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POSSIBLE LOGICS FOR BELIEF

W. VAN DER HOEK and J.-J. Ch. MEYER,

Abstract

Taking the (modal) logic for belief KD45 as a base, we show how
some properties of belief depend on particular axioms (of that system),
while other properties (which can be unified under the name logical
omniscience) seem to be typical for modal logics that define belief as
a necessity. We examine the effects of a variety of axioms in a sys-
tematic way and give a sketch, along the lines of a contribution of
Fagin and Halpern, of the problems that seem hard to overcome in
such a system. However, it appears, that switching from the view of
belief-as-necessity to belief-as-possibility solves some of those prob-
lems. In particular, closure under implication and belief of valid for-
mulas can be invalidated, and an agent’s belief set needs no longer be
consistent. We explain how we consider belief-as-possibility and
belief-as-necessity as two extreme notions, allowing for a variety of
‘beliefs’ in between. However, this switch of view in KD45 does not
invalidate properties like positive and negative introspection. We show
that both views allow extensions with Fagin and Halpern’s theory of
awareness, in which an agent needs to be aware of a formula before
he can explicitly believe it. Next, we introduce a notion of principles,
or prejudices, that allows an agent to have implicit beliefs. This can
model his ‘reasoning against the facts’. While awareness can prevent
an agent from believing ¢, that he would believe if he were logically
omniscient, principles even enable him to believe —¢ in such a case.

0. Introduction.

We examine a variety of logics for belief: logics that are defined in a frame-
work of modal logic ([Ch], [HC]), in which epistemic logic is treated easily
([Hi], [Mo], [MHV]). An important issue that we shall address is that of
logical omniscience (1. 0.) which, roughly speaking, says that an agent’s
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beliefs are closed under implication. We investigate these problems and
study several (sometimes partial) solutions. In particular, it will appear, that
many problems can be solved if one changes his view in a modal framework
from ‘belief as a necessity’ (which is the traditional one) to ‘belief as a
possibility’, as was already suggested in [Me]. Moreover, we will see how
additional features can offer a great variety of possible logics for belief.

Before we say more about 1. o, we briefly (re-) introduce some ter-
minology. The language | of our (propositional) epistemic formulas is built
from a set of atoms p, q, r, ..., the constant true, the connectives =, A and
V (-, < and false can be added as abbreviations), and an operator L. This
modal operator is also written in the literature as ‘(] or ‘K’ (with intended
meaning of K¢: “¢ is known” cf. [HM]). Here, the intended meaning of
Le is “¢ is believed”. These formulas are interpreted on (Kripke) structures
(or, models), which are tuples M = (S, R, =), with S a set of worlds or
states, w an assignment of truth values to the primitive propositions for each
state s in S, and R a binary relation on S.

We assume familiarity with the definition of |, with (M, s)|=¢ read as
“formula ¢ is true in M at s”. We just give the L-clause: (M, s) | L iff
for all t such that Rst: (M, t)|E¢ (¥). If, for given ¢, S and R there exists
ans € S and a 7 such that (M, s) = ({(S, m, R), s)[F¢, we say that ¢ is
satisfiable (at s) in M. If for all s (M, s)}=¢, we say that ¢ is valid on M
and write M= ¢. Finally, ¢ is called (just) valid if it is valid on all Kripke
structures M.

A Kripke frame F is a model with no valuation function 7 yet: F= (S, R).
(F, w)[F¢ means that for all w, ((S, R, ), w)[=¢ and F[F¢ is shorthand
for (for all w, (F, w) =¢). We say that a modal formula ¢ corresponds with
first order property ¢ if it holds that for all frames F, Fl=peFE¢. ¢ will
be generally a property of the accessibility relation R.

We define, for s € S, the belief set BS(s) at s as BS(s) = {¢ | L¢ is true
at s}. (When convenient, we leave out reference to s.) From (*), we see that
BS(s) consists of all formulas that are true in all (from s) accessible worlds.
Since these worlds are (propositional) models, we have:

i)  BS(s) is consistent, if s has R-successors,
ii)  BS contains all tautologies and
iii) BS is closed under logical deductions.

For many applications of a theory of belief, these properties makes a be-
liever too perfect a reasoner. i) is perhaps less critical, for it suggests a
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solution: if one does not want just consistent belief sets, one changes the
constraints on R. This will indeed be one of the issues we address, but this
remedy will not always be sufficient. The cures against an agent’s omnis-
cience that we will discuss can be categorised as follows:(")

1) Explicitate l. 0. in its aspects, and find conditions on the structure that
affect (omit) them.

2) Give an alternative definition of belief within the modal framework.

3) Make modifications on the belief set BS, given a fixed definition of
belief. We will define:
a) g is explicitly believed iff (¢ €BS and ¢ meets some additional (a-
wareness) condition).
b) ¢ is implicitly believed iff (¢ €BS or ¢ meets some alternative (pre-
Judices) condition).

1. Belief-as-Necessity: the System KD45.

In “Belief, Awareness and Limited Reasoning”, Fagin and Halpern [FH]
mention some short-comings of the standard way of defining belief. We will
not use their ‘n-agents’ system here, but the following can easily be ex-
tended to it. [FH]’s logic of belief (for the case n = 1) is characterized by:

A1 All instances of propositional tautologies.
A2 (Le AL(e=y))~Ly.

A3 ~Lfalse.

A4 Le—LLe.

AS "Le—L-Le.

Rl ¢, Fe>y=H .

(") One direction we typically do not investigate here, is that of allowing
‘incoherent’, or ‘partial” worlds. Such an approach can be found in e.g.
[Le]. Fagin an Halpern object against this approach (in [FH]), that believers
would become again perfect reasoners, now w.r.t. to this new (relevance)
logic. We think this will ultimately be the (only) criticism one can raise
against any logic that soundly and completely corresponds with (a notion
of) belief.
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R2 +e=rLe.

Fact 1. This system is sound and complete w. r. t. structures that are serial,
transitive and Euclidean.,

The system is known as weak S5 or KD45 ([Ch], [HC]). Adding A3’:
Le—¢ (stronger than A3 and corresponding with reflexivity), yields the
system §5 and the corresponding structures become equivalence classes. A3’
is also known as the knowledge axiom, because it is usually taken to distin-
guish knowledge from belief. In KD45, an agent believes his beliefs behave
like knowledge: L(Le—¢) is valid.

The power of systems like these lies in the flexibility of, syntactically,
adding or removing axioms and, semantically, making constraints on the
(relation of the) structure. The property of belief represented by A4 is
known as positive introspection, that of AS as negative introspection. They
characterise transitivity (i. e, (S, R, w)}[=A4 for all 7&R is transitive) and
Euclidicity, respectively. Their reverses, LLg—L¢ and L 7" Le—>—Le char-
acterise density and selective transitivity (vx3yvz(Rxy A (Ryz—Rxz))), re-
spectively. For a systematic overview of the connections between validity
of several modal formulas (like the introspection formulas) on the one hand
and properties of the underlying Kripke models on the other, we refer to
[Hol].

It is of course also interesting to study knowledge (K) and belief (B) in
one and the same logical system. One way to do so is to define knowledge
and belief as separate entities with some interaction axioms. Such an ap-
proach is to be found in [KL]. The question about what should be reaso-
nable interaction properties, and in particular, how many can be added
without yielding that knowledge and belief become the same, is then inves-
tigated in [Hol].

An alternative approach to combine knowledge and belief is to take one
of the two as basic, and connect the two in one fundamental definition. A
popular direction follows the slogan ‘knowledge=justified, true belief’
(already advocated in the sixties by e.g. [LP]) but an opposite view is taken
in [SM], where belief (or rather B(g, ¢,..), the belief in ¢ relative to some
‘unusuallity assertion’) is defined in terms of knowledge. Here, we will
study both knowledge and belief, but hardly consider to have both notions
in one system.

Fact 2. ((HM], [Hol]). KD45+ LLpeL¢ and KD45+ —Lg<L L.
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Corollary. (Manageability of modalities). Let X be a sequence of symbols
from {L, —} and ¢ any epistemic formula. Then X¢ can be rewritten to
X', with X* a subsequence of L.

2. Logical Omniscience.

We saw that A3-AS5 correspond with particular conditions on R. However,
A2 and R2 (and also Al and R1) seem inevitable if we interpret our system
on Kripke structures. This causes logical omniscience; 1. 0. partly: suppose
@ is believed, i. e, Le. Then ¢ is true in all accessible worlds, being prop-
ositional models, so we can make logical derivations in them. Deriving ¥
in them gives Ly, i.e. ¥ is believed. So, belief sets are closed under logical
derivations. We list some aspects of 1. 0. , using ‘B” as belief operator for
later reference:

LO1 B¢ A B(g—y)—=By Closure under implication.
LO2 F¢—=y = Bg—>By Closure under valid implication.
LO3 +¢= By Belief of valid formulas.
LO4 (BeABY)>B(eAY) Closure under conjunction.
LO5 Be¢—B(peVy) Weakening of Belief.
LO6 Bg—=B-e Consistency of Beliefs.
LO7 Bg—¢ Having no false Beliefs.
LO8 B(Be—¢) Belief of having no false beliefs.
LO9 B true Believing truth.
LO10 More epistemic alternatives Anti-monotonicity in
yield fewer beliefs. epistemic alternatives

Fact 3. KD45 suffers from LO1-LO6, and LO8-LO10. Moreover, LOI1-
LOS5, LO9 and LO10 are valid in each system that defines belief as a neces-
sity operator, and that satisfies A1, A2, R1 and R2.

3. Belief-as-Possibility: the System Dual KD4S5.

In [FH], the inevitability of A2 and R2 is mentioned: “...No matter how we
modify the R-relation, the fact that we say that an agent knows or believes
a fact exactly if this fact is true in all the worlds the agent considers pos-
sible, seems to force us to the situation where an agent knows all tautologies
and his knowledge is closed under implication”. The italics are ours, and
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they suggest a way out: we can stick to the possible worlds approach, but
escape the consequences of A2 and R2, if we drop the constraint in italics
and define a fact to be believed if it is true in (at least) one possible world.
Or, equivalently, to have a belief operator, say M, that is the dual of L,
i.e., M = 2L~ This has the effect we wanted; a formula Mg is true if
L is not: i.e., if ¢ is not true in all possible worlds, so if there is at
least one world in which ¢ is true. In a system in which M is defined, we
can simultaneously have a necessity operator which we will interpret as
knowledge and denote by K. On serial structures, we have (Kg—=Mgp).
Considered as a description of belief, the operator M corresponds with
a belief of a very credulous person or agent: ¢ is believed, as long as —¢
is not known for sure. M means believing in the sense of considering it

possible, not excluding the possibility(®). If we dualise KD45, we get the
following:

dual Al Al, since Al does not mention any L.
dual A2 My—=(Mg Vv M(—eA¥)E).

dual A3 M true.

dual A4 MMg—Me.

dual A5 M~ Mg—->-Mpp.

dual R1 RI.

dual R2 ¢ =+ "M-p.

Fact 4. In dual KD45, both Mg<MM¢g and " Mg<M Mg hold.

(*) This weak notion of belief can solve the paradox Shoham ([Sh]) finds
in Moore‘s ([Mo]) ‘older brother’ argument. Moore states that he believes
(B) he has no older brother, not because his parents told him he did not
have one, but because if he did have an older brother, he would know X)
about it. So, he adopts 7 K¢ = B¢ (or, "B—¢ = K¢). Shoham objects
against this, that now one also has to adopt “if I did not have an older
brother, I would know about it” (=K —¢ — Be). With our M, it is indeed
fully consistent to believe both ¢ and —¢, as long as one neither knows —¢
nor ¢,

() Or, equivalently, My A —Mg) = M(e A —yY) (“If T believe in

ghosts but do not believe that they do any harm, I believe in ghosts that
don’t do any harm”.)
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Corollary. In dual KD45, positive and negative introspection are valid.
Adding knowledge (K), we also have (" Mg<KMgp) and (Ke<MKep).

Remark 1. The main difference between belief-as-possibility and belief-as-
necessity (M- and L-beliefs, from now on) is, that in the former an agent
gets his (different) beliefs from different worlds. He can, for instance,
believe ¢ (is possible) and believe  (is possible), without necessarily be-
lieving that ¢ Ay (is possible in one and the same world). (Note that
(Mp A M —p) is not the same as M(p A —p).)

This reminds on [FH]’s notion of frame of mind. In fact, it is a special
case of their Jocal reasoning, taking each cluster to consist of one world.
However, we do not need their complex machinery here, and, in their
approach, belief is essentially a necessity. However, it also reminds on our
treatment in [MH] of (several extensions of) defaults. There, we show that
it makes sense to impose an order on such frames of mind (being either
worlds or sets of worlds) allowing the agent to make preferences when
‘conflicting beliefs’ turn up (cf. the famous “Nixon-diamond™).

With the difference between L- and M-belief in mind, one easily verifies:

Fact 5. dual KD45 suffers from LO2, LO3 and LO5. LO3 is not valid if
one drops dual A3 (seriality).

Remark 2. Note the difference between dual A3’, ¢ - Mg, characterising
reflexivity, and the rule ¢ = - Mg, corresponding with (the weaker prop-
erty of) seriality. For M, they both can be denied (although we do have ¢
= Mitrue-Mp), for L, the rule ¢ = Le is valid. If ¢ is a tautology,
dual R2 implies (M —¢—false), whereas A3 implies (L — ¢—Lfalse) (and thus
L-eg—Ly).

dual A3’ for knowledge, ¢—=Kgp, is used by Shoham ([Sh]) to relate two
inferences Moore distinguishes: autoepistemic- (If ¢, then I'd know it) and
default- (Most birds fly)inferences. According to Shoham, adding ¢—K¢
can model both kinds of inferences, because (epistemic) ¢—K¢ has as its
contrapositive (default) M ~¢—>—1¢. We stress here, that one should not add
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one of them as a scheme, but with some instantiations for ¢(%). If one
adds ¢—Kg as an axiom-scheme, then one introduces Knowledge of truths
(whereas R2 introduces Belief of validities). Moreover, adding it to a knowl-
edge system (with A3’), truth, belief and knowledge would collapse.

Remark 3. Property LOI10 is especially interesting when studying develop-
ment of belief and knowledge (over time). It is possible to vary the acces-
sibility relation over points of time € T. This gives a nice tool for describing
a system in which, for instance, knowledge grows, and at the same time the
amount of believed-but-not-known ‘facts’ decreases. We will not discuss
such notion of time here, however.

Remark 4. Of course, L- and M- systems have the same number of un-
deniable formulas or rules, since for each valid L-formula, there cor-
responds a valid, dual, M-formula (e. g, since L suffers from LO4, M
suffers from its dual, M v distr: M(¢ V )=(Mg vV My). However, having

both definitions at one’s disposal one can choose with one’s own application
in mind.

4. Awareness and Principles.

In M-systems we can deny LO9, so that, e. g, “"M(p v —p) is satisfiable.
This is related with a source of 1. o. that is mentioned in ([FH): (lack of)
awareness. In [FH] it is argued that one cannot say one knows or does not
know p if one is not aware of p, and we think the same holds for belief.
Satisfiability of =M(p v —p) is not a real solution, however: how can one
say one does not believe p or not p if one is not aware of p? The only way
out seems to decide on a meta-level what an agent is aware of: an agent
cannot say that he is not aware of p (if he is not aware of p). Such a solu-
tion is offered in [FH], inspired by [Le]. The idea behind the approach is,
that with the notion of awareness, one can prevent from getting in un-

() We don’t think it is realistic, to assume for all ¢, if it is true, you'd
know it (it is more plausible for ‘having an older brother’ than for Fermat’s
theorem) or, for all ¢, if it is possible, it is the case (it looks more reason-
able to assume it for “Tweety flies” than for ‘I win the lottery”).
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desirable formulas into a belief set. Then, e. g, LOl need not be valid
anymore: ¢ and ¢—>y may be believed, without believing . (A priori, no
restrictions are made on the set the agent is aware of: he may be aware of
¢—>Y, but not of y.) .

In [FH] a function A is added to the structure, that determines what
formulas the agent is aware of in each world, and an operator A to the
formal system, obeying (M, s)(=((S, R, A, 7), 5)) EAg iff o EA(s). Now,
we can distinguish between (just) belief and explicit belief. (In [FH], the
first is denoted by implicit belief, but we reserve this term for another
notion). We define explicit belief: Lo =, ;Lo A Ag, and M, =, Mg A Agp.
Instead of properties for (just) belief, now we get properties relativised to
awareness (*):

LOIA: L.p AL (p>y)>(Ag—L.0).

LO2A: oy = L o—>(Ay—L.y).
LO3A: ¢ = (Ap—L.p).

LO4A: (Lo ALY (Alp AY)=L(p AY)).
LOSA: L.e~>(A(p VY)=L.(e V).

LO9A: Atrue—L, true.

Remark 5.

1) A does not make L, the same (w.r.t. 1.0.) as M. Lp AL (¢=y) A L.y
may be satisfiable, still Lo A L.(¢—>¥) AL,y is not (As soon as y is
been aware of, perfect reasoning continues!).

2) A cannot, e. g, invalidate L,p v ~L,p. Considering formulas as asser-
tions, this is more problematic (cf. the introduction of this section) than
interpreting them as descriptions of states of affairs.

3) ‘Awareness’ must be interpreted in a very broad sense. It does not
always behave like common awareness. For instance, A Ap is satis-
fiable, L, Ap and even (A—p A 2 Ap).

4) A is purely syntactical. That makes it difficult to reason about, yielding
often ad hoc solutions. E. g, in [FH] it is suggested to let A satisfy
(e AP EA(s)=e, Y EAC(S)), to overcome satisfiability of L.(p A —Lp).

(°) Similar things can be said about M-beliefs. For instance, now, for any
tautology ¢ #true, (M true A =" M.p) is satisfiable. Generally, if By is a
conclusion in a system for belief, (B=L or M), then so is (Ag—B.p).
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This solution is not completely correct(®), but also rather ad hoc: how
is it related to that of satisfiability of L, —(p—L_p), now the belief is not
written as a conjunction?

5) As showed above, A can invalidate ‘old’ rules, e.g. LO1-LOS5 are
invalidated by it. These properties have positive belief conclusions, i.e.
of the form Ly (Mg), with ¢ any formula, as opposed to negative belief
conclusions, (of the form = L¢(—Mg)). A blocks such positive conclu-
sions(’).

Remark 5. 5) only applies to positive belief conclusions, not to negative
ones. A can invalidate LO3, ¢ = L, as opposed to LO6,
L.g—=>—L, ¢, and dual LO3, ¢ = — =M, ~¢. The latter two express that
¢ does not get in the belief set, and A’s blocking function cannot change
that. This suggests introducing a function that adds formulas to belief sets.
We define P that gives a set of formulas for each world, representing the
beliefs an agent wants to stick to, perhaps without having any piece of
evidence for them or seeing them fit in a complete situation. They can be
considered his principles, (or prejudices, for they may be inconsistent with
the facts that are true or even possible).

We define P corresponding to this function P, in the same spirit as A
corresponds to A, and call the resulting systems LP- and MP-systems. We
define implicit belief: Lip=,/L¢V Py and Mo =,Me VvV Pp. Now it is
clear, how an agent can have inconsistent implicit beliefs. And, remark 5,
1) is solved: Lip A Li(¢—=>y) AL, ¢ is satisfiable. Also, M(¢ V ) is satis-
fiable both with (=M A " M,;y) and with (M;—¢ A M;—). LO3 is solved
for M: if ¢ is a tautology, M; ¢ is satisfiable. Relativising makes sense
again: for a tautology ¢, we had Ag—L.¢, and now also “P—1¢p—>-M,7¢
(these formulas can also be considered dual). Awareness can prevent tauto-
logies from being (L-) believed, principles can make their negation be

(°) It is satisfiable at s with: (p A =L.p) € A(s), Vt(Rst=(t,p)=true and
pEA(t)). We need also Rst=A(s)=A(t).

(") This blocking, or relativising, is very much reminding of the
abnormally predicate in circumscription ((MC]). For instance LO1A, L ¢
A L(e=>¢)>(Ay—L.p) can be read a “If Tweety is a bird and all birds fly,
then, if everything is normal w.r.t. Tweety’s flying, Tweety flies”.
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(implicitly) believed. We encourage the reader to check that problems LO1-
LO10 are solved now, for M as well as for L.

Remark 6. :

1) Awareness and principles serve the same function as [Le]’s partial
(incoherent, respectively) worlds. They decrease (increase, respectively)
the ‘old’ belief set(*). Note that, although L,(p A —p) is satisfiable,
P A —p is not, distinguishing inconsistent beliefs and incoherent worlds!

2) For B=L, M: B,¢g=»Bg—B¢ (L.¢—Lg is shared with [FH] and [Le]).
Maximal A (| for all s), equalises B, and B, minimal P ({ } for all s),
makes B; and B collapse.

3) The relations of 2) are also achieved by considering M = (S, R, R, R,,
m) with R;CRCR, for L- systems, (R, CRCR, for M-systems), and
requiring e. g, that L g is true, if ¢ is true in all R -accessible worlds.
But then, the problems A and P are designed for, would not be solved:
e. g, within all explicitly possible worlds, perfect reasoning goes on,
yielding LO1 again for L.

4) Allowing both functions gives powerful systems. One might add a time
function, and require that principles decrease and awareness grows as
time goes by. We will not explore this here.

5. Some properties of Awareness and Principles.

Since A and P are purely syntactical, they can behave very unnatural (cf.
remark 5, 4)). Additional constraints on A and P might steer this. In-
tuitively, A might be closed under subformulas, and P under deductions.
The following constraints (with A;=A,, and P,=P,, i=1, 2) seem interesting:

Al: ¢€A(s), ¥ subformula of ¢ = Y EA(s).
A2: ¢ and y have the same propositional primitives= (¢ € A(s)ey € A(s)).
A3: Given a set of constants ¥(s): ¢ € A(s) ¢ all propositional constants

(*) We use the triple explicit, implicit and (just) belief for those restricted,
extended and ‘old’ belief sets, respectively, as opposed to [Le] and [FH],
which use implicit belief for what we call (just) belief. (They don’t have all
three.)
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of pin¥(s).
Pl: ¢€P(s) and - ¢—=y = YEP(s).
P2: ¢ €P(s), (¢=>y)EP(s) = Yy EP(s).
P3: P(B)H¢ = ¢ EP(s).

However, one runs the risk of reintroducing 1. 0. problems. As remarked
in [FH], Al introduces L. AL (¢—=y)—>L.y again. In fact, the weaker
Ap A A (p=>V)>Ay does(®). The same does not hold for P: assuming P,
does not imply Li¢ A L(¢—>y)—=L;y. Regarding this issue, the notion of
compositionality makes sense. Let $(X) be a property of modal operator X.
® is compositional in B, (cpe) if ®(A), ®(B) = F(B,). ® is compositional
in B; (cpi) if ®(P), #(B) = &(B)) (B=L, M).

Fact 6. F(X)=Xg—-Xy is cpi and cpe. The same holds for (X¢ vV Xy)-»Xx
and X¢—>(Xy A Xx). ®(X)=(Xe A Xy)>Xy is cpe. The latter is not cpi, as
the avoidability of both LO1 and LO4 for implicit belief shows (Note that
if & and ®, are compositional, ®->®, need not be). Finally,
P(X)=Xe—=(Xy Vv Xx) is cpi, not cpe. We see that, if ®,(X) - &,(X) is
compositional, one can lose this property for B; if one strengthens the an-
tecedent, and for B, if one weakens the consequent.

A topic we investigated further in [HoM] is that of correspondences for
implicit and explicit belief. We give some results. An easy case is that of
seriality. The implicit form of A3: L, false is sufficient for seriality, not
necessary: ((S, p, R, P), s)[|z L, false already if false € P(s). We state:

Chl a. vs(3t RstA false € P(s)) (S, R, P, 7) = L, false.
b. R is serial = (S, R, P, w) L, false~Pfalse.
¢. R is serial & ((S, R, P, m)[|F 1L, falseovsfalse & P(s)).
Ch2 a. vs(3t RstV false & A(s))e(S, R, A, 7) |= L, false.
b. R is serial = (S, R, A, m)F L, false.
c. Riis serial & ((S, R, A, m)[= 1L, false for all A).

Next, transitivity. In [FH] is stated, that (R is transitive and (Rst=A(s)=
(°) We use constraints on A and axioms in A interchangeably. Of course,

this A-axiom corresponds with a constraint on A, analogous to P, for P, We
will do the same with constraints on P and axioms for P.
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A(t)) imply that (S, p, R, A)EL.e—=>(AL.¢—L.L.¢) (A4, relativised to
awareness). It appears that transitivity of R together with Rst = A(s) C A(t)
is sufficient. For L;, we immediately get a relativised result:

Ch3 a. R is transitive & (S, R, P, m)|EL@¢—=("Pp—L,Lp) for all P
b. R is transitive and Rst implies P(s)=P(t) = (S, R, P,
m) FLe—~LLp.

To prove a, ‘=’, note that (L A 7Pg) = L¢ = LLe. Now, the L’s can
be rewritten to L;’s (first the second, then the first, mind P’s syntactical be-
haviour!). For ‘<=’, take P such that P(s) is empty for all s, then M[E(Le Vv
Jalse)=>(true—=L(Le V false) v false), or MELg—LL¢g, so R is transitive.

Related with the issue of correspondence is that of finding reduction-
properties in (dual) KD45AP. In KD45, we have such reductions, cf. fact
2 (we consider Ly—LL¢e also a reduction, because it rewrites = LL¢ to
—L¢). Reductions keep the system manageable, especially if it is enriched
with A and P. For, then O0,0,¢ with O,, O,€{L, L,, L,, P, A} has 25
instantiations, all being different if no reductions hold. By way of example,
we mention some reductions that hold under certain conditions. E. g, tran-
sitivity and A, are sufficient for M_Mg—=M_¢. Also, transitivity with A,’:
(MpEA(s) =¢ € A(s)) is. (Note that A,” yields AMg—A¢ and use fact 6
with #(X)= XMg—=Xp). We have:

Ch4 R is transitive and A satisfies A,” = (S, R, A, m) EM _Mg—M.,¢, and,
also,

Ch4’ R is transitive & (A satisfies A2’ = (S, R, A, m) EM,Mg—=M,p).

However, in Ch4’ we may not reverse ‘=" (however, cf. Ch6): consider
A, with A(s)={M(p A —p)} for all s and some p. A does not satisfy A",
but still for no 7, ¢ and s ((S, R, A, ), s)EM Mg A " M,p. Either
e=(pA —p), giving ME "MMpgp, thus ME M Mg), or not, yielding
ME —~AMgp, or ME M, Me. So, for ‘=" we need A2*: for all s and ¢
with MMg satisfiable at s: (M € A(s) = ¢ €EA(S)).

Ch5 R is transitives(A satisfies A2* & (S, R, A, 7)) EM,M¢—=M,p).
In [Hom], we derive results in the spirit of Ch4, Ch4” and ChS5 for several

(combinations of) operators. Sufficient conditions for reductions in (dual)
KD45A are often straightforward. We distinguish between conditions on the
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structure of A (e.g. , (ApEA() © ABpEA(s)) is sufficient for
(B.w+B.By) and conditions on A(s) in relation with A(t) if Rst (e.g. , Rst
= A(s)=A(t) is sufficient for (B,p<BB,¢))(B=L, M). The same holds for
P in (dual) KD45P (in the two examples above, replace A by P, A by P and
. by ; to get results for B)). As an illustration, we prove in dual KD45 that
(Rst = P(s)=P(t)) implies (M;pe>MM,¢). Rst = P(s)=P(t) corresponds to
(Pe—~(Mtrue—=MPtrue)) A (MPe—Pyp). So, to dual KD45P, we add A6:
(PeeMPg). Let MI be Mg = Mg V Py:

= MMig=,M(Mg V Pe)=., uy . MM@ V MPg=,, ,;Mp V MPp=,
Me v Pe=,, M.

< M= Mp V Pp= MMy V Pp=,MM¢ V MPp=, ,M(M¢ V Py) v
M(Me v Pe)=, M(Mg V Pp)=MM;p.

Why is it that we only seem to be able to state sufficient conditions in, for
instance, Ch4? If we would try to prove ‘=’ in Ch4, we might start by
assuming that R is not transitive and then try to that in our model M= (S,
R, A, ) there is some state s for which for some formula ¢, (M, s)f
M Mep... 7"Mgp. However, A(w) may be empty for all wE S (and still satisfy
A,’), so that it appears to be impossible to find an s for which M\M¢ € A-
(s). Therefore, it seems appropriate to abstract from the particular function
A in the model.

In order to do so, we need some definitions. (S, R, A)=¢ means that for
all m, (S, R, A, m)¢. Let ¢ be any scheme in our extended language
(possibly containing L., M,, L;, M)). Let ¢, be some constraint on a-
wareness functions, and ¢, a property of R. We say that ¢ characterises
@r under ¢, iff for all frames (S, R):

R satisfies pgefor all A for which ¢, holds, (S, R, A)Fe¢.
These definitions are easily extended to cases in which we add P or both
A and P to a frame.

Ch6 To see that using the notions defined above give complete characterisa-
tion results, we state the following. Let ¢, be ‘R is transitive’.

i  MMy—>My (¢) characterises ¢, under ‘true’ (¢,)

i MM.y—=M.y (¢) characterises ¢g under ¢, = vs(M, ot € A(s)=a € A(5))

iii MMy—M.y (¢) characterises ¢, under ¢, =vs(Ma € A(s) = a EA(s))

iv. MMy—=M.y (¢) characterises ¢ under ¢, = Vsvt(Rst...c EA(t) = €
A(s)).
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To show what we have gained with respect to Ch4, we prove iii, i.e. we
show that R is transitives for all A such that vs(Ma € A(s)=a EA(S)): (S,
R, A)EMMy-M,y.

‘=’ Suppose for some m and s ((S, R, A, ), s) EM_My.. Then both My €
A(s) and for some t with Rst there is some u with Rtu and ((S, R, A,
), u) . By transitivity of R, we have Rsu and hence ((S, R, A, =),
s)EMy. Since (by ¢,) Y EA(S), we have ((S, R, A, ), s)E M,y.

Suppose R is not transitive, i.e. for some s, t and u€S we have Rst,
Rtu but not Rsu. We have to define an A that satisfies ¢,, a formula
Y and a state v such that ((S, R, A, 7), v) E 7"(M,My—M.,y). Choose
v=s, y=p, and 7 such p is true only in state u. Finally, let A(s)=
{Mp, p}. Then A can be extended (for the other states) in a way that
it satisfies ¢,. We conclude that ((S, R, A, 7), s)EM.Mp A "M, y.

6. Conclusions.

We have dicussed a number of problems that classical logic of belief-as-
necessity systems suffer from. All these problems more or less had to do
with logical omniscience, which generally says that an agent’s beliefs are
closed under implication. For many applications (for instance, when model-
ling human beliefs) these properties make the agent too perfect a reasoner
with respect to his beliefs.

We showed that several problems of this kind are solved by switching
from viewing belief as a necessity to belief as a possibility. This enables an
agent having inconsistent beliefs, without him having to belief inconsisten-
cies. We mentioned a peculiar resemblance with (having several extensions
in) default logic: in fact, in [MH], our treatment of defaults is inspired by
allowing several frames of mind for one agent to reason within: allowing
him to have several “preferred”, or “working” beliefs at a time. We also
show how one can, by having several operators (and perhaps imposing a
preference relation upon them) keep information about which frame the
belief comes from.

Next, we discussed Fagin & Halpern’s notion of awareness, a syntactical
utility which can solve most of the problems of logical omniscience. How-
ever, it only acts as a filter on belief sets: if ¢ would be in the belief set (in
a system without awareness) the awareness function can prevent it from
getting in the (explicit) belief set. In that case, ¢ is not believed, but it is
still impossible to (explicitly) believe —¢. We defined a notion of priciples,
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or prejuidices, to overcome the latter problem. With this utility, an agent
can reason “against the facts”,

The power of the developped notions is that they can all be combined into
one and the same logical framework, i.e. modal logic, with its own natural
and clear semantics. Although, at first sight, a major drawback seems to be
that the awareness- and prejuidices-functions are purely syntactically defined
tunctions on the Kripke models, yielding different systems for each added
property, H. Wansing showed in [Wa] that all our approaches, as well as
Fagin and Halpern’s logic and Levesque’s logic of implicit and explicit
belief, can be uniformly modelled in the framework of Rantala’s (nonnormal
worlds) semantics.

We think that a closer investigation in finding special awareness and
principles functions (giving natural, useful and “well-behaved” systems),
as well as a study of their possible or desirable inferences (depending on
the particular application), would be worthwhile. In particular, when incor-
porating time, some additional requirements on these two functions seem
to yield interesting systems.

Beside the results of [Wa], yet we know of two places where the topic of
awareness is picked up. In [HK] several sources of awareness are syste-
matically studied. Also, given a notion of (‘regular’) awareness, they intro-
duce an alternative implication, under which the explicit beliefs of the agent
are closed. Furthermore, in [Th] the notion of monotonicity (as a consraint
on awareness functions, like Rst=> A(s) D A(t)) plays an imminent role. Also
several semantics for systems with awareness are introduced and compared
to those of [Wa).

Another interesting issue for further research seems the following ;Belief-
ay-possibility and belief-as-necessity can be considered two extremes on one
scale: in the former, the agent beliefs ¢ iff ¢ is true in more that zero
worlds he considers epistemically possible. In the latter, however, the agent
believes ¢ iff there are at most zero worlds considered possible verifying
. It seems that this allows for a wide scope of belief operators, all dif-
fering in the number, or proportion, of verifying worlds. We think that here
the so called “graded modalities” can play an important role (cf. [FC],
[Ho2]).

Finally, we mention the approach in which, in stead of having a variety
of belief operators, one has a variety of (qualitative) judgements over be-
lieved facts, allowing statements as “¢ is believed at least as strongly (pre-
ferred over)y” ([Se], [Gid], [Ho3]). A notion of belief (B) may then be (re-)
introduced by way of By = “¢is preferred over ¢’ ([Len]). It appears, that
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under this definition, several elements of logical omniscience resolve.
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