculus formula is valid just so long as
a finite disjunction of instances of its matrix (when it is in prenex normal
form) is tautologous, i.e. if and only if a finite conjunction of instances of
the negative of that matrix reduces to absurdity, as in indirect truth trees.
Jeffrey’s adequacy proof of the Truth Tree method supports this conclusion
by means of a semantic argument about valuations. He shows (Jeffrey 1967,
p171) that there is no open path through a finished tree if and only if no
valuation makes all initial sentences true.

However, Jeffrey’s argument for the ‘if” part of his biconditional contains
a difficulty, since he shows that each open path would describe some valua-
tion in which the initial sentences are true through showing that if an initial
sentence is false in a valuation so is one of its conclusions, and repeated
application of this principle until a false atomic, or denial of atomic, sen-
tence was obtained would stop that sentence being true in the valuation
described by the path. So his rules only allow Jeffrey ‘limited upward
correctness’ (Jeffrey 1967, p167), since in order to maintain his principle
he has to say, with respect to his universal quantifier elimination rule, that
the quantification there be limited merely to the universe of discourse of the
path. Only that way can he ensure that a false universal premise has one of
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its drawn conclusions false. But this makes the interpretation of that quan-
tifier variable.

Now the EC process is an improvement upon Jeffrey at this point, since
the rules give total upward correctness in his sense. If it is false that every-
thing is F, then for sure one of the stated consequences of ‘(x)Fx’ is false,
namely the immediate one, since if (x)Fx is false then (3x)—Fx, and so
“FexFx. Hence, in the EC rules, the universal quantifier does, in-
variably, mean ‘everything’. That is ensured by the special provision for
novelty.

But it is the contrast between the two sorts of rules which concerns us
here, for it shows there is a need for an interpretation in the one case,
where there is no need in the other. Lack of ability to specify the prime
counterexample to a universal statement leaves Jeffrey saying that if such
a statement is false just one of its instances is false, but with no way of
ensuring that that instance is one which has actually been drawn, without
restricting the universal claim just to the universe of discourse of the path.
It thus seems necessary that there be a model for a universal statement which
restricts it so that it does not cover strictly ‘everything’, but only, say two
things. Jeffrey gives an example of this in Jeffrey 1991, p53:

v (3x)Px
v (3x)Qx
v @3)(Px.Qx)
Pa
Qb
(x) = (Px.Qx)
v  ~(Pa.Qa)
v  ~(Pb.Qb)
I\
—Pa 2Qa
X I\
10 “Pb Qb
X

00 1O\ B W —

O

Jeffrey is here trying to invalidate “Someone’s up, someone’s down, so
someone’s up and down” and the middle path of the tree, thus defines, for
him, a certain ‘interpretation’, C:
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Domain: {123
Extensions of ‘a’, ‘b’ 1,2
Extension of ‘P’ {1}
Extension of ‘Q’ {2}

He remarks “...line 6... draws truth up from the lines (7 and 8) that come
from it by UI — not because Ul is complete (it isn’t), but because in C the
items named by ‘a’ and ‘b’ exhaust the domain, so that what’s true of both
of them is true of everything”.

By contrast, using epsilon terms, the extensions of ‘a’ and ‘b’ are auto-
matic, while the full extension of ‘P’ and ‘Q’ is irrelevant, and likewise
whether ‘a’ and ‘b’ exhaust the universe. We need an extra line, before line
7, with an instantiation to ex(Px.Qx) to ensure completeness, and then the
tree shows that someone can be in, and someone can be out, and everyone
can be not both in and out, so long as that one who is in (exPx, i.e. a) is
not out, and that one who is out (exQx, i.e. b) is not in. By ‘everyone’ here
is indeed meant everyone, although how many more there are than a and
b is of no concern, and likewise of no concern is the further extension of
‘P’ and ‘Q" — although, of course, nothing further is both P and Q.

A comparable consequence holds for the understanding of existential
statements. These, it might seem, are unlike individual statements in that
they merely say that one of a group of distinct objects has a certain proper-
ty, without specifying which. An interpretation of an existential quantifier
would therefore just specify the domain, i.e. extent of the quantification.
But while we know from Herbrand’s Theorem that provable existential
statements relate to tautological disjunctions, our semantical interpretation

of any exitential statement must now also respect the fact that we can say,
for instance,

(3y) "FyexFyx = —FaexFax,

and so the above disjunction of instances of =Fyx, it turns out, is only true
because a certain specific one of its disjuncts is true. In Herbrand’s Theo-
rem, what is ultimately provable, therefore, is not a statement about a series
of objects, as lack of epsilon terms might lead us to believe, but merely a
statement about one object. So the alternative terms in the disjunction come
in maybe just as nominal options for referring to that thing. After all, the
disjunction in Herbrand’s Theorem is not an exclusive one, bringing in
necessarily real options, so all its alternatives might be the same. The exis-
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tential quantifier is thus misleadingly thought of if it is taken to relate to a
plural universe of individuals: an existentially quantified statement is just
another statement about a single individual, merely a nameless one. Remem-
ber, we can only prove by logic that there is one thing, @x)(x = ey(y =
¥)). So even a provable disjunction cannot be a statement which requires
a more extensive universe of objects for it to be understood. In the dis-
junction of instances of —"Fyx above, there is thus only necessarily a more
extensive ‘universe of discourse’ in its proper sense: there may be more
than one name in the distinct formulae, but that does not reflect on how
many objects there are in the world. On this understanding, when doing
logic with the epsilon calculus, though not when with the predicate calculus,
we can stop thinking about the objects to which our language refers, indeed
perhaps stop doing semantics in its traditional sense. For the truth values
of formulae will then be given simply as they arise in deductions, along with
the identity of any terms, including epsilon terms, found there.

Jeffrey’s argument for the ‘only if’ part of his biconditional above shows
again how the need for semantics arises in his case. For like the ‘if’ part
it also contains a difficulty. The difficulty now is a consequence of the point
we noticed before: because his rules do not always generate entailments
Jeffrey can only get ‘limited downwards correctness’ (Jeffrey 1967, p165).
Given a valuation of the premises, the conclusions of his rules are only
guaranteed to be true either in that valuation or in some nominal variant of
it. The epsilon rules, of course, get round this difficulty by not employing
names, only descriptions, and being thereby totally downward correct: if
there is an F then that F is F, irrespective of what name is used to refer to
it. As a result there is no need for any ‘valuation’. But the point also in-
dicates where any ‘choice’ or ‘interpretation’ would be in any semantics
for epsilon terms. It would be nowhere, for there is, for instance, absolutely
no choice or interpretation regarding what entity ‘exFx’ refers to in ar-
guments of the form

(3x)Fx
FexFx.

The ‘exFx’ here refers not to anything which is F, but a certain (unknown)
thing which is F brought up in the quantifier antecedent. The object in-
volved is given in the quantifier introduction, and so any alternatives in

regard to it are merely nominal ones deriving from ignorance of that thing’s
name.
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A modification of Jeffrey’s charming story about Zeus will illustrate this,
at the same time as leading us out of the traditional choice-function seman-
tics for epsilon terms. Thus Jeffrey says in part (1st ed. p170):

If the rule in question was one of those for the quantifiers and was not
vacuous, the top list has only one descendant: a box containing a single
sentence of the form ... n ... where n is some name. In this case, Zeus
adds the sentence to the path and addresses himself to the question of
whether he shall retain the valuation of stage 1 or replace it by a nomi-
nal variant. The answer depends on whether the name n is new to the
path, as it must be if the rule in question was the one for (3x), and as
it may be if the rule was the one for (x). If the name is not new, he
keeps the valuation of stage 1; if it is new, he replaces that valuation
by a nominal variant in which the name n is assigned a referent that
makes ... n ... true but which otherwise agrees with the valuation of
stage 1. There is sure to be such a referent for n since the premise
(x)...x... or (3x)...x... is true in the valuation of stage 1.

Now in line with this, and the traditional semantics of epsilon terms, we
might say, in the EC case, that Zeus, coming upon a sentence of the form
‘FexFx’, derived from one of the form ‘(3x)Fx’, should again arbitrarily
assign to the epsilon term a member of the class {x | Fx}. But Jeffrey’s
conception of a valuation (Jeffrey 1967, p158) requires that the truth value
of any atomic sentence left open by an open path through a tree be false.
And the presence of epsilon terms even in proofs between epsilon-free
formulae already upsets that conception, since, on it, the epsilon terms
might have no identity. For no formulae like ‘exFx = a’ need be present,
and so all could, more often than not, be false. But a slackening of J effrey’s
rule to allow the referents of epsilon terms to be chosen merely in accord
with their quantifier introduction (i.e. for exFx to be just some F, if (3x)Fx
is given, and just anything if —(3x)Fx is given), is not sufficient to cover
the full case where proofs are between premises and conclusions which
include epsilon terms. For these further formulae may restrict any such
choice in unpredictable ways. However we are saved from this difficulty,
once we take a fresh look at the matter, since there is no requirement, in
the logic of the case, that Zeus makes any choice. Indeed any choice might
need revision, once further premises involving epsilon terms are brought
in, so the full, or fuller, identity of exFx has in general to be left to emerge
through the arrival of formulae involving that term.
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If we do still speak of a valuation, therefore, there is no requirement that
any valuation produces determinate truth values for all sentences. Indeed,
we already know the referent of any term, since ‘exFx’ invariably refers
to exFx, in any context of use. Hence all that remains to be determined are
the extensions of predicate terms, including the identity symbol. But the
initial sentences (if they are consistent) are what settles this, and so are what
determines the identity, just as much as the other properties of exFx. On
that understanding we may remain in ignorance of that identity, even though
a limited series of nominal or real alternatives might be left open regarding
it. But any such identity is irrelevant to the logic — unless specifically it is
required by the initial sentences. Separating the identity of exFx from the
referent of ‘exFx’ is perhaps the most crucial point needing to be under-
stood, in coming to use the epsilon calculus.

Certainly when no valuation satisfies the initial sentences any choice for
the extensions of predicates is as good as the rest. But in that case there is
no consistent way to make every choice, so all choices are as good as the
rest only because none of them is any good. And when some valuation does
satisfy the initial sentences, as above, then while the extensions of predicates
have to be selected with more care, to preserve the consistency, still then
we must let the natural generation of the truth tree determine it, i.e. we
must let the ‘choice’ be made for us. A choice is only available for what
is irrelevant.

5. Epsilon calculus metatheory

The point behind this, about the merely apparent choice with countermodels
may be put more formally by considering an EC advance on the First
Epsilon Theorem. The First Epsilon Theorem states that if C is provable
inPCthen (C, v C, v ... vV C) is provable in EC, where ‘C’ is a prenex
formula, and the ‘C;’s are certain substitution instances of ‘C’s matrix. It
is therefore a version of Herbrand’s Theorem, which merely says that if C
is provable in PC then a disjunction of instances of its matrix, in a language
enriched with Herbrand functions, is provable in TC, i.e. is tautologous.
But for EC a much stronger result is available than even the First Epsilon
Theorem, as we have seen. For if C is provable in PC then C; is provable
in EC, for a certain i, simply by using the epsilon quantifier equivalences.
But these equivalences can be applied in the reverse way. For it is also the
case that if ~C is consistent then the negation of that C. is consistent, and
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so "G, will provide the forced countermodel to C being provable.

But while one of the ~C;’s will be true, it will essentially employ epsilon
terms, and so only in EC can we specify it. In PC we cannot do so, and the
PC rules, in such a case, will only produce a set of nominal variants for
what is true. If we think, from this lack of specificity, that the alternative
which is true cannot be specified, the PC procedures may make it appear
that there is a choice where in fact there is none. For the variants are only
nominal, and do not offer real alternatives. And so misconceptions about
the semantics of the epsilon calculus may also arise, as a result. For the fact
that epsilon calculus formulae do not need an interpretation will be ob-
scured, if the contrary fact that predicate calculus formulae do need an
interpretation is taken as an invariable principle. Certainly it is not apparent
on their faces what PC formulae are about, but EC formulae only need a
reading to be understood for predicate terms — so even that translation
needn’t be explicitly given.

Notice that there is an even more specific result available in EC than the
stronger meta-logical result above. For, unlike with the First Epsilon Theo-
rem, Herbrand’s Theorem, and the stronger result relating a proof of C to
a proof of C;, the reduction of any prenex formula C to an equivalent quan-
tifier free instance is a straight thesis of EC. Equally we could introduce
Skolem functions given, for instance, by the epsilon term, in

(y)@x)Fyx = (y)FyexFyx.

But the existence of Skolem functions being thus demonstrated by means
of equivalences advances Skolem’s actual historical theorem considerably.
Skolem would require merely that something with the form of the right hand
side here was provable when the left hand side was provable, the proofs
being in different theories. He therefore presented a meta-logical theorem,
like those before. But a version of Skolem’s Theorem is provable non-meta-
logically, through theses like the above, in the one calculus.

And the detail of that same-calculus proof also reveals an important fact
about the present epsilon calculus, which gives us direct access to the Se-
cond Epsilon Theorem. The Second Epsilon Theorem shows that the epsilon
calculus is a conservative extension of the predicate calculus, which was our
point of departure at the beginning of this paper. But now we have a very
direct proof of it. For the proof of the Skolem resolution goes (with a as
before, and ¢ = ey —(3x)Fyx):
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v ((y)@x)Fyx = (y)FyexFyx)
/

\
/ (y)FyexFyx
()@x)Fyx . v ~(y)@x)Fyx

v (y)FyexFyx v (3y)(3x)Fyx
v (3y)FyexFyx v (3x)Fcx

—FaexFax (x)Fcex
(3x)Fcx —FcexFcx
v (3x)Fax FaexFax
FaexFax FcexFcx
X X

The point to note about this procedure is that the epsilon calculus rules,
while they provide us with a result about an epsilon expression ‘exFyx’
which involves a variable, and which hence is a function, themselves only
involve the introduction of constants: ‘a’ and ‘c’ are just names. Coming
from closed formulae, such terms have all their variables bound. This means
that if the premises and conclusion are epsilon-free there is no way that non-
constant epsilon terms can enter at any place into a deduction, and so one
of the major difficulties in proving the Second Epsilon Theorem is over-
come.

The Second Epsilon Theorem states that any EC deduction, with epsilon-
free premises and conclusion, may be replaced by a PC deduction between
the same formulae. But in axiomatic treatments of the epsilon calculus, even
if the premises and conclusion in a deduction are epsilon-free, other, more
complex, epsilon expressions may enter, by means of substitutions into the
axioms (Leisenring 1969, p65), and so the fact that any such EC deduction
may be transformed into a PC one is very hard to prove. But the transfor-
mation required in the present setting is quite patent: simply change to
‘new’ names all epsilon terms introduced first in the quantifier elimination
rules.

6. Conclusion

In summary, therefore, it has emerged that Hilbert’s epsilon calculus has
been shrouded in quite unnecessary mystery. For the history of this calculus
might have made it seem a collection of complex, even disordered theorems,
unstructured to any great purpose. But this jungle, if that is how it was
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perceived, now turns out to have been more a reflection on the disad-
vantaged point of view from which the epsilon calculus was traditionally
observed. In fact it is Fregean predicate logic which has the obfuscating,
bureaucratic structure, and the clarity and beauty of Hilbert’s calculus, in
a natural deduction setting, may, by contrast, seem almost beyond belief.
Correctly viewed it clearly presents a straightforward but extensive theory
of considerable consequence to logic. It embraces important additional
theorems not available in Fregean predicate logic, and its proofs of standard
Fregean theorems are both shorter and more comprehensible. The metatheo-
rems of the epsilon calculus are also much shorter, when approached using
Truth Trees; but the metatheory of such trees itself comes to be improved
through their application in the new context. As a result, the traditional
semantics of Fregean predicate logic is seen to be highly specific to it.
Indeed, it now appears, there is no need for such a semantics of Hilbert’s
epsilon calculus.

University of Western Australia
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