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NATURAL HEURISTICS FOR PROOF CONSTRUCTION.
PART I: CLASSICAL PROPOSITIONAL LOGIC.

Diderik BATENS

1. Introduction

Standard formal systems, whether axiomatic, in Gentzen style, or other,
contain a definition of “a proof of B from A,, ..., A,” and usually an al-
gorithm for recognizing proofs may easily be devised. Neither of these
provides us with a way to find proofs.

As in other domains, we have witnessed a tendency to not only concen-
trate on results (in our case proofs) but on processes (in our case heuristics
for proofs) as well. Studies on algorithms for proof construction in (frag-
ments of) formal systems have ultimately led to automatic theorem proving
and its impressive instruments. The latter are efficient and fast, but they are
not natural in the sense that (most) humans (most of the time) search for
proofs along different lines.

In this paper I present a first set of results on natural heuristic methods
for constructing proofs. Given a set of rules of inference and a format for
writing proofs('), a heuristic method is a set of instructions that have to
be executed in some order. The instructions may both refer to the items that
constitute the proof and to other aspects of the format of proofs; most
importantly, they may refer to the overall or local goal — see section 2. If
a heuristic method simply acts on all separate items in the proof (in some
order), it will be called non-contextual; a contextual method reacts diffe-
rently to an item according to the stage of the proof (everything actually
written down at some point in time). The distinction may be illustrated by
tableau methods. These are usually non-contextual: once the initial formulas
have been written down, a tableau method may simply run through all
formulas and apply the appropriate rule to each of them. A contextual
heuristic method may, in view of other available formulas, select the for-
mula to be operated upon first, react differently to a formula, etc.

(") E.g., the fact that each line of the proof contains a line number, the way in which the
justification of a formula is worded, etc.
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Natural heuristic methods should (i) be goal-oriented, (ii) be algorithmic
whenever possible, (iii) embody insights on the search for proofs, and (iv)
allow being extended in such a way that more insights are built in (thus
leading to more ‘intelligent’ proofs).

Some things should be clarified right away. By a natural heuristic method
for proof construction I mean one that agrees, in an explicatum-like manner,
with the way in which people search for proofs when doing so unconscious-
ly. T do by no means believe that there are innate heuristic methods for
reasoning. (I conjecture that innate ‘rules of thought’, if they exist at all,
are much simpler and ‘deeper’ in the sense of farther away from our actual
reasoning in linguistic terms.) While constructing proofs in an unconscious
way, we apply heuristic methods that depend on our intuitions, and the latter
are the result of our past experiences within the relevant domain — in our
case the actual proofs and reasonings we came across and our attempts to
reproduce and imitate them. These intuitions will usually be governed by
rules that are unconsciously applied and, more often than not, unconsciously
acquainted. In other words, the heuristic methods we unconsciously apply
in searching for proofs will be directly determined by (a specific part of)
the culture in which we grew up, and indirectly by the structure of our
languages and of our brains (think about the difference between humans and
computer programs in accessing and organizing memory).

It would be a mistake to classify the problem of finding natural proof-
heuristics as merely pedagogical or psychological. Some aspects of such
methods will be contingent on physiological and cultural matters, but to
study them involves a number of systematic problems. The fact that we are
not able at present to draw a neat borderline between the two, should by no
means prevent us from tackling the problem. The objection that we do not
dispose of a systematically obtained set of empirical data should be replied
to in a similar way. There is an impressive amount of competence from
teaching logic courses. It seems quite sensible to start building hypotheses
from this.

If a heuristic method embodies insight, it will first of all lead to a proof
whenever there is an algorithm for finding one. Next, the method should
be contextual: the way in which it reacts should depend on the actual prob-
lem, viz. the set of premises, the formula to be derived, the formulas al-
ready derived, intermediate goals introduced in view of the formula to be
derived, etc. This is why heuristic methods deriving from standard tableau
or resolution methods embody minimal insight only. Thirdly, given a spe-
cific set of inferential means (rules, axioms, ...) a heuristic method will in
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general lead to shorter proofs according as more insights are built into it.
To illustrate all this, I list three Fitch-style proofs of (tV p)D (r&q), s
~(rvu) + sD ~p according to increasing insight. (They are in terms of
the rules enumerated in section 3, but that will not trouble any logician right
now; in the fourth column, goals are recorded).
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1 (tvp)D(r&q) PREM

2  sD~(rvu) PREM ASD ~p
3 pDO(r&q) 1; DIE

4 pDr 3; ICE

5 (rvu)D ~s 2; CPOS

6 r>~s 5; DIE

7 pD ~s 4, 6; TRA

8 §sD~p 7, CPOS

A few remarks are at hand. That a proof displays more insight is related
to such things as the following: (i) it is shorter, (ii) it contains less super-
fluous steps — steps 8 and 11 of the first proof and step 6 of the second
proof are superfluous — (iii) the introduction of hypotheses is postponed
or eliminated, especially for hypotheses from which an inconsistency has
to be found, (iv) it proceeds in a more goal-oriented way, and (v) it exem-
plifies more complex rules of inference. That the second proof proceeds in
a more goal-directed way than the first is illustrated by step 9 (the goal is
derived rather than arrived at by means of a subproof).

As the consecutive proofs are increasingly intelligent, it should be possible
to extend the heuristic method resulting in the first proof into the one resul-
ting in the second, and to extend the latter heuristic method into the one
resulting in the third proof. By extending a heuristic method, one adds
instructions that will postpone some (contextual) moves of the original
method in favour of new types of moves (that are in general more efficient
with respect to reaching the goal). Let me clarify at once why it is not
desirable to introduce from the start a heuristic method that embodies maxi-
mal insight.

Apart from the requirements listed in the fourth paragraph of this section,
the heuristic methods I have in mind should further people’s insights in
searching for proofs. By consciously applying such heuristic method, one’s
intuitive skills to unconsciously arrive at proofs should be improved. Again,
this is something we have no systematically gathered data about. Again, I
have to refer to the competence compiled by teaching logic courses. Never-
theless, few people will doubt in principle that such skills exist and may be
improved, thus leading to more intelligent proofs. This is why it makes
sense to devise consecutive heuristic methods as meant in the previous
paragraph. The first method is meant for people with low insights. Once
the latter have been sufficiently increased by applying the first method, one
will see proof problems in a different way and perform a growing number
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of operations unconsciously. In view of this, one may start applying the
second heuristic method, which now will look less complicated than it would
have done originally. And so on for further extensions.

The fact that, in the present paper, I restrict my attention to classical
(propositional) logic — henceforth PC — presents a special difficulty. In
most every-day reasoning, we employ relevant implications rather than the
material one. Even in contexts in which we do apply classical logic (mathe-
matics, meta-theoretical proofs, etc.) we seem to favour inferences that are
correct for relevant implications. (If you doubt this, just study a sufficient
amount of examples). For this reason I shall, in the subsequent sections,
whenever possible introduce rules of inference that are correct for relevant
implications, thus pushing irrelevant properties of material implication into
a minimal number of rules. Needless to say, this will have effects on the
heuristic methods presented.

2. Decisions on the format of proofs

In order to illustrate what I have to say on heuristic methods, I need a
formal system. I shall opt for the one that I gradually arrived at during
twenty years of logic teaching. Obviously, this system may be replaced by
another. The heuristic methods will be replaced accordingly, but the general
principles will remain unchanged. Still, it seems appropriate to make some
comments on the specific choice, especially as the choice itself has been
influenced by thinking about and tinkering with heuristic methods.(?)

The system chosen is in Fitch style, with lines consisting of a line number
and all or some of the following: a formula, a justification and a (general
or local) goal. The dependence of the formula on premises and hypotheses
is not recorded — compare with the Lemmon variant. In the usual finite
case, all premises are listed at the top. The last line containing a premise
and all lines containing a hypothesis need contain a goal. Analyzing a goal
— see section 4 — may result in a line containing only a line number and
a goal. The goal (at a stage) is the last goal that has not been attained (at
that stage). The depth of line 1 is always(®) 0; the depth of other lines is

(3) See D. Batens, Logicaboek. Praktijk en theorie van het redeneren. Leuven/Apeldoorn,
Garant, 1992,

(®) A formula occurring on line 1 is always a premise; we need a goal in order to introduce
a hypothesis.
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explicitly determined by the rules of the formal system. The depth of a
Jormula and the depth of a goal are identical to the depth of the line on
which they occur. The depth of a subproof is the depth of its first line (and
of its hypothesis and goal). A subproof'started by a hypothesis A with depth
d is closed by the first subsequent formula with depth d—1. The formulas
of a subproof with depth d are those occurring with depth d between the
hypothesis (included) and the formula closing it. A formula is available iff
it occurs in the proof outside the closed subproofs. Uninterrupted vertical
lines drawn at left in the second column mark subproofs (and show the
depth of the lines of the proof).

This proof format is close to every-day reasoning in that, apart from the
formulas in the proof, all that has to be remembered is the list of hypotheses
of non-closed subproofs and the list of goals that have not yet been reached.
The advantage of listing goals (other than the main one) is that, once a goal
has been reached, it is obvious where we have to go next, viz. after the last
goal not yet attained.

The only other (general) choices concern the rules of inference. In view
of the aim to improve on people’s inferential competence, a seizable set of
derivable rules of inference is introduced, including all variants that people
would only keep apart at the price of dull memorizing. (E.g., AD ~B, B /
~ A and other variants of Modus Tollens will be listed nextto ADB, ~B /
~A; Modus Tollens is thus turned in what it means for laymen anyway:
from ADB and the opposite of B, to derive the opposite of A).

3. A formal system

Given the above conventions and the obvious definitions of A,...,A, —B
and + B, the formal system is defined by the following rules; the depth of
a line is the same as that of the previous line, except where explicitly stated.

Primitive rules:

PREM: A premise may be added to the proof as the first formula or after
a formula with depth 0.(%)

HYP: An arbitrary formula may be added to the proof with a depth 1

(%) There is nothing wrong in allowing premises to be added within a subproof, but there
is no need for doing so.



REIT:
MP:
CP:

SIM:
CONIJ:
DIL:
ADD:
EE:
EI:
DN:
RAA:
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higher than that of the previous line.

Any available formula may be added to a subproof.
ADB,A/B

From a subproof with depth r that starts with the hypothesis A and
ends with B, to derive ADB with depth r—1.
A&B / A; A&B /B

A, B/ A&B

AVB, ADC,BDC/C

A/AVB;B/AVB

A=B/ADB; A=B/BDA

ADB,BDA/A=B

~~A/JA

ADB,AD~B/ ~A

I at once list the derived rules:

TRA:
ICI:
ICE:
DII:
DIE:
DIL:
DPAC:

DIST:

MT:
CPOS:

RAA;
RAH:

ADB,BDC/ADC
ADB, ADC/AD(B&C)
ADB&C)/ ADB; AD(B&C)/ ADC
ADC,BDC/(AvB)DC
(AvB)DC/ADC; (AvB)DC/BDC
AVB,ADC/CvVB; AvB,BDC/ AvC (variants)
Arbitrarily many applications of permutation:
..V(AVB)V.../ ..V(BVA)V...
association:
. V((AVB)VO)V.../ ..V(AVBVQO)V...
(and vice versa) and contraction:
+.V(AVA)V../..VAV.. (and vice versa).
A&BvVC) / (A&B)V (A&C); (AVB)&C / (A&C) vV (B&C);
AV (B&C)/ (AvB)&AVC); (A&B)VC / (AvC)&(BV C); the
converses of all of these.
ADB, ~B/ ~A; ~ADB, ~B/A; AD~B,B/ ~A;
~AD~B,B/A
ADB/ ~BD~A; AD~B/BD~A; ~ADB/ ~BDA;
~AD~B/BDA
~ADB, ~AD ~B/ A (variant)
From a subproof with depth r that starts with the hypothesis A,
respectively ~ A, and contains both B and ~B, to derive ~A,
respectively A, with depth r—1.
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DS: AVB, ~A/B; AVB, ~B/A; ~AVB,A/B; AV ~B,B/A
DN: A / ~ ~A (variant)

NC: ~(A&B)/ ~AV ~B

ND: ~(AVB)/ ~A; ~(AVB) / ~B

NI: ~(ADB)/A; ~(ADB)/ ~B

NE: ~(A=B)/AVB; ~(A=B)/ ~AV ~B

In order to reduce the number of reiterations, we allow rules to operate on
all available formulas (and not only on formulas actually occurring in the
current subproof); both CP and RAH may, however, require applications
of REIT.

4. Heuristic moves

Given that the search for a proof of B from zero or more premises A,, ...,
A, is a goal-directed activity, there seem to be four kinds of steps that one
may take within a proof: (i) to analyze available formulas in order to under-
stand better what exactly is given, (ii) to analyze the goal in order to find
out what exactly has to be proven, (iii) to derive a step that brings one
closer to the goal, and (iv) to facilitate the search for the goal by introducing
a hypothesis and its associated (local) goal. We shall soon see that one
sometimes needs a further step, viz. (v) to introduce a goal in order to
analyze an available formula.

~~A A DN
A&B A B SIM
A=B ADB, BDA EE
(AvB)DC ADC,BDC DIE
AD(B&C) ADB, ADC ICE

TABLE 1. Analysis of a formula

In order to analyze an available formula A, we need to derive from A one
or more simpler formulas from which A itself may be derived. There are
basically two cases. In the first, the formula itself is equivalent to a single
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simpler formula or to the conjunction of two simpler formulas. I list some
examples in Table I in which the three columns contain respectively the
formula to be analyzed (printed in bold face), the analyzing formulas, and
the rule justifying the derivation of the formulas in column two from the
formula in column one. In the second case, the formula is analyzed by
combining it with other formulas. Some obvious examples are listed in
Table II. Applications of dilemma are somewhat special in that the disjunc-
tion functions as an auxiliary formula to analyze two implications at once
(but the disjunction itself does not get analyzed).

AVB, ~A B DS
AVB, ~B A DS
ADB, A B MP
ADB, ~B - MT
ADC,BDC, AVB G DIL

TABLE II. Analysis of a formula by means of an auxiliary formula

It is easily seen that all formulas printed in bold face in the first column
of both tables are analyzed by those in the second in the sense that the
former are themselves derivable from the latter. This means that we are
facing a genuine analysis: that a formula is available reduces to one or more
simpler formulas being available.

Analyzing a goal is quite similar: we introduce as a subgoal a formula
that, alone or together with other formulas, will enable us to reach the goal.
Here we should be careful to introduce only subgoals for which we have
a warrant that they are derivable from the available formulas. Some exam-
ples are listed in Table III. The second row of that table should be read as:
if A&B is the (last non-attained) goal and A is available, then introduce B
as the goal. By consecutively applying, e.g., the instructions in the first two
rows, we will be able to obtain A&B as soon as the two subgoals have been
obtained.

I pause for a moment to remark that, with respect to the two moves
considered up to now, SIM is only useful for analyzing premises, whereas
CONIJ is only useful for analyzing goals; ADD is useful for neither.
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sA&B aA (CONIJ)
(A not available)

AA&B, A aB (COND)
sA=B 2ADB (EI)

(ADB not available)

sA=B, ADB aBDA (ED

TABLE III. Analysis of the goal

Introducing hypotheses with respect to a goal is a simple matter. The only
three cases are listed in Table IV. The first line of Table IV should be read
as: where ADB is the goal, introduce A as a hypothesis and B as the as-
sociated goal. The procedure is fully transparent: as soon as the newly
introduced goal is reached, we have to apply CP (for the first row) or RAH
(for the two others) in order to obtain the goals listed in the first column.

sADB |A, aB HYP
a~A | A, ainconsistency HYP
AA | ~A, ainconsistency HYP
(A not of the form BOC or ~B)

TABLE IV. Starting a subproof in function of the goal

To derive a step in view of the last goal is actually the most complicated
move because here all (non-structural) rules of inference may be applied —
the steps themselves are rather simple though. We again should distinguish
between two cases. In the first we derive the goal in one single step. I list
a few dull examples in Table V. This move may be performed by anyone;
all that is required is that one runs through the rules of inference and com-
pares the available formulas and the goal. This kind of exercise makes one
acquainted with the rules of the formal system (and hence, if the latter is
well-devised, with the meaning of the logical terms).

Quite different and much more interesting is the second case in which we
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sAVB, A AVB ADD
sA&B, A, B A&B CONJ
sA, BDA, B A MP

TABLE V. Derive the goal from available formulas

search for a formula in view of the goal. Most of the competence for fin-
ding proofs derives from intuitive mechanisms that enable one to perform
this move (in an unconscious way). Most applications of this move lead to
searching for formulas for the derivability of which we have no warrant.
Moreover, any goal might be obtained in different ways and from different
formulas; e.g., A Vv B might be obtained from A, from B, from C Vv B and
CDA, from CO(AVB)and C, etc. To keep the number of searches under
control, it seems wise first to distinguish between two subcases. Let A be
the formula searched for. In the first subcase, the form of A suggests a set
of formulas to be searched for; in the second subcase, we select the for-
mulas searched for by comparing A with available formulas. More impor-
tant, however, is that we find, for both subcases, a way to sensibly restrict
the formulas to be searched for.

7AVB 2A ADD
7AVB 7B ADD
7A&B 7A, 7B CONJ
7A, BDA 7B MP

7A, BV A 7~B DS

7ADB, COB 2ADC TRA
7ADB, ADC 2COB TRA

TABLE VI. Search a formula in function of another

As one’s inferential competence grows, one is able to larger iterations of
the present move. For example, if the goal is A v B, one may search for A;
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next, if CD A is available, one may search for C; etc. Because of the itera-
tions, we have to include the steps we previously classified as analyzing the
goal. Indeed, as we have no warrant that formulas searched for are derivable
from the available formulas, we cannot list them as goals and hence they
will not be analyzed by the steps listed in Table III. I enumerate some
examples of searches in Table VI. Question marks indicate formulas
searched for; some question marks in the first column may actually indicate
goals. The fourth line should be read as: If one searches for A and BD A
is available, then search for B.

Finally, we come to the unexpected complication that we sometimes have
to introduce a goal in order to analyze an available formula. Let us consider
a simple example of such a proof.

1 (p&q)D ~(q&(rDr)) PREM apD ~q
2 p HYP a~(Q
3 lq HYP ainconsistency

In view of all previously considered moves, we are locked (please check).
There is no way to analyze the premise except by introducing a goal. The
goal may be either p&q (in view of MP) or q&(r Dr)) (in view of MT). I
present the proof obtained by proceeding according to the first option. The
second option equally leads to the completion of the proof, as the reader
may easily check.

4 ap&q
5 p&q 2, 3; CONJ

6 ~(q&(rDr)) 5, 1; MP

T ~qV ~(r2Dr) 6; NC

8 ~(rDr) 7, 3; DS

9 r 8; NI

10 ~T 8; NI

11 ~q 3,9, 10; RAH

12 pD>~q 2; 1:: CP

Given the rules of inference of the previous section, the only formulas to
which it might be necessary to apply the present move are implications and
disjunctions. All possible cases are listed in Table VII.

The difficulty with the present move is that we should take care that the
newly introduced goal is derivable from the available formulas. Also, it
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ADB AA MP
ADB 2a~B MT
AVB | a~A DS
AVB a~B DS

TABLE VII. Introducing a goal in order to analyze a formula

turns out that it is not always sufficient to perform this move once. Some-
times we have to consecutively introduce a goal with respect to several
formulas in order to get them analyzed. In articulating a heuristic method
that contains this move, we shall face a double task: to warrant that the goal
is attainable and to show that the method constitutes an algorithm for PC-
derivability.

At present we are sufficiently equipped to move to the first heuristic
method for PC-proofs.

5. An algorithmic heuristic method

I first present a heuristic method A&B Aand B
HMO that is not natural. Its interest
lies in the fact that the proof of its al- AVD iUl
gorithmic character is easy and that ADB lAorB
subsequent heuristic methods are
extensions of it; starting with HMO A=B ADBand BSA
greatly facilitates the meta-theory for _—— A
all subsequent heuristic methods.

To simplify the description of ~(A&B) 'AVIB
HMO, I first define “analyzed for- '
mula” in an exact way. To this end |_— (AVE) K and 'R
I refer to Table VIII, in which !A ~(ADB) A and |B
denotes any ‘opposite of A’, viz,
~Abut, where A = ~B,alsoB;an || ~(A=B) | AvBand!AV!B

available formula of a form men-

tioned in the left column is analyzed =~ TABLE VIII. Analyzed formulas
iff the corresponding formulas of the
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forms listed in the right column are available.

As for all heuristic methods considered, the problem will be to find a
proof of B from premises A, ..., A, (n = 0) — for obvious reasons, I only
consider finite sets of premises. HMO consists of an ordered set of instruc-
tions (referred to by their names for future use) that should be applied
according to the following

CONVENTION ON ORDER

If an instruction leads to a change to the proof, one moves back to CHECK
FOR GOAL; otherwise one moves to the next instruction.

Here is the list of instructions:

(1) sTART: Write down all A; by application of PREM; write B as the goal
on the line containing the last premise or on the first line if there are
no premises. (This results in stage 1 of the proof).

(2) CHECK FOR GOAL: Check whether the goal (a formula or an inconsistent
pair of formulas) has been reached. If the main goal of the proof is
reached, stop; if another goal is reached, strike through the triangle in
front of the goal (thus indicating that the previous goal has become ‘the
goal’).

(3) DERIVE GOAL: Obtain the goal (possibly an inconsistency) by REIT
whenever possible; else obtain it by RAH, whenever possible.

(4) ANALYZE FORMULA: Apply as much as possible SIM, EE, the DN-
variant ~ ~A / A, NI, NC, ND, NE, MP, MT, DS, RAA, and DIL
to non-analyzed available formulas.

(5) HYP FROM GOAL: If the goal is a formula A, add ~ A as a hypothesis
with an inconsistency as its associated goal.

(6) GoAL FROM FORMULA: If a formula of the form ADB has not been
analyzed and A is not a goal (that has not been reached), introduce A
as the goal; if a formula of the form A v B has not been analyzed and
~ A is not a goal (that has not been reached), introduce ~ A as the goal.

We need some further terminology in order to prove that HMO is an al-
gorithm for finding PC-proofs. By a final stage of a proof constructed by
HMO I shall mean either a stage at which the desired proof is obtained or
a stage that is left unchanged by HMO. I write “a final stage” because HMO
is not strictly deterministic (see ANALYZE FORMULA and GOAL FROM FOR-
MULA). Let G; be the goal at stage i. (I recall that G,, the last goal that has
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not been reached, is not necessarily introduced at the last line of stage i.)
Let the characteristic set of stage i be denoted by  and consist of all
formulas (i) available at that stage and (ii) the depth of which is not larger
than the depth of G;. (If, at stage i, the main goal of a subproof with depth
d is available and CHECK FOR GOAL has been executed, the previous goal
becomes the goal; as its depth is always d—1, the formulas of the subproof
do not belong to ;.) The characteristic statement of stage i is “Q, — G,”.
If the goal is an inconsistency, I shall write “Q, + inconsistency”. In the
present section, I only consider proofs arrived at by HMO.

Lemma 1. 1f A,, ..., A, + B, then the characteristic statement of any stage
of the proof B from A,, ..., A, holds true.
Proof. Supposing that A, ..., A, — B, we proceed by induction on the
stage i of the proof (the stage reached by executing an instruction). We have
to consider six cases corresponding to the instructions of HMO.
(i) After executing START,

2, + G
is nothing but

{A, ...,A} B
(ii) If cCHECK FOR GOAL has been executed, we have to consider several
subcases. The characteristic statement is not modified (nor is anything else,
for that matter) if the main goal of the proof is reached. So, let us consider
other goals being reached.
(ii/i) If the goal reached, viz. G;_,, has the same depth as the previous goal
G; (the goal of the stage j just before goal G;_, was introduced), then we
have:

2+ G

0., (= QU{..,G_}) + G_, (i-1>}j)

O (=9U{..,.G.,}) -G (=G
Clearly, the characteristic statement of stage i is justified by the characteris-
tic statement of stage j. Remark that G,_, always is a formula(®) and that
it does not make any difference whether G,_, was reached by applying
REIT, RAH, or another rule.
(ii/ii) If the goal reached, viz. G;_,, is the main goal of a subproof — hence
G;_, always is “inconsistency” — consider the stage j immediately preceding
the start of the subproof. Obviously the depth of G; is 1 lower than the depth

(®) An inconsistency is only introduced as the goal associated with a hypothesis and hence
its depth is always 1 higher than the depth of the previous goal.
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of G;_,, and we have:

1 ~ G

0, (= QU® -G,  (i-1> )

2 (= 8) + G (= G)
¢ contains the formulas that belong to the subproof. The characteristic
statement of stage i is justified by the characteristic statement of stage j.
Again, it does not make any difference whether G,_, was reached by ap-
plying REIT, RAH, or another rule.
(iii) After executing DERIVE GOAL,

0., + G,
warrants

0= 9,V{CH + G (=G
(if the goal was derived by REIT, C € Q,_,; if the goal is derived by RAH,
C = G.).
(iv) After executing ANALYZE FORMULA,

Q_, + G,
warrants

0 (=0,VU{CHh + G (=G.)
(v) After executing HYP FROM GOAL,

0., + G,
warrants

& (= Q_,U{~G;_,}) + inconsistency
(Vi) GOAL FROM FORMULA can only be executed (check HMO) if the goal
is an inconsistency. (Otherwise, HYP FROM GOAL would be executed.)
Hence,

{;_; + inconsistency
warrants

(=0 )G, =

Let the complexity of a formula A, C(A), be defined by: (i) where A is a
propositional letter, C(A) = 1, (ii) C(~A) = C(A)+1, (iii) C(ADB) =
C(AVB) = C(A)+C(B)+2, (iv) C(A&B) = C(A)+C(B)+4, and (v)
C(A=B) = 2X(C(A)+C(B)+4). Where I is the set of all atoms (proposi-
tional letters or the negation of such) in ©; and where A, = {B|B € Q,
and C(B) < C(A)}, we shall say that A is distributed at stage i iff A,UT"
A, and that A is fully distributed iff T — A. (All atoms and all analyzed
formulas are distributed; if ~p is available, (p&q)Dr is fully distributed
but not necessarily analyzed.)
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Lemma 2. If an inconsistency is derivable from ©; and all members of
are fully distributed, then ; contains an explicit inconsistency.

Proof. Suppose that the antecedent is true. Let I' be the set of atoms in €,
and let p; be a propositional letter that does not occur in I'. All members
of {; are derivable from I'. Hence ' - p&~p;,. If " does not contain an
explicit inconsistency, then it is possible to substitute p,v ~p; for any
propositional letter A such that A € T and to substitute p;& ~p; for any
propositional letter A such that ~A € T'. But then — p;& ~p;, which is
impossible. =

Lemma 3. Applying HMO to construct a proof of B from A,, ..., A, either
leads to such proof or else results in a final stage i such that all members
of @; are fully distributed and G; is an inconsistency.

Proof. Suppose that, applying HMO, we do not find the required proof. In
view of HYP FROM GOAL we are bound to reach a stage i at which ~B is
added to the proof by HYP with an inconsistency as its associated goal. Let
the depth of this subproof be d,. If we continue to apply HMO, the instruc-
tion ANALYZE FORMULA warrants that all available formulas of the forms
C&D, C=D, ~ ~C, ~(CDD), ~(C&D), ~(CVvD), and ~(C=D) are
distributed, in other words, all non-atomic formulas except (possibly) for
formulas of the form COD and CvD.

Consider some stage j (= i) at which some available formulas are not
fully distributed, all non-distributed formulas are of the form COD or
C VD, the goal is an inconsistency, and the depth of this goal is d;; clearly
d; = d;. For some formula EDF (respectively E Vv F) that is not fully dis-
tributed, the instructions GOAL FROM FORMULA and HYP FROM GOAL will
force us to introduce the goal E (respectively ~E) and next to introduce the
hypothesis ~E (respectively ~ ~ E) with depth d;+1 and with an inconsis-
tency as the associated goal; EDF (respectively E V F) is thereby distributed
(at depth d;+1). If an inconsistency is later attained from the hypothesis, E
(respectively ~E) will be derived (at depth d;) from the subproof, the goal
will be replaced by G;, viz. “inconsistency”, and F will be derived from E
and EDF (respectively ~E and EVF); in this case EDF (respectively
E VF) is distributed (at depth d;). Summarizing: EDF (respectively E v F)
will be distributed at depth d, or at depth d;+ 1. By continuing to apply HMO
up to HYP FROM GOAL (which itself cannot be applied as the goal is an
inconsistency), we reach a stage k at which the goal is an inconsistency and
all non-distributed formulas, if any, are of the form COD or C v D.

By repeating the procedure described in the last paragraph, we shall
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ultimately reach a stage at which all available formulas are distributed and
hence fully distributed. Indeed, whether the subproof is closed or not, the
analysis of a formula A will at most require a finite number of steps and
will, in the worst case, lead to adding one or two formulas. As the sum of
the complexity of each of these formulas is smaller than the complexity of
A, all formulas will ultimately be fully distributed. Once they are and an
inconsistency is not obtained, a final stage is reached. =

For a good understanding of the previous proof, it is necessary to realize
that, if GOAL FROM FORMULA and HYP FROM GOAL lead to a subproof, some
available formulas may be distributed by formulas in the subproof but
become non-distributed when it is closed. Still, we are bound to reach a
final stage at which all formulas are fully distributed because (i) if after
executing GOAL FROM FORMULA with respect to A, a subproof with depth
d was started by executing HYP FROM GOAL and next was closed, the subse-
quent application of MP or DS will result in A being distributed at depth
d—1, and (ii) if a formula is distributed while the depth of the goal is d, it
will remain distributed at least until the depth of the goal is d—1. (It is
easily seen that this results in a tree that displays the finite fork property and
the finite branch property, and hence is finite by Koenig’s lemma.)

Theorem 1. HMO will lead to a proof of B from A,, ..., A, if there is one.
Proof. Suppose that A, ..., A, B, that HMO is applied to obtain a proof
of B from A,, ..., A, and that the desired proof is not obtained. It follows
from lemma 3 that HMO leads to a final stage i at which all available for-
mulas are fully distributed and at which the goal is an inconsistency. Then
the characteristic statement, viz. “Q, + inconsistency”, holds true in view
of lemma 1. As all available formulas at stage i are fully distributed, Q,
contains an explicit inconsistency in view of lemma 2. But then the goal is
obtained and hence i is not a final stage. ®

HMO always results in a final stage; hence:

Corollary 1. HMO is an algorithm for deciding whether there is a proof of
B from A, ..., A

n*
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6. A natural heuristic method(®)

The frequent use of the instruction HYP FROM GOAL, as described in the
previous section, leads to particularly bad proof habits. Try it on freshmen;
they will find proofs but not gain much insight from them. This is why, as
a first natural heuristic method, one should introduce something like HM1,
which is governed by the same CONVENTION ON ORDER as HMO and con-
sists of the following instructions:

(1) START

(2) CHECK FOR GOAL

(3) DERIVE GOAL (modified): Whenever possible, obtain the goal (possibly
an inconsistency) by REIT; else by RAH or CP; else by a single ap-
plication of another rule of inference. Pay attention especially to the
DN-variant A / ~ ~A, CONJ, ADD, EI, DPAC, DIST, TRA, and
CPOS (the ‘constructive’ rules of inference).

(4) ANALYZE GOAL: Analyze the goal in function of CONJ and EI (see
Table III).

(5) ANALYZE FORMULA

(6) HYP FROM GOAL (modified): Introduce a hypothesis and the associated
goal according to Table IV.

(7) GOAL FROM FORMULA

As HM1 is an extension of HMO, it is an easy task to adapt the proofs of
the previous lemmas and theorem (with HM1 replacing HMO). The proofs
of lemma 2 and theorem 1 remain unchanged. The proof of lemma 1 has
to be adapted as follows. After the execution of ANALYZE GOAL,

0., + G,
warrants
2 (=9, G

because either G,_, is C&D, in which case G, is C or D, or G,_,isC=D,
in which case G, is COD or DDC. Also, the addition of ANALYZE GOAL
does not change the situation arrived at after executing CHECK FOR GOAL
(see subcase (i/i) of the proof of lemma 1). Finally, the execution of the
modified instruction HYP FROM GOAL leads to a situation in which either

(%) The natural heuristic methods discussed in this paper (and extensions of them) form the
basis of a computer programme (and where arrived at while developing it) — see D. Batens,
Logicaboek. Computerprogramma’s. Leuven/Apeldoorn, Garant, 1992,
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0., + G,
warrants

2 (= 9_,U{!G,_,}) + inconsistency
or

0., + G_, (=CDOD)
warrants

% (=0.,V{CH + G (=D)

The only change required in the proof of lemma 3 is connected to the
modification to HYP FROM GOAL. First of all, if B = C,DD,, HYP FROM
GoOAL will not lead to the hypothesis ~B with an inconsistency as the as-
sociated goal, but to the hypothesis C, with the associated goal D,. If D,
is not reached, however, the hypothesis ~D, will be introduced with an
inconsistency as the associated goal. Moreover, C,, ~D, - ~(C,DD,) =
~B. In other words, if there is a later stage at which both C, and ~D, are
fully distributed then ~ B would have been fully distributed at that stage if
it had occurred in the proof. Exactly the same reasoning applies to the case
where executing GOAL FROM FORMULA with respect to some formula F leads
to adding the goal E and E = C,DD,; in the worst case, executing HYP
FROM GOAL twice will lead to a stage at which F is distributed (in view of
the hypotheses C, and ~D,) and the goal is an inconsistency. As a conse-
quence, we shall reach a final stage at which all available formulas are fully
distributed and the goal is an inconsistency (unless we find the proof).

I take HM1 to be the basic natural heuristic method for the Fitch-style
system of 3. It is algorithmic, leads to natural proofs if it is applied to
problems that are not too complex, and helps one to become acquainted with
most of the inferential means provided by the (primitive and derived) rules.
In contradistinction to HMO, the heuristic method HM1 attracts attention
to (local) goals; it nevertheless relies sufficiently on the analysis of available
formulas to reduce inferential problems to reasonably simple tasks.

7. Improving on the analysis

As I remarked in section 1, more intelligent proofs are usually shorter, they
exemplify more complex rules, and the introduction of hypotheses is post-
poned or eliminated in them. This suggests at once that we may improve
upon the quality of HM1 by modifying ANALYZE GOAL in such a way that
the analysis also takes account of ICI and DII and by modifying ANALYZE
FORMULA in such a way that it includes moves justified by ICE and DIE.
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This will be the first set of modifications to HM1.

The second set of modifications concerns rules of inference that as yet do
not play any role in the analysis of the goal or of available formulas: CPOS,
DIST and DPAC. If it turns out to be impossible to derive or analyze the
goal, we shall first recur to

REFORMULATE GOAL: try to replace the goal A by a goal B from which
A is derivable by CPOS, DIST or DPAC, provided that either B is
available or derivable (in one step) from available formulas, or B may
be analyzed according to ANALYZE GOAL.

Here are some illustrations. The instruction ANALYZE GOAL will not have
any effect if the goal is CD ~ (A v B), but it will if we first transform the
latter to (Av B)D ~C. Similarly for the goal BV (A&C) and its DIST-
transform (B v A)&(B Vv C). Contextual example: BV (A v C)isnotderivable
in one step from A, but its DPAC-transform A v (BV C) is.

Similarly, if the analysis of some available formula fails, we shall first
(before introducing a hypothesis) recur to

REFORMULATE FORMULA: try to replace an available formula A by a
formula B that is derivable from A by CPOS, DIST or DPAC, and that
may be analyzed according to ANALYZE FORMULA.

If no available formula enables us to analyze AD ~ (B Vv C), we shall apply
CPOS, thus obtaining (Bv C)D ~ A, which may be analyzed by DIE;
AV (B&C) will be transformed by DIST to (A VvV B)&(A v C) for similar
reasons. Contextual example: given ~A, (BVv A) Vv C will be transformed
to AV(BvC).

The modifications discussed in the present section lead to a heuristic
method HM2 which is governed by the CONVENTION ON ORDER and consists
of the following sequence of instructions: (1) START, (2) CHECK FOR GOAL,
(3) DERIVE GOAL, (4) ANALYZE GOAL (now taking account of ICI and DII),
(5) REFORMULATE GOAL, (6) ANALYZE FORMULA (now taking account of
ICE and DIE), (7) REFORMULATE FORMULA, (8) HYP FROM GOAL, and (9)
GOAL FROM FORMULA. It is easily seen that, in general, the application of
HM?2 leads to proofs that are more intelligent in the above sense.

In order to adapt the lemmas and theorem (from HM1 to its extension
HM2), no change is needed to the proof of lemma 1 and theorem 1 whereas
the required modifications to the proofs of lemmas 2 and 3 are strictly
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straightforward.

8. Proceeding in a more goal-directed way

Proofs that are more goal-directed, and hence avoid superfluous steps, are
arrived at by a further modification. The idea is that we search for for-
mulas, even if we are not sure that they are actually derivable. The search
will be iterative: if the formula searched for is not available, we shall search
for a formula from which it may be obtained.

A search may be contextual or non-contextual. In case we want to obtain
AV B, to search for A is an example of a non-contextual search whereas
to search for C in the presence of CD (A v B) is an example of a contextual
search. The three first rows of Table VI concern non-contextual searches,
the four others concern contextual searches. As one might expect, it proves
more efficient to search contextually first.

Most rules of inference induce several search moves. Drawing up the
(long and dull) table is left to the reader. It is worth explaining, however,
that a contextual search is set up as follows: the searched formula is com-
pared to each available formula in view of the form of the latter. Suppose
that we focus on an available formula ADB. If we search for ~BD ~A,
we apply CPOS; if we search for B, we engage in a search for A; if we
search for ADC, we engage in a search for C D B; etc. If the contextual
search fails with respect to all available formulas, we start a non-contextual
search in view of the form of the formula searched for.

The problem with iterative searches is that they might go on forever. For
this reason, it is necessary to introduce some restrictions on starting new
searches. The first is that we always search for formulas that are not more
complex(’) than the formula searched for and the available formula in fo-
cus. Searching for A and focusing on B, we do not engage in a search for
BDA. This restriction first prevents us from arriving at proofs that are
superfluously complex. If the restriction were not introduced, a search for
A in the presence of the available formula B would lead us to also search
for BDA, ~AD ~B, ~BVA, ...; the search for BD A would then lead
us to search for BD(BDA), ~(ADB)D ~B, ~BV(ADB), ..., and, if C

() An exception may be allowed for TRA; if we search for pO(qVr) and pD(tVu) is
available, it is sensible to search for (tVv u)D(q Vv r). There are no other exceptions and the
present one is not important enough to be circumvented by modifying the general rule.
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is available, also for CO(BDA), ~(ADB)D ~C, ~CV (ADB), etc. If
such searches lead to the desired result, viz. A, there usually is a simpler
way to derive A as well. This first restriction moreover prevents us from
continuously stumbling upon circular searches and searches for inconsisten-
cies (that are unlikely to succeed). A search for A in the presence of the
available formula B would make us search for ~BV A, and this would
make us search for A again, and also for ~B.

The second restriction is that a new search is started in view of a single
rule of inference, not in view of a combination of such rules. To take a
simple example: if we search for A and focus on the available formula
B&(A v C), there is no single rule of inference that enables us to engage in
a new search; only after we analyzed this formula into B and A v C, the
latter will make us search for ~ C. (The rationale for the present restriction
is to avoid complications; if one is able to handle them, there is nothing
wrong with abolishing the restriction.) Given both restrictions, iterative
searches lead to rather small search trees for most but not all examples of
proofs.

The third restriction is that search paths should be prevented from becom-
ing circular. Here is a simple example: if we search for A in the presence
of both AVB and ~AV ~B, we first will search for ~B, and this will
make us search for A again. The latter search path has to be broken off
immediately. (We shall look only for other ways to arrive at ~B.)

The three restrictions discussed up to now are systematic in nature and are
justified in view of the efficiency of the heuristic method. Apart from them,
there is a restriction that is related to a brute fact: the complexity of search
trees someone is capable of handling. This depends nor only on the available
amount of short-time memory one is able to control. At each node of the
search tree, there may be a large number of branches, and one has to re-
member the branches already tried out for each node on the present path.
For contextual searches, the branch is characterized by the available formula
in focus and by the move taken in view of the form of this formula. Let me
give an example to illustrate the difficulty. Suppose we are searching for
A and focus on the available formula BD C. We have to check for each of
the following: is A derivable from BD C by CPOS, DIE, or ICE, or should
we search for another formula in view of MP (A = C), MT (A = ~B),
TRA (A = BDDor A = DDC), ICI (A = BO(C&D) or A = BD
(D&C)), ... After each of these failed with respect to each available formula,
we still have to engage in a non-contextual search for A (which, needless
to say, may engage us in a contextual search at subsequent nodes).
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There is no difficulty in handling a maximal complexity limit: once it is
reached, one checks whether the formula searched for is derivable from an
available formula but does not engage into a new search. Also, it is not
difficult to see how one may train oneself in handling more complex search
trees: practice is the means. The difficulty related to the complexity of
search trees is that this complexity is hard to measure (as it has several
dimensions) and that it is hard to compare the efficiency of increasing this
complexity with the efficiency of a deeper analysis of the goal and the
available formulas.

Given the above comments, we are in a position to articulate the first
instruction concerning searches:

SEARCH FOR GOAL: If the goal is a formula, start an iterative search for
it according to the procedure determined by the three systematic restric-
tions and taking account of the maximal complexity of the search tree;

if the goal is an inconsistency, start similar searches for the negation of
available formulas.

There is a second reason why one might start a search tree, as appears from
the following (first stage of a) proof:

1 (p&q)D((sDt)vr) PREM
2 p PREM
3 q PREM
4 ~r PREM asDt

If we proceed according to HM2, we shall first introduce the hypothesis s,
next the hypothesis ~t, and next the goal p&q. However, it is obvious that
a much more intelligent proof is found by consecutively applying CONJ,
MP and DS. So, a rather simple aspect of the intelligent character of proofs
is missing from HM2. This is repaired by searching for formulas that enable

one to analyze available formulas (before new hypotheses are added). Here
is the instruction:

SEARCH FOR ANALYZING FORMULA: start an iterative search (as defined
in SEARCH FOR GOAL) for formulas that enable one to analyze available
and non-analyzed formulas.
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The modifications discussed in the present section lead to a heuristic
method HM3 which is governed by the CONVENTION ON ORDER and consists
of the following sequence of instructions: (1) START, (2) CHECK FOR GOAL,
(3) DERIVE GOAL, (4) SEARCH FOR GOAL, (5) ANALYZE GOAL, (6) REFOR-
MULATE GOAL, (7) ANALYZE FORMULA, (8) REFORMULATE FORMULA,
(9) SEARCH FOR ANALYZING FORMULA, (10) HYP FROM GOAL, and (11)
GOAL FROM FORMULA,

It is typical for the two search instructions that, similar to ANALYZE GOAL,
they enable us to arrive at sensible applications of rules of inference that
take no part in the analysis of formulas; examples are ADD, CONJ, EI,
DI, ...

Incidentally, there is no reason why the two changes discussed in the
present section should be introduced together; SEARCH FOR GOAL might even
be introduced before the instructions introduced in the preceding section.
The main point I wanted to make is that, once one has gained the insights
deriving from applying HM1, one will arrive at more intelligent proofs by
moving closer to HM3.

The way in which the lemmas and theorems may be adapted to HM3 is
obvious as searches only lead to adding formulas when they succeed.

9. Further extensions

It is straightforward that HM3 may still be extended in several ways. One
of them is to combine several rules of inference, especially with respect to
contextual searches, as in the case where one sees at once that DPAC and
DS together enable one to derive A from BV (A v C) and ~BVO). It
seems to me, however, that this does not constitute a good reason for study-
ing further extensions of HM3. After all, I did all I promised to do, and
there is no optimal or most-embracing heuristic method anyway.

A different question is whether some important aspect is still missing from
HM3. The reader may feel there is, as it is not clear that superfluous (analy-
zing) moves have been prevented. As a first reply, let me point out that
many such moves are prevented by HM3. This is related to the fact that,
in many proofs, most of the analysis of available formulas will not result
from executing ANALYZE FORMULA, but from executing (the earlier instruc-
tion) SEARCH FOR GOAL.

Still, it is correct that the efficiency in avoiding superfluous analyzing
steps may be increased. In analyzing available formulas, we may proceed
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in a goal-directed way: we may first derive formulas that are likely to be
useful with respect to searched formulas. If we search for p, then qDp is
likely to be useful, whereas pDq is not. The reason for this is that, if q
later becomes available, we will be able to derive p from q and qDp. At
this point, the reader might object that, if (p D q) D p later becomes available,
we will be able to derive p from pD q and (p 2D q)Dp. This, however, is not
a sensible way to proceed, because it will not enable us to classify some
steps as more appropriate than others; any B is relevant to A, in that later
BD A may become available.(*) In the case of qDp, the matter is different
because p will be derivable from it if the formula q, which is less complex
than gD p, becomes available.

My suggestion then is that a formula B is likely to be useful with respect
to a searched formula A, if we see a way to derive A from B with the help
of a formula C that is not more complex than A or B. (One should not
require that C be simpler than either A or B; clearly, pDq is likely to be
useful for deriving p D r because g O r would enable us to do so.) Of course,
more accurate criteria are possible, e.g., in terms of positive and negative
parts, but these are rather technical and farther away from natural heuristic
methods. For this reason, I contend that the above suggestion will do.
Formulated in a more precise way, my suggestion is that, in executing
ANALYZE FORMULA, REFORMULATE FORMULA, and SEARCH FOR ANALYZING
FORMULA, we first derive the formula that is most likely to be useful with
respect to a searched formula. By proceeding in this way, we drastically
change the order in which the instructions are executed: we first decide
which analyzing step is most likely to be useful, and only thereafter try to
arrive at it by the three instructions (in their order). In the remote case that
no formula that is likely to be useful would be arrived at, one analyzes
formulas irrespective of this criterion. But even then a proviso is at hand:
there is no need to derive formulas which one sees to have no use. So,
eventually, it may be sensible to introduce a hypothesis even if some avail-
able formulas are not analyzed or even distributed.

The upshot is that the instructions are executed according to the CONVEN-
TION ON ORDER, but only in so far as the results of their execution are
useful. However, one should only execute GOAL FROM FORMULA if the goal
is an inconsistency — see the proof of lemma 3. No such proviso applies
t0 SEARCH FOR ANALYZING FORMULA, which will take over most of the role

(%) The situation is even worse: in PC, p is derivable from (p Dq) Dp alone. However, the
objection in the text holds for other implications as well.
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from GOAL FROM FORMULA for anyone who follows the rich heuristic
methods discussed in the present section.
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