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HIERARCHICAL INDUCTIVE INFERENCE METHODS

Moshe KoPPEL

A fundamental question in the theory of inductive inference is this: Given
an “observed” finite binary string, how should we predict its continuation?

In [1], Blum and Blum offer a definition of an inductive inference method
using a hierarchy of hypotheses each of which is represented as an infinite
binary string. According to this definition, an inference method consists of
selecting as a hypothesis the first string in the hierarchy which has the
observed string as an initial segment. The Blums’ work has its philosophical
roots in the ideas of Popper [6] but refines those ideas by imposing on the
hierarchies considerations of computability. In the present article we con-
sider those “consistent” hierarchies which satisfy certain elementary
Bayesian considerations. It is shown that such considerations force a definite
structure on inference hierarchies which allows us to better define such
notions as “confirmation” and “complexity” of a world of events.

The Popper-Blum and Blum approach used here doesn’t establish the
probability of a given event but rather offers a (perhaps arbitrarily) preferred
hypothesis for explaining observed events and hence predicting future
events. Other approaches, notably that of Carnap in [2], differ from this one
in that they don’t consider the sequence of observations but rather the
collection of observations. Hence they offer not explanatory hypotheses but
rather probabilities.

Carnap describes criteria for predicting whether or not some predicate will
hold in some trial. This “empirical” criterion is the frequency with which
the predicate has held in previous trials. The “logical” criterion is the
weight of the predicate (that is, its probability assuming that its constituent
atomic predicates are independent with probability 1/2).

Our modification of the Popper-Blum and Blum scheme allows the devel-
opment of a new criterion for determining the probability of an event rela-
tive to an inference method, namely, the extent to which the occurrence of
that event conforms to the predictions of the inference method. In fact in
[4] we show that, regardless of choice of inference method, under appropri-
ate conditions this criterion alone allows for the satisfaction of both of
Carnap’s criteria as a consequence.
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We outline the key results on hierarchical inference methods presented in
this paper. First, given some binary string of length n including exactly m
I’s, the ratio of consistent inference methods which predict a 1 in the next
trial is m/n — this result is suggestive, albeit naively, of the “straight rule”.

A precise definition is given of the predictability (or well-behavedness)
of some world vis-a-vis a particular inference method. We show that for any
world there is an optimal method (in the sense that no method would have
had greater success than the optimal one at predicting that world) and that
moreover there is a consistent optimal method. We show further that for
any consistent inference method there is a worst-behaved (or unpredictable)
world. We show that in such world there is a bound or the difference
between the actual frequency with which some predicate holds and the
weight (i.e., expected frequency) of that predicate.

Finally, in the conclusion we introduce our definition of probability.

I1. Inference Methods

Definition.  An inference method is a mapping from the set of all binary

strings into the set of infinite binary strings s.t.

a) the image E(S) of a finite string S has § as an initial segm-
ent.

b) if some infinite string is the image of its initial segment of
length /, then it is also the image of all of its initial seg-
ments of length greater than /.

¢) if § is infinite then E(S) = §.

Property b is known as “tenacity” and simply corresponds to the notion than
if after / experiments we have been prompted to make a particular predict-
ion, then we don’t change that prediction so long as future events have
confirmed, rather than contradicted, it.

Note that any method at all for predicting (including those not considered
here) must isolate certain features of the world as relevant and be invariant
over others. Here we assume that the relevant facts for prediction are the
properties of the observed strings and not the predicates of which they are
the extensions.

Such an inference method can be represented quite clearly with the use
of the following figure which we call a hierarchy.

The first two infinite strings (marked Level 1) are the images of the one-
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Figure 1 bit strings 1 and 0, respectively.

' Consequently, by tenacity, they are

10101 ... also the images of all their initial

00010 .. |[Levell . segments. Level 2 consists of the

images of the 2-bit strings 10 and 01.

11100.... The other 2-bit strings 10 and 00 have

01100.. [Level2 already been accounted for on Level

1. Level 3 consists of the images of

01000 ... all 3-bit strings not accounted for on

00101 ... the first two levels. We continue
71010 ... Level3 constructing the chart ad infinitum.

10010 ... Observe that if only n moments

have transpired in our universe — that
is, the strings which we wish to ex-
tend are of length n — then we need
make use only of the first n levels of
our hierarchy. We call this part of the
hierarchy an inference n-set.

Now let § be a finite or infinite binary string. Let §7 be a truncation of
S. Let I(S) be the length of S. Let (8); be the /* digit of § if j < I(S) and
in general let (S); be the j* digit of E(S). Finally, let L(S) be the level of §
— that is, the level on which E(S) appears. (If § is infinite and doesn’t
appear in the hierarchy, then L(§) = o)

A number of facts about inference hierarchies are obvious. There are
exactly 2*~* strings on level k of the hierarchy, except for k = 1 which has
two strings (one beginning with 1, the other with 0). Each § such that /(S)
= k, appears (as an initial segment) exactly once in the first k levels and
exactly 2"~* times in the first n levels for n > k. Also, L(S") < L(S).

Translating all this into an inference method simply entails predicting that
some phenomenon represented by the finite binary string S will continue in
accordance with E(S). If subsequent evidence eliminates E(S) as a candidate
then we move up the hierarchy until a suitable string is found, etc. In light
of this, a very natural measure of the confirmation of a hypothesis E(S) can
be given — namely, C(S) = I(S) — L(S). This can be intuited in two ways.
First, C(S) represents the number of levels up the hierarchy which we have
to move if we reject the optimal choice E(S) in favor of the next best choice.
Second, the first L(S) terms can be thought of as establishing the hypothesis
E(S) (since E(S) is not conjectured until L(S) terms have appeared), thus
leaving the next /(S) — L(S) terms to confirm it.
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III. Worlds and Consistency

Let Py, ..., P, be a set of logically independent projectible predicates. A
universe U = {P,, ..., P,} is the set of Boolean combinations of the “gene-
rating” predicates Py, ..., P,. Let P’, represent either the predicate P, or the
predlcate ~P. E,, ..., E} is the set of elementary predicates of the form
A P’;. Then every predicate in U is a disjunction of elementary predicates.
it a predicate 1s the disjunction of m elementary predicates we call m/2* the
Bernoulli distribution of P (written B(P)).

For a predicate P let S, be a binary string such that (S,);, = 1 if and only
if the predicate P holds at moment i. Let ,a world W of length [ of the uni-
verse U = {P,, ..., P,} be the set of 22 strings of length /, SB @,
where B, ranges over all Boolean functions. For any given universe there
are 2 p0551ble worlds of length /, since during each of / moments exactly
one of the 2* elementary predicates holds.

Observe that for any world of length /,

(S5 P oo Pk))i =B ((Spl).'» ey (SPk)i) for each i < [.

We need to ensure that the world predicted by some inference method also
satisfies this equality for each i > [.
Definition.  An inference method is consistent if for every Boolean func-
tion B and any two strings S, and S, of equal length E(B(S,,
$2) = B(E(S)), E(S)).

Similarly we say an inference n-method is consistent if for every Boolean
function B and any two strings §, and S, of length n, E(B(S,, §,)) = B(E(S),
E(S,)).

Repetition Theorem: An inference n-set N is consistent if and only if for
each j there exists an i < n such that for every
string S in N, (S), = ().

Proof: In this context § N T refers to the meet of § and 7, § U T refers
to the join of § and T and ~§ is the complement of §.
Consider the string 1. For any j > n and any S of length n, amn,=@E v
~8); = (8); YV (~8);, = (8); U ~((S)) = 1. Thus, E(1") = 1“’ for all n
and all consistent £,
Let D, be the string of length n each bit of which is 0 except for the i
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bit which is 1. Let B} be a Boolean function on n strings such that the i*
bitof B} (S, ..., §,) is 1 if and only if the i* bit of exactly one of the strings
Sis oees S, 18 1.

For every j > n, B} (D));, Dy, ..., D,)) = (B} (D,, D, ..., D)), =
(17); = 1. Thus for every j > n there is exactly one <n such that (D;),
= 1 We claim that for any § of length n, (S);, = 1 if and only if (.S') =
If (S) 1 then for some string 7, (§); = (D U7, = (D) U (T) 1
If (S) = 0 then (~ S) 1 and by the above (~ $) =1 and thus (S)

0. This completes the proof that if an inference n-set is consistent then for

each j there exists an i < n (namely i) such that for every S of length n (S);
= (5).

Figure 2 To prove the converse, observe that

for any Boolean function B and

0000000 ... strings of length n, §, and §, we have
3 I [ B((S), (52) = B((S),, (5),) by

hypothesis. But since i; <" n it foflows
0101010.... that B((S,);, (Sz).) ="(B(S,, 52);,
1010101 (B(S,, Sz))

Note that a consistent inference

0010100 method is an inference method which
1101011 ... consists solely of consistent inference
0111110.... n-sets. Figure 2 contains an example
1000001 of a consistent hierarchy.

Since for each 1 < n < 4 the
0001010.... inference n-set here is consistent we
1110101 .... have that the second column of Level
0100000.... 1 is a copy of the first, the third
101 1111.... column of Levels 1 and 2 is a copy of
0011110 one of the previous two, etc. It fol-
11000601 ... lows that 0° and 1* always appear on
0110100.... Level 1.
1001011 By the Repetition theorem we have

that for any consistent inference n-set
and every string of length n, there exist some i = i(n) < n such that (Y
= (8);. Moreover, for any consistent inference method H, the set , % {i(n)}
completely determines H. Thus we have

Theorem. There is a one-to-one correspondence between consistent infer-
ence methods and functions g:N - N such that g(n) < n.
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We now show that the ratio of consistent inference methods which predicate
that a predicate will hold in some future trial is equal to the frequency with
which that predicate has held in previous trials.

Let §,, §,, ..., S, be some ordering of the set of binary strings of length
n.

Definition. If N is an inference n-set the p® projection of N is the set of
strings | 2{T;| T, = S, * (5,),} where * denotes concatenation.

Definition. A p® projection is consistent if it is the p® projection of a
consistent inference n-set.

Lemma. Any consistent p* projection is also a consistent /* projection

for any j.

As a result of the above Lemma which is an immediate consequence of the
Repetition Theorem we can speak simply of consistent projections without
specifying the number of the projection.

Definition. 1f §; is a string of length n, the desirability of the prediction
(5), = 1 (written D((S;), = 1)) is equal to the proportion of
all consistent projections of inference n-sets for which (7))
= 1 (i.e., which contain §; * 1).

n+1

Straight Rule Theorem. If S is a string of length n containing m 1’s then
Jor every p, D((S), = 1) = m/n. In particular, for
any n, D((1"), = 1) = 1.

This follows from the fact that — from the Repetition Theorem — there is
one consistent projection corresponding to each choice of 1 < i, < nand
for exactly m of these i,, (5), = 1.

We now define a different (ype of prediction desirability. If H is an infer-
ence hierarchy and R is some set of finite strings, the desirability modulo
H of the prediction (R), = 1 (written D,, ((R), = 1)) is equal to the propor-
tion of strings S in R such that (8), = 1 according to H. Roughly speaking,
if we are using some fixed consistent hierarchy H and we don’t know what
string § is, though we do know § € R, then D, ((R), = 1) is the desirability
of the prediction that (5), = 1.

Second Straight Rule Theorem. If R consists of all strings of length n
containing m 1's, then for any consistent
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inference hierarchy H and any p, we have
Dy (R), = 1) = m/n.

This follows from the fact that of the (}) strings in R exactly (%) have 1
as the p® bit.

IV. Complexity

In this section we offer a natural definition of the relative complexity (oppo-
site: predictability) of a world vis-a-vis to a given inference method and,
conversely, of the relative effectiveness of an inference method at predicting
a given world.

Consider some [x2* world W and some inference method H. Let a; denote
the number of strings in W which H correctly predicts after seeing their first
i bits —, that is, which appear on Level i or below in H. Thus, for example
aq=2.LetVyy ={a,..a).

Definition.  Given two inference methods H, and H, and an 2% world W
such that V' = (ay, ..., @) and Viiz = (a,, ...,a, ) we say
t‘l;?t H, is at least as effective as H, for W (written Vi >

wifag =aq foralll <i <.

Analogously, we have

Definition. Given two b\:22‘t worlds W, and W, and an inference method
H such that val = (a,, ..., @) and V",’{,2 (a, ..., @ ) we say
that W, is at least as predictable (not more predictable than)
W, vis-a-vis Hifa, = q; forall i < i < I

Observe that predictability is a property of worlds, not strings. Thus it
captures the idea that although a particular string may not exhibit projectible
patterns, if it is demonstrably interdependent with some other string in the
world, the world is rendered more predictable.

We now give a complete characterization of all possible vectors V2 both
in the instance where H ranges over all inference methods and where it
ranges only over, consistent methods.

Let W be a 2°x/ world. Recall that during any moment ¢, exactly one
elementary predicate E,, holds in W. If in W, (i) = h(j) we call the
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moments M; and M; partners. If h(i) # h(j) for all j < i, we call M, a free
moment. Let c(i) denote the number of different elementary predicates which
hold in the first i moments of W (equivalently: the number of free moments
among the first i moments of W).- Let « be the numbey of moments succeed-
ing the last non-free moment of W and let ¢, = a/2°> — c(]).

Theorem 1. For any 12 universe W, there exists an inference method H
such that Vi = (a,, ..., @) if and only if
i)t is an integer forall 1 < i </
g <t,<t+2%forall <i<l
i, <2V foralli <l —a;t,=2%foralli 21 — a.

Theorem 2. For any lx22k universe W, there exists a consistent inference
method H such that Vi, = (a,, ..., @) if and only if
gy =2
i)t =tort,, =2 foralll <i <l
i), <2foralli <! —o;,=2%foralli =1 — a.

V. Optimal Methods and Unpredictable Worlds

It might be objected that the restriction to consistent inference methods is
a handicap — that for some world, some inconsistent inference method
might nevertheless be more effective than any consistent one. We prove that
this cannot occur.

For a world W, call an inference method H, optimal if Vo = Vi for any
(consistent or inconsistent) inference method H. Note that effectiveness
relative to W is not a linear ordering on inference methods. Nevertheless
we have

Theorem. For any world W, there exists a consistent, optimal inference
method H.

Proof. From Theorem 2 of Section IV it follows that there exists a consist-
ent inference method such that 7, = 2°? for all i < [ and from The-
orem 1 it follows that this method is optimal.

We have thus far considered the effectiveness of different inference methods

for some given world. We now consider the complexity (or well-behaved-

ness) of different worlds with respect to some given infergnce method. If
some [x2® world W, is such that V’,j{,o < V,, for every Ix2* world W, then
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we call W, “H-unpredictable”.

k
Lemma. For any positive integers [, k there exists an [x2* world W which
is H-unpredictable for every consistent inference method H.

Distinct Strings Lemma. If W is an 2% world with I > 2* then there
exists a consistent inference method H such that
W is H-unpredictable if and only if the string 1’
appears exactly once in W.
Proof of Distinct Strings Lemma. 1f the string 1 appears more than once in
W then for any H, Vi will be such that a, > 2. But for any H there is an
Ix2* world W’ such that Vj. has a, = 2. Therefore W can’t be H-unpred-
ictable. Conversely, if 1 appears only once in W then by Theorem 2 we can
choose H such that V{j hasa, = 2 ifi < — 2*and g, = 2'"* ~ otherwise.
QED

Density Theorem. If there exists a consistent inference method H such that
W is H-unpredictable then for any S, in W, | D(S,) -
< ¢'B(P).
Surprisingly, the notion “unpredictable” as defined here is closely related
to the common notion of “random” in that the frequency with which a
predicate in an unpredictable world holds, is close to its Bernoulli distribut-
ion.
Proof of Density Theorem. Let W be some unpredictable world generated
by the strings §,, ..., §,. Let §’; denote either S, or ~§,. We first prove that
ifS§ =58, N..NJ§’ thenD(S) = (1 — ¢)/2". Suppose that D(S) < (1
- 0)/2". 1fp is the number of 1’s in § then p = D(8){ < [(1 — ¢)/2™]
= 2k-" Let S, .,» - 5, be the generators of W which don’t appear in the
definition of S, There are precisely 2* ™ different strings of the form §’,
N ... N §’ and since p < 2" one of these strings, say 7, must be 0
durmg each mornent for which § is 1. But then the string ~(S N T) = 1
contradicting the Distinct Strings Lemma. To prove the theorem for arbit-
rary § = f(§,, ..., Sy note that S can be written in disjunctive normal form
with disjoint disjuncts Ry, ..., R,. Then D(§) = ED(R) = Z(1 — ¢) B(R)
= (I — ¢) B(S). Finally we derive the inequality D(S) < (11 + ¢) B(S) by
replacing § with ~§ in the first inequality.
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VIII. Conclusions

We have been careful to use the term “desirability of prediction” rather than
“probability”. It is certainly not the case that if some predicate has been true
in every previous trial that the probability is 1 that it will be true in the next
trial. Nevertheless, if we had to make some prediction, that is certainly what
we’d predict.

What we have said, in short, is that if it is the case that “x percent of all
observed A’s have been B’s” then x percent of all consistent inference
methods predict that given some future A, it will be a B. While one needn’t
a priori give equal weight to all consistent inference methods, we have
suggested that it is more fruitful to apply a principle of indifference to
possible inference methods than to, say, possible trial results. Hence the
“straight rule”.

We have shown that the consistency condition does not adversely effect
the potential for predicting accurately in general, and that the resultant
notion of unpredictability corresponds in essential ways to the intuitive
notion of randomness.

Despite the obvious limitations of this method for purposes of prediction,
it can be shown that these ideas can be used as a basis for a new definition
of probability. Let W, and W, be two possible continuations of the world
W. (That is, I(W)) = I(W,) > (W) but W,, W, and W are identical for the
first /(W) moments.) Then we say that (with respect to H) W, is a more
probable continuation of W than W.,, if V"’ > Vi, . That is the probability
of some continuation of a world is the extent to which it conforms to the
expectations of some given inference method. It is shown in [4] that many
of the properties of such a probability are invariant over the choice of
consistent H and that these properties are precisely those we would want not
only in a theory of probability but in a theory of confirmation as well.

The treatment in this paper leaves wide open the question of choice of
hierarchy. Ultimately if the approach outlined here is to be useful, some
additional criteria will have to be employed for selecting appropriate hiera-
rchies. The computability considerations of Blum and Blum, for example,
are certainly not precluded by our consistency constraint. Also, the complex-
ity considerations of Chaitin [3] especially as exploited by Martin-Lof [5],
are appropriate in this framework.

Bar-Ilan University
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